eprintid: 4617 rev_number: 14 eprint_status: archive userid: 408 dir: disk0/00/00/46/17 datestamp: 2021-10-15 02:47:39 lastmod: 2021-10-15 02:47:39 status_changed: 2021-10-15 02:47:39 type: article metadata_visibility: show creators_name: Pham, Manh Linh creators_name: Parlavantzas, Nikos creators_name: Lê, Huy Hàm creators_name: Bui, Quang Hung creators_id: linhmp@vnu.edu.vn creators_id: nikos.parlavantzas@irisa.fr creators_id: lhham@agi.ac.vn creators_id: hungbq@vnu.edu.vn title: Towards a Framework for High-Performance Simulation of Livestock Disease Outbreak: A Case Study of Spread of African Swine Fever in Vietnam ispublished: pub subjects: IT subjects: Scopus subjects: at subjects: isi divisions: FIMO divisions: fac_fit keywords: veterinary epidemiology; African swine fever; high-performance simulation; modeling; transmission and spread abstract: The spread of disease in livestock is an important research topic of veterinary epidemiology because it provides warnings or advice to organizations responsible for the protection of animal health in particular and public health in general. Disease transmission simulation programs are often deployed with different species, disease types, or epidemiological models, and each research team manages its own set of parameters relevant to their target diseases and concerns, resulting in limited cooperation and reuse of research results. Furthermore, these simulation and decision support tools often require a large amount of computational power, especially for models involving tens of thousands of herds with millions of individuals spread over a large geographical area such as a region or a country. It is a matter of fact that epidemic simulation programs are often heterogeneous, but they often share some common workflows including processing of input data and execution of simulation, as well as storage, analysis, and visualization of results. In this article, we propose a novel architectural framework for simultaneously deploying any epidemic simulation program both on premises and on the cloud to improve performance and scalability. We also conduct some experiments to evaluate the proposed architectural framework on some aspects when applying it to simulate the spread of African swine fever in Vietnam. date: 2021-09 date_type: published publisher: MDPI official_url: https://www.mdpi.com/2076-2615/11/9/2743 id_number: doi:10.3390/ani11092743 contact_email: linhmp@vnu.edu.vn full_text_status: public publication: Animals volume: 11 number: 9 pagerange: 2743 refereed: TRUE issn: 2076-2615 referencetext: 1. Salman, M. The role of veterinary epidemiology in combating infectious animal diseases on a global scale: The impact of training and outreach programs. Prev. Veter Med. 2009, 92, 284–287. 2. Fernández-Carrión, E.; Martínez-Avilés, M.; Ivorra, B.; Martínez-López, B.; Ramos, Á.M.; Sánchez-Vizcaíno, J.M. Motion-based video monitoring for early detection of livestock diseases: The case of African swine fever. PLoS ONE 2017, 12, e0183793. 3. Thumbi, S.M.; Njenga, M.K.; Otiang, E.; Otieno, L.; Munyua, P.; Eichler, S.; Widdowson, M.A.; McElwain, T.F.; Palmer, G.H. Mobile phone-based surveillance for animal disease in rural communities: Implications for detection of zoonoses spillover. Philos. Trans. R. Soc. B 2019, 374, 20190020. 4. Cook, N.J.; Chabot, B.; Lui, T.; Bench, C.J.; Schaefer, A.L. Infrared thermography detects febrile and behavioural responses to vaccination of weaned piglets. Anim. Int. J. Anim. Biosci. 2015, 9, 339–346. 5. Bhatele, A.; Yeom, J.S.; Jain, N.; Kuhlman, C.J.; Livnat, Y.; Bisset, K.R.; Kale, L.V.; Marathe, M.V. Massively Parallel Simulations of Spread of Infectious Diseases over Realistic Social Networks. In Proceedings of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 689–694. 6. Rao, D.M.; Chernyakhovsky, A. Parallel simulation of the global epidemiology of Avian Influenza. In Proceedings of the 2008 Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; pp. 1583–1591. 7. Holvenstot, P.; Prieto, D.; De Doncker, E. GPGPU parallelization of self-calibrating agent-based influenza outbreak simulation. In Proceedings of the 2014 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 9–11 September 2014; pp. 1–6. 8. Eriksson, H.; Timpka, T.; Spreco, A.; Dahlstrom, O.; Stromgren, M.; Holm, E. Dynamic Multicore Processing for Pandemic Influenza Simulation. In Proceedings of the AMIA Annual Symposium Proceedings, Chicago, IL, USA, 12–16 November 2016; pp. 534–540. 9. Pachter, L.; Sturmfels, B.; Eds. Algebraic Statistics for Computational Biology; Cambridge University Press: Cambridge, UK, 2005; 420p. 10. Beerenwinkel, N.; Sing, T.; Lengauer, T.; Rahnenführer, J.; Roomp, K.; Savenkov, I.; Fischer, R.; Hoffmann, D.; Selbig, J.; Korn, K.; et al. Computational methods for the design of effective therapies against drug resistant HIV strains. Bioinformatics 2005, 21, 3943–3950. 11. Michor, F.; Nowak, M.; Iwasa, Y. Evolution of Resistance to Cancer Therapy. Curr. Pharm. Des. 2006, 12, 261–271. 12. Waldrogel, J. The Period in the Volterra–Lotka Predator-Prey Model. SIAM J. Numer. Anal. 1983, 20, 1264–1272. 13. Iwasa, Y.; Michor, F.; Nowak, M.A. Evolutionary dynamics of invasion and escape. J. Theor. Biol. 2004, 226, 205–214. 14. Watts, D.J.; Muhamad, R.; Medina, D.C.; Dodds, P. Multiscale, resurgent epidemics in a hierarchical metapopulation model. Proc. Natl. Acad. Sci. USA 2005, 102, 11157–11162. 15. Hufnagel, L.; Brockmann, D.; Geisel, T. Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 2004, 101, 15124–15129. 16. Diekmann, O. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation; Mathematical and Computational Biology series; Wiley: Hoboken, NJ, USA, 2000; 303p. 17. Ezanno, P.; Fourichon, C.; Viet, A.F.; Seegers, H. Sensitivity analysis to identify key-parameters in modelling the spread of bovine viral diarrhea virus in a dairy herd. Prev. Vet. Med. 2007, 80, 49–64. 18. Marcé, C.; Ezanno, P.; Seegers, H.; Pfeiffer, D.; Fourichon, C. Within-herd contact structure and transmission of Mycobacterium avium subspecies paratuberculosis in a persistently infected dairy cattle herd. Prev. Vet. Med. 2011, 100, 116–125. 19. Ezanno, P.; Fourichon, C.; Seegers, H. Influence of herd structure and type of virus introduction on the spread of bovine viral diarrhoea virus (BVDV) within a dairy herd. Vet. Res. 2008, 39, 1. 20. Beaunée, G.; Vergu, E.; Ezanno, P. Modelling of paratuberculosis spread between dairy cattle farms at a regional scale. Vet. Res. 2015, 46, 295. 21. Beaunée, G.; Vergu, E.; Joly, A.; Ezanno, P. Controlling bovine paratuberculosis at a regional scale: Towards a decision modelling tool. J. Theor. Biol. 2017, 435, 157–183. 22. Francis, J.; Klotz, G.; Harvey, N.; Stacey, D. Modeling and support tools for studying disease spread in livestock using networks. In Proceedings of the 2010 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 5–8 July 2010. 23. Morris, R.S.; Wilesmith, J.W.; Stern, M.W.; Sanson, R.L.; Stevenson, M.A. Predictive spatial modelling of alternative control strategies for the foot-and- mouth disease epidemic in Great Britain. Acta Hortic. 2001, 566, 337–347. 24. Smith, R.L.; Sanderson, M.W.; Renter, D.G.; Larson, R.; White, B. A stochastic risk-analysis model for the spread of bovine viral diarrhea virus after introduction to naïve cow-calf herds. Prev. Vet. Med. 2010, 95, 86–98, doi:10.1016/j.prevetmed.2010.02.009.Animals 2021, 11, 2743 19 of 20 25. Halasa, T.; Boklund, A.; Bøtner, A.; Toft, N.; Thulke, H.H. Simulation of Spread of African Swine Fever, Including the Effects of Residues from Dead Animals. Front. Vet. Sci. 2016, 3, 6. 26. Barongo, M.B.; Bishop, R.P.; Fèvre, E.M.; Knobel, D.L.; Ssematimba, A. A Mathematical Model that Simulates Control Options for African Swine Fever Virus (ASFV). PLoS ONE 2016, 11, e0158658. 27. Parlavantzas, N.; Pham, L.M.; Morin, C.; Arnoux, S.; Beaunée, G.; Qi, L.; Gontier, P.; Ezanno, P. A Service-based Framework for Building and Executing Epidemic Simulation Applications in the Cloud. Concurr. Comput. Pract. Exp. 2020, 32, e5554. 28. EFSA (European Food Safety Authority); Zancanaro, G.; Antoniou, S.E.; Bedriova, M.; Boelaert, F.; Gonzales Rojas, J.; Monguidi, M.; Roberts, H.; Saxmose Nielsen, S.; Thulke, H.‐ H. Scientific report on the SIGMA Animal Disease Data Model: A comprehensive approach for the collection of standardised data on animal diseases. EFSA J. 2019, 17, e05556. 29. Wooldridge, M. Agent-based software engineering. IEE Proc. Softw. Eng. 1997, 144, 26–37. 30. QGIS. Available online: https://www.qgis.org/en/site/about/index.html (accessed on 19 June 2021). 31. Epi Info. Available online: https://www.cdc.gov/epiinfo/ (accessed on 19 June 2021). 32. Keogh, M.; Henry, M. The Implications of Digital Agriculture and Big Data for Australian Agriculture (Research Report, Australian Farm Institute); Australian Farm Institute: Sydney, Australia, 2016. 33. Bartlett, P.C.; Van Buren, J.W.; Neterer, M.; Zhou, C. Disease surveillance and referral bias in the veterinary medical database. Prev. Vet. Med. 2010, 94, 264–271. 34. Mork, M.; Lindberg, A.; Alenius, S.; Vagsholm, I.; Egenvall, A. Comparison between dairy cow disease incidence in data registered by farmers and in data from a disease-recording system based on veterinary reporting. Prev. Vet. Med. 2009, 88, 298–307. 35. Shephard, R.W. The Development of a Syndromic Surveillance System for the Extensive Beef Cattle Producing Regions of Australia. Ph.D. Dissertation, University of Sidney, Sidney, Australia, 2006. 36. Pavlin, J.A.; Mostashari, F.; Kortepeter, M.G.; Hynes, N.A.; Chotani, R.A.; Mikol, Y.B.; Ryan, M.A.K.; Neville, J.S.; Gantz, D.T.; Writer, J.V.; et al. Innovative Surveillance Methods for Rapid Detection of Disease Outbreaks and Bioterrorism: Results of an Interagency Workshop on Health Indicator Surveillance. Am. J. Public Health 2003, 93, 1230–1235. 37. Stone, M. The potential for exotic disease syndromic surveillance within veterinary laboratory submissions data. In Proceedings of the Epidemiology and Animal Health Management Branch of the NZVA, Christchurch, New Zealand, 4–7 July 2007. pp. 91– 102. 38. Sintchenko, V.; Gallego, B. Laboratory-guided detection of disease outbreaks: Three generations of surveillance systems. Arch. Pathol. Lab. Med. 2009, 133, 916–925. 39. Smith-Akin, K.A.; Bearden, C.F.; Pittenger, S.T.; Bernstam, E.V. Toward a veterinary informatics research agenda: An analysis of the PubMed- indexed literature. Int. J. Med. Inform. 2007, 76, 306–312. 40. Tierney, A.; Coyne, K.P.; Dawson, S.; Gaskell, R.M.; Bryan, J.; Newton, R.; Radford, A.D. SAVSNET. 2021. Available online: https://www.liverpool.ac.uk/savsnet/ (accessed on 19 June 2021). 41. Moore, G.E.; Ward, M.P.; Dhariwal, J.; Wu, C.C.; Glickman, N.W.; Lewis, H.B.; Glickman, L.T. Development of a national companion animal syndromic surveillance system for bioterrorism. In Proceedings of the GISVET 2004, Guelph, ON, Canada, 23- 25 June 2004. 42. Glickman, L.T.; Moore, G.E.; Glickman, N.W.; Caldanaro, R.J.; Aucoin, D.; Lewis, H.B. Purdue university-Banfield national companion animal surveillance program for emerging and zoonotic diseases. Vector Borne Zoonotic Dis. 2006, 6, 14–23. 43. Maciejewski, R.; Tyner, B.; Jang, Y.; Zheng, C.; Nehme, R.; Ebert, D.S.; Cleveland, W.S.; Ouzzani, M.; Grannis, J.; Glickman, L.T. LAHVA: Linked animal-human health visual analytics. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, Sacramento, CA, USA, 30 October – 1 November 2007. pp. 27–34. 44. AIMS. Available online: http://aims.fao.org/ (accessed on 19 June 2021). 45. AgXML. Available online: https://schemas.liquid-technologies.com/agxml/2.0/ (accessed on 19 June 2021). 46. Schmitz, M.; Martini, D.; Kunisch, M.; Mösinger, H.J. agroXML Enabling Standardized, Platform-Independent Internet Data Exchange in Farm Management Information Systems. In Metadata and Semantics; Sicilia, M.A., Lytras, M.D., Eds.; Springer: Boston, MA, USA, 2009. 47. DCMI. Available online: https://dublincore.org/schemas/xmls/ (accessed on 19 June 2021). 48. NetLogo. Available online: https://ccl.northwestern.edu/netlogo/ (accessed on 19 June 2021). 49. GAMA. Available online: https://gama-platform.github.io/wiki/Tutorials (accessed on 19 June 2021). 50. Harvey, N.; Reeves, A.; Schoenbaum, M.A.; Zagmutt-Vergara, F.J.; Dubé, C.; Hill, A.E.; Corso, B.A.; McNab, W.B.; Cartwright, C.I.; Salman, M.D. The North American Animal Disease Spread Model: A simulation model to assist decision making in evaluating animal disease incursions. Prev. Vet. Med. 2007, 82, 176–197. 51. OpenMole. Available online: https://openmole.org/Documentation.html (accessed on 19 June 2021). 52. Repast HPC. Available online: https://repast.github.io/repast_hpc.html (accessed on 19 June 2021). 53. Wang, X. An SIRS Epidemic Model with Vital Dynamics and a Ratio-Dependent Saturation Incidence Rate. Discret. Dyn. Nat. Soc. 2015, 2015, 1–9. 54. Guinat, C.; Gubbins, S.; Vergne, T.; Gonzales, J.L.; Dixon, L.; Pfeiffer, D.U. Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiol. Infect. 2016, 144, 25–34. 55. Epidemic Simulation Front End Source Code. Available online: https://github.com/fimocode/GamaNew/tree/gama (accessed on 19 June 2021).Animals 2021, 11, 2743 20 of 20 56. Pham, M.L.; Parlavantzas, N.; Morin, C.; Arnoux, S.; Qi, L.; Gontier, P.; Ezanno, P. DiFFuSE, a distributed framework for cloudbased epidemic simulations: A case study in modelling the spread of bovine viral diarrhea virus. In Proceedings of the 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Hong Kong, China, 11–14 December 2017. 57. Disease Data Converter. Available online: https://github.com/fimocode/diseasedataconverter (accessed on 19 June 2021). 58. Amazon EC2 On-Demand Pricing. Available online: https://aws.amazon.com/ec2/pricing/on-demand/ (accessed on 19 June 2021). 59. Cost of Server Ownership: On-Premise vs. IaaS. Available online: https://www.sherweb.com/blog/cloud-server/total-cost-ofownership-of-servers-iaas-vs-on-premise/ (accessed on 28 June 2021). 60. Perumalla, K.S.; Seal, S.K. Reversible parallel discrete-event execution of large-scale epidemic outbreak models. In Proceedings of the 2010 IEEE Workshop on Principles of Advanced and Distributed Simulation (PADS '10), Atlanta, GA, USA, 17–19 May 2010. 61. Bisset, K.R.; Chen, J.; Deodhar, S.; Feng, X.; Ma, Y.; Marathe, M.V. Indemics: An interactive high-performance computing framework for data-intensive epidemic modeling. ACM Trans. Model. Comput. Simul. 2014, 24, 1–32. 62. Zou, P.; Lü, Y.-S.; Wu, L.-D.; Chen, L.-L.; Yao, Y.-P. Epidemic simulation of a large-scale social contact network on GPU clusters. SIMULATION 2013, 89, 1154–1172. 63. Sukcharoen, P.; Pumma, S.; Mongkolsermporn, O.; Achalakul, T.; Li, X. Design and analysis of a cloud-based epidemic simulation framework. In Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, 16–18 May 2012. 64. Price, R.C.; Pettey, W.; Freeman, T.; Keahey, K.; Leecaster, M.; Samore, M.; Tobias, J.; Facelli, J.C. SaTScan on a Cloud: OnDemand Large Scale Spatial Analysis of Epidemics. Online J. Public Heal. Inform. 2010, 2, doi:10.5210/ojphi.v2i1.2910. 65. Haris, M.; Manzoor, M.S. Spatiotemporal study of dengue virus infection via cloud based framework. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2016, 6, 155–161. funders: VNU University of Engineering and Technology funders: French Embassy in Vietnam projects: QG.20.55 projects: French Embassy in Vietnam: Managing epidemic simulation applications in cloud environments citation: Pham, Manh Linh and Parlavantzas, Nikos and Lê, Huy Hàm and Bui, Quang Hung (2021) Towards a Framework for High-Performance Simulation of Livestock Disease Outbreak: A Case Study of Spread of African Swine Fever in Vietnam. Animals, 11 (9). p. 2743. ISSN 2076-2615 document_url: https://eprints.uet.vnu.edu.vn/eprints/id/eprint/4617/1/animals-11-02743.pdf