eprintid: 4789 rev_number: 9 eprint_status: archive userid: 408 dir: disk0/00/00/47/89 datestamp: 2023-02-10 07:29:04 lastmod: 2023-02-10 07:29:04 status_changed: 2023-02-10 07:29:04 type: article metadata_visibility: show creators_name: Nguyen, Xuan Truong creators_name: Pham, Manh Linh creators_id: truongnx91@vnu.edu.vn creators_id: linhmp@vnu.edu.vn title: Detecting Multiple Perturbations on Swine using Data from Simulation of Precision Feeding Systems ispublished: pub subjects: IT subjects: Scopus subjects: at divisions: FIMO divisions: fac_fit keywords: Precision feeding system, Simulation, Swine, Perturbations, Internet of Things date: 2022-12 date_type: published official_url: https://ijetae.com/files/Volume12Issue12/IJETAE_1222_15.pdf id_number: 10.46338/ijetae1222_15 full_text_status: none publication: International Journal of Emerging Technology and Advanced Engineering volume: 12 number: 12 pagerange: 136-145 refereed: TRUE issn: 2250-2459 referencetext: [1] FAO 2009. How to feed the world in 2050. Retrieved on 26 August 2022, from http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/Ho w_to_Feed_the_World_in_2050.pdf [2] Brossard, L., Dourmad, J.Y., Garcia-Launay, F., Van Milgen, J., 2017. Chapter 10 – modelling nutrient requirements for pigs to optimize feed efficiency. Achieving sustainable production of pig meat Volume 2. Burleigh Dodds Science Publishing, 207-230, 2018. [3] Pomar, C., Hauschild, L., Zhang, G. H., Pomar, J. and Lovatto, P. A., ‗Applying precision feeding techniques in growing-finishing pig operations. L‘utilisation d‘une alimentation de precision chez les porcs à l‘engrais‘, In Proceedings of 45th Eastern Nutrition Conference of Canada, pp. 103–16. Animal Nutrition Association of Canada, Quebec, Canada, 2009. [4] Andretta, I., Pomar, C., Rivest, J., Pomar, J. and Radünz, J., ‗Precision feeding can significantly reduce lysine intake and nitrogen excretion without compromising the performance of growing pigs‘, Animal, 10(7), 1137–47, 2016. [5] Maselyne J, Saeys W and Van Nuffel A, Quantifying animal feeding behaviour with a focus on pigs. Physiology & Behavior 138, 37–51, 2015. [6] Casti, J.L.: Would-be worlds: how simulation is changing the frontiers of science. J. Wiley, New York, 1997. [7] Pomar, C., J. Pomar, J. Rivest, L. Cloutier, M.-P. LetourneauMontminy, I. Andretta, and L. Hauschild, Estimating real-time individual amino acid requirements in growing-finishing pigs: Towards a new definition of nutrient requirements in growingfinishing pigs?, 2014. [8] H. Nguyen-Ba, J. van Milgen, and M. Taghipoor, ―A procedure to quantify the feed intake response of growing pigs to perturbations,‖ Animal, vol. 14, no. 2, pp. 253–260, 2020. [9] Thornley, J.H.M., France, J., Mathematical Models in Agriculture, second ed. CABI Publishing, Wallingford, UK, 923 pp, 2007. [10] F Labroue, R Guéblez, P Sellier, M.C Meunier-Salaün, Feeding behaviour of group-housed large white and landrace pigs in French central test stations, Livestock Production Science, Volume 40, Issue 3, Pages 303-312, ISSN 0301-6226, 1994. [11] GAMA platform, https://gama-platform.github.io/wiki/Tutorials. Accessed 26 August 2022. [12] Investopia - Goodness-of-Fit, https://www.investopedia.com/terms/g/goodness-of-fit.asp. Accessed 26 August 2022. [13] Bruijnis, M. R. N., H. Hogeveen, and E. N. Stassen., "Assessing Economic Consequences of Foot Disorders in Dairy Cattle Using a Dynamic Stochastic Simulation Model". Journal of Dairy Science 93(6):2419-2432, 2010. [14] Sørensen, A. I. V., N. Toft, A. Boklund, C. Espinosa-Gongora, K. Græsbøll, J. Larsen, and T. Hisham Beshara Halasa, "A Mechanistic Model for Spread of Livestock-Associated MethicillinResistant Staphylococcus Aureus (LA-MRSA) within a Pig Herd". PLoSOne 12(11):1-18, 2017. [15] Tedeschi, L. O., C. F. Nicholson, and E. Rich, "Using System Dynamics Modelling Approach to Develop Management Tools for An- imal Production with Emphasis on Small Ruminants". Small Ruminant Research 98(1):102-110, 2011. [16] Guimarães, V. P., L. O. Tedeschi, and M. T. Rodrigues, "Development of a Mathematical Model to Study the Impacts of Production and Management Policies on the Herd Dynamics and Profitability of Dairy Goats". Agricultural Systems 101(3):186-196, 2009. [17] Al-Mamun, M. A., and Y. T. Grohn, "Mabsdairy: A Multiscale Agent Based Simulation of a Dairy Herd". In Proceedings of the 50th Annual Simulation Symposium, April 23rd-26th, Virginia Beach, Virginia, 1-12, 2017. [18] Matthews, R., and I. Bakam, "A Combined Agent-Based and Biophysical Modelling Approach to Address GHG Mitigation Policy Issues." In Proceedings of the MODSIM International Congress on Modelling and Simulation, edited by L. Oxley and D. Kulasiri, 10- 13. Christchurch, New Zealand: Modelling and Simulation Society of Australia and New Zealand Inc, 2007. [19] Pomar, J., V. López, and C. Pomar, "Agent-Based Simulation Framework for Virtual Prototyping of Advanced Livestock Precision Feeding Systems". Computers Electronics in Agriculture 78(1):88- 97, 2011. [20] Codrea MC, Højsgaard S, Friggens NC. Differential smoothing of time-series measurements to identify disturbances in performance and quantify animal response characteristics: An example using milk yield profiles in dairy cows. J Anim Sci. Oct;89(10):3089-98. doi: 10.2527/jas.2010-3753. Epub 2011 Apr 8. PMID: 21478456, 2011. [21] Galyna Dukhta, Veronika Halas Growth models and their application in precision feeding of monogastric farm animals December Acta Fytotechnica et Zootechnica 23, 2020. [22] Pastorelli H, Van Milgen J, Lovatto P and Montagne L, Metaanalysis of feed intake and growth responses of growing pigs after a sanitary challenge. Animal 6, 952–961, 2012. [23] Sandberg FB, Emmans GC and Kyriazakis I, A model for predicting feed intake of growing animals during exposure to pathogens. Journal of Animal Science 84, 1552–1566, 2006. [24] Nguyen-Ba H, Taghipoor M and Van Milgen J 2018. Detection and characterization of the feed intake response of growing pigs to perturbations. Book of Abstracts of the 69th Annual Meeting of the European Federation of Animal Science, Dubrovnik, Croatia, pp. 540, 27–31 August 2018. funders: CHEY Institute for Advanced Studies funders: Asia Research Center, Vietnam National University, Hanoi projects: CA.20.9A citation: Nguyen, Xuan Truong and Pham, Manh Linh (2022) Detecting Multiple Perturbations on Swine using Data from Simulation of Precision Feeding Systems. International Journal of Emerging Technology and Advanced Engineering, 12 (12). pp. 136-145. ISSN 2250-2459