VNU-UET Repository

Combining Statistical Machine Learning with Transformation Rule Learning for Vietnamese Word Sense Disambiguation

Dinh, Phu Hung and Nguyen, Ngoc Khuong and Le, Anh Cuong (2012) Combining Statistical Machine Learning with Transformation Rule Learning for Vietnamese Word Sense Disambiguation. In: 2012 IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), February 27 - March 1, 2012, Ho Chi Minh city.

Full text not available from this repository.

Abstract

Word Sense Disambiguation (WSD) is the task of determining the right sense of a word depending on the context it appears. Among various approaches developed for this task, statistical machine learning methods have been showing their advantages in comparison with others. However, there are some cases which cannot be solved by a general statistical model. This paper proposes a novel framework, in which we use the rules generated by transformation based learning (TBL) to improve the performance of a statistical machine learning model. This framework can be considered as a combination of a rule-based method and statistical based method. We have developed this method for the problem of Vietnamese WSD and achieved some promising results.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: Accuracy;Context;Data models;Learning systems;Machine learning;Niobium;Training;learning (artificial intelligence);natural language processing;statistical analysis;Vietnamese word sense disambiguation;general statistical model;statistical machine learning model;transformation based learning;transformation rule learning;
Subjects: Information Technology (IT)
?? IT_CS ??
Divisions: Faculty of Information Technology (FIT)
Depositing User: Prof. Xuan-Tu Tran
Date Deposited: 08 Jan 2013 07:24
Last Modified: 22 May 2015 08:05
URI: http://eprints.uet.vnu.edu.vn/eprints/id/eprint/112

Actions (login required)

View Item View Item