eprintid: 4706 rev_number: 12 eprint_status: archive userid: 364 dir: disk0/00/00/47/06 datestamp: 2022-03-21 00:29:40 lastmod: 2022-03-21 00:29:40 status_changed: 2022-03-21 00:29:40 type: conference_item metadata_visibility: show creators_name: Tran, Nhu Chi creators_name: Nguyen, Dang Phu creators_name: Nguyen, Thi Thanh Van creators_name: Tran, Thi Thuy Ha creators_name: Dau, Thanh Van creators_name: Bui, Thanh Tung creators_id: trannhuchi@vnu.edu.vn creators_id: phund@vnu.edu.vn creators_id: vanntt@vnu.edu.vn creators_id: hatt@ptit.edu.vn creators_id: v.dau@griffith.edu.au creators_id: tungbt@vnu.edu.vn title: Fabrication and Investigation of Flexible Strain Sensor for Sign Language Recognition System ispublished: pub subjects: ECE subjects: ElectronicsandComputerEngineering divisions: CET_uet divisions: fac_fet abstract: In this study, an ultra-stretchable and highly sensitive strain sensor is successfully fabricated by 3D printing technology with a mixture of aqueous sodium chloride and silicone rubber. This strain sensor has dimensions of 50x10x10 mm, with a fluidic channel (0.6 mm) inside. The physical and mechanical properties of sensor were characterized by gauge factor measurement. Experimental results show that the resistance of the sensor changes when an external force deforms the ionic liquid shell; exhibiting impressive stretchability with wide range strain (100%), good bending properties and high sensitivity with a stable gauge factor of 2.1. Besides, the sensor also is investigated with a vertical pressing force. Initially, the resistance of the sensor increase slowly and it then jump rapidly to the saturation value at the force of 40 N. For application of sensor, the proposed sensor is applied to recognize the sign language through attaching five strain sensors on the fingers. The obtained result shows the sensor can detect the movement of the fingers and convert 10 letters of sign language into the voice with high accuracy, about 98%. On the other hand, the result also demonstrates the proposed sensor has high potential in healthcare, human motion monitoring and electronic skin. date: 2021-12-15 date_type: completed official_url: https://icema.uet.vnu.edu.vn/ contact_email: trannhuchi@vnu.edu.vn full_text_status: public pres_type: paper event_title: The 6th International Conference on Engineering Mechanics and Automation (ICEMA 6) event_location: Hanoi, Vietnam event_dates: October 15÷16, 2021 event_type: conference refereed: TRUE referencetext: [1] V. T. Dau, T. Yamada, D. Viet Dao, B. Thanh Tung, K. Hata, and S. Sugiyama, “Integrated CNTs thin film for MEMS mechanical sensors,” Microelectronics J., vol. 41, no. 12, pp. 860–864, Dec. 2010, doi: 10.1016/J.MEJO.2010.07.012. [2] B. T. Tung, H. M. Nguyen, D. V. Dao, S. Rogge, H. W. M. Salemink, and S. Sugiyama, “Strain sensitive effect in a triangular lattice photonic crystal hole-modified nanocavity,” IEEE Sens. J., vol. 11, no. 11, pp. 2657–2663, 2011, doi: 10.1109/JSEN.2011.2157122. [3] T. T. Bui, D. V. Dao, T. Toriyama, and S. Sugiyama, “Evaluation of the piezoresistive effect in single crystalline silicon nanowires,” Proc. IEEE Sensors, pp. 41–44, 2009, doi: 10.1109/ICSENS.2009.5398124. [4] K. Nakamura, D. V. Dao, B. T. Tung, T. Toriyama, and S. Sugiyama, “Piezoresistive effect in silicon nanowires - A comprehensive analysis based on first-principles calculations,” 20th Anniv. MHS 2009 Micro-Nano Glob. COE - 2009 Int. Symp. Micro-NanoMechatronics Hum. Sci., pp. 38–43, 2009, doi: 10.1109/MHS.2009.5352099. [5] S. Yang and N. Lu, “Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges,” Sensors 2013, Vol. 13, Pages 8577-8594, vol. 13, no. 7, pp. 8577–8594, Jul. 2013, doi: 10.3390/S130708577. [6] S. Russo, T. Ranzani, H. Liu, S. Nefti-Meziani, K. Althoefer, and A. Menciassi, “Soft and stretchable sensor using biocompatible electrodes and liquid for medical applications,” Soft Robot., vol. 2, no. 4, pp. 146–154, 2015, doi: 10.1089/soro.2015.0011. [7] X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, “Characterizing and Patterning of PDMS-Based Conducting Composites,” Adv. Mater., vol. 19, no. 18, pp. 2682–2686, Sep. 2007, doi: 10.1002/ADMA.200602515. [8] N. Lu, C. Lu, S. Yang, and J. Rogers, “Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers,” Adv. Funct. Mater., vol. 22, no. 19, pp. 4044–4050, Oct. 2012, doi: 10.1002/ADFM.201200498. [9] J. T. Muth et al., “Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers,” Adv. Mater., vol. 26, no. 36, pp. 6307–6312, Sep. 2014, doi: 10.1002/ADMA.201400334. [10] A. Frutiger et al., “Capacitive soft strain sensors via multicore-shell fiber printing,” Adv. Mater., vol. 27, no. 15, pp. 2440–2446, 2015, doi: 10.1002/adma.201500072. [11] R. K. Kramer, C. Majidi, R. Sahai, and R. J. Wood, “Soft curvature sensors for joint angle proprioception,” pp. 1919–1926, Dec. 2011, doi: 10.1109/IROS.2011.6094701. [12] J. B. Chossat, Y. L. Park, R. J. Wood, and V. Duchaine, “A soft strain sensor based on ionic and metal liquids,” IEEE Sens. J., vol. 13, no. 9, pp. 3405–3414, 2013, doi: 10.1109/JSEN.2013.2263797. [13] O. A. Araromi, S. Rosset, and H. R. Shea, “High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors,” ACS Appl. Mater. Interfaces, vol. 7, no. 32, pp. 18046–18053, Aug. 2015, doi: 10.1021/ACSAMI.5B04975. [14] Y. L. Park, C. Majidi, R. Kramer, P. Brard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromechanics Microengineering, vol. 20, no. 12, 2010, doi: 10.1088/0960-1317/20/12/125029. [15] P. M et al., “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol., vol. 7, no. 12, pp. 803–809, 2012, doi: 10.1038/NNANO.2012.206. [16] Y. Menguc et al., “Soft wearable motion sensing suit for lower limb biomechanics measurements,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 5309–5316, 2013, doi: 10.1109/ICRA.2013.6631337. [17] Y. L. Park, B. R. Chen, and R. J. Wood, “Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors,” IEEE Sens. J., vol. 12, no. 8, pp. 2711–2718, 2012, doi: 10.1109/JSEN.2012.2200790. [18] M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, “Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature,” Adv. Funct. Mater., vol. 18, no. 7, pp. 1097–1104, Apr. 2008, doi: 10.1002/ADFM.200701216. [19] Y.-L. Park, B. Chen, and R. J. Wood, “Soft artificial skin with multi-modal sensing capability using embedded liquid conductors,” pp. 81–84, Jan. 2013, doi: 10.1109/ICSENS.2011.6127228. [20] S. Zhu et al., “Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core,” Adv. Funct. Mater., vol. 23, no. 18, pp. 2308–2314, May 2013, doi: 10.1002/ADFM.201202405. [21] C. Majidi, R. Kramer, and R. J. Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater. Struct., vol. 20, no. 10, 2011, doi: 10.1088/0964-1726/20/10/105017. [22] K.-Y. Chun et al., “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 2010 512, vol. 5, no. 12, pp. 853–857, Nov. 2010, doi: 10.1038/nnano.2010.232. [23] T. Yamada et al., “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol., vol. 6, no. 5, pp. 296–301, 2011, doi: 10.1038/nnano.2011.36. [24] D. J. Lipomi et al., “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 2011 612, vol. 6, no. 12, pp. 788–792, Oct. 2011, doi: 10.1038/nnano.2011.184. [25] M. A. Lacasse, V. Duchaine, and C. Gosselin, “Characterization of the electrical resistance of carbon-black-filled silicone: Application to a flexible and stretchable robot skin,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 4842–4848, 2010, doi: 10.1109/ROBOT.2010.5509283. [26] A. Firouzeh and J. Paik, “Robogami: A Fully Integrated Low-Profile Robotic Origami,” J. Mech. Robot., vol. 7, no. 2, pp. 1–8, May 2015, doi: 10.1115/1.4029491. [27] S. Kumbay Yildiz, R. Mutlu, and G. Alici, “Fabrication and characterisation of highly stretchable elastomeric strain sensors for prosthetic hand applications,” Sensors Actuators, A Phys., vol. 247, pp. 514–521, 2016, doi: 10.1016/j.sna.2016.06.037. [28] Y. N. Cheung, Y. Zhu, C. H. Cheng, C. Chao, and W. W. F. Leung, “A novel fluidic strain sensor for large strain measurement,” Sensors Actuators, A Phys., vol. 147, no. 2, pp. 401–408, 2008, doi: 10.1016/j.sna.2008.05.013. [29] K. Noda, E. Iwase, K. Matsumoto, and I. Shimoyama, “Stretchable liquid tactile sensor for robot-joints,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 4212–4217, 2010, doi: 10.1109/ROBOT.2010.5509301. [30] C.-Y. Wu, W.-H. Liao, and Y.-C. Tung, “Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems,” Lab Chip, vol. 11, no. 10, pp. 1740–1746, May 2011, doi: 10.1039/C0LC00620C. [31] P. Manandhar, P. D. Calvert, and J. R. Buck, “Elastomeric ionic hydrogel sensor for large strains,” IEEE Sens. J., vol. 12, no. 6, pp. 2052–2061, 2012, doi: 10.1109/JSEN.2011.2181993. [32] [32] J.-Y. Sun, C. Keplinger, G. M. Whitesides, and Z. Suo, “Ionic skin,” Adv. Mater., vol. 26, no. 45, pp. 7608–7614, Dec. 2014, doi: 10.1002/ADMA.201403441. [33] C. T. Nhu et al., “Experimental Characterization of an Ionically Conductive Fluid Based High Flexibility Strain Sensor,” Lect. Notes Networks Syst., vol. 63, pp. 318–323, Dec. 2018, doi: 10.1007/978-3-030-04792-4_42. [34] C. T. Nhu, A. Nguyen Ngoc, V. T. Dau, C. Le Van, T. C. Duc, and T. T. Bui, “Wearable Fluidic Strain Sensor for Human Motion Sensing,” Proc. IEEE Sensors, vol. 2020-October, Oct. 2020, doi: 10.1109/SENSORS47125.2020.9278685. [35] T. A. Hampshire and H. Adeli, “Monitoring the behavior of steel structures using distributed optical fiber sensors,” J. Constr. Steel Res., vol. 53, no. 3, pp. 267–281, Mar. 2000, doi: 10.1016/S0143-974X(99)00043-7. citation: Tran, Nhu Chi and Nguyen, Dang Phu and Nguyen, Thi Thanh Van and Tran, Thi Thuy Ha and Dau, Thanh Van and Bui, Thanh Tung (2021) Fabrication and Investigation of Flexible Strain Sensor for Sign Language Recognition System. In: The 6th International Conference on Engineering Mechanics and Automation (ICEMA 6), October 15÷16, 2021, Hanoi, Vietnam. document_url: https://eprints.uet.vnu.edu.vn/eprints/id/eprint/4706/1/ICEMA6_Full%20Paper.pdf