TY - JOUR ID - SisLab3310 UR - https://eprints.uet.vnu.edu.vn/eprints/id/eprint/3310/ IS - 18 A1 - Hoang, Thi Diep A1 - Le, Sy Vinh A1 - Tomas, Flouri A1 - Alexandros, Stamatakis A1 - Arndt, von Haeseler A1 - Minh, Bui Y1 - 2018/// N2 - Background: The nonparametric bootstrap is widely used to measure the branch support of phylogenetic trees. However, bootstrapping is computationally expensive and remains a bottleneck in phylogenetic analyses. Recently, an ultrafast bootstrap approximation (UFBoot) approach was proposed for maximum likelihood analyses. However, such an approach is still missing for maximum parsimony. Results: To close this gap we present MPBoot, an adaptation and extension of UFBoot to compute branch supports under the maximum parsimony principle. MPBoot works for both uniform and non-uniform cost matrices. Our analyses on biological DNA and protein showed that under uniform cost matrices, MPBoot runs on average 4.7 (DNA) to 7 times (protein data) (range: 1.2?20.7) faster than the standard parsimony bootstrap implemented in PAUP*; but 1.6 (DNA) to 4.1 times (protein data) slower than the standard bootstrap with a fast search routine in TNT (fast-TNT). However, for non-uniform cost matrices MPBoot is 5 (DNA) to 13 times (protein data) (range:0.3?63. 9) faster than fast-TNT. We note that MPBoot achieves better scores more frequently than PAUP* and fast-TNT. However, this effect is less pronounced if an intensive but slower search in TNT is invoked. Moreover, experiments on large-scale simulated data show that while both PAUP* and TNT bootstrap estimates are too conservative, MPBoot bootstrap estimates appear more unbiased. Conclusions: MPBoot provides an efficient alternative to the standard maximum parsimony bootstrap procedure. It shows favorable performance in terms of run time, the capability of finding a maximum parsimony tree, and high bootstrap accuracy on simulated as well as empirical data sets. MPBoot is easy-to-use, open-source and available at http://www.cibiv.at/software/mpboot. JF - BMC Evolutionary Biology, 18:11 TI - Fast phylogenetic maximum parsimony tree inference and bootstrap approximation AV - public ER -