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Abstract– Fast image acquisition in magnetic resonance imaging (MRI) is important, due to the need to find ways that help
relieve patient’s stress during MRI scans. Methods for fast MRI have been proposed, most notably among them are pMRI
(parallel MRI), SWIFT (SWeep Imaging with Fourier Transformation), and compressed sensing (CS) based MRI. Although it
promises to significantly reduce acquisition time, applying CS to MRI leads to difficulties with hardware design because of
the randomness nature of the measurement matrix used by the conventional CS methods. In this paper, we propose a novel
method that combines the above-mentioned three approaches for fast MRI by designing a compound measurement matrix
from a series of single measurement matrices corresponding to pMRI, SWIFT, and CS. In our method, the CS measurement
matrix is designed to be deterministic via chaotic systems. This chaotic compressed sensing (CCS) measurement matrix,
while retaining most features of the random CS matrix, is simpler to realize in hardware. Several compound measurement
matrices have been constructed and examined in this work, including CCS-MRI, CCS-pMRI, CCS-SWIFT, and CCS-pSWIFT.
Simulation results showed that the proposed method allows an increase in the speed of the MRI acquisition process while
not compromising the quality of the acquired MR images.
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1 Introduction

The concept of information was proposed by Shannon
in 1948 [1] where the information of a source is statisti-
cally defined via entropy. Traditionally, the acquisition
(also called, sampling or sensing) of the data from
a source follows the Nyquist law where the source
signal is sampled at a frequency larger than or equal to
twice the maximum frequency present in the frequency
content of the signal, without much concerning the in-
formation of the source. Digital information processing
is then applied in order to extract the information from
the digitally acquired data. Therefore, the acquisition is
to sense the data of the source.

Recently, new perspectives have been proposed that
shift the concern of many researchers from data to
more on information. One of such perspectives is a new
sensing modality called compressive sensing (CS) [2, 3].
Instead of sensing the data of the source, CS tries
to sense the information directly from the source. By
doing so, the data acquired as the result of the CS
process would be different from the data acquired by
the traditional sensing processes. Taking an example
of sensing a voice, Nyquist sampling will give us data
in the time domain (also called the ambient domain

which is well understood). However, with CS, different
data are obtained and they are represented in another
domain that depends on the acquired method. This
domain is said to be holographic because it is not
presented in the normal way of understanding.

Assume that the signal of interest is sparse (or com-
pressible) in some specific domain. For example, a
real communication channel would induce errors on
a transmitted signal. Given that the transmitted signal
is channel-coded, the resulting received signal vector
is the sum of the transmitted codeword vector and
an error vector. This error vector is sparse, meaning
that there are only a few nonzero entries. Another
example is that a natural image is compressible in the
wavelet domain; only a few wavelet coefficients are
significant. Hereafter, we will only focus on the sparsity
of the signal of interest. This sparsity represents the
information of the signal. CS then aims to sense this
information (not the data) directly from the signal, by
projecting the signal on to a random linear vector space;
the sensing system can be modeled as a matrix and this
measurement matrix is random. Because of the sparsity,
CS acquires far less samples when compared to Nyquist
sampling. The signals are then reconstructed/recovered
using a sparse approximation technique, such as `1
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optimization (e.g., Basis Pursuit) or greedy algorithms
(e.g., Orthogonal Matching Pursuit). Exact construction
of the signal in CS is guaranteed if the sparsity domain
is incoherent to the sensing domain [4]. However, de-
signing the sensing system to represent a random mea-
surement matrix is difficult in practice. A deterministic
CS method was introduced by Linh-Trung et al. in [5],
called chaos filter, exploiting chaotic systems for CS.

Magnetic resonance imaging (MRI), based on Fourier
transform, is an imaging technique to visualize the
internal structures of the object in detail [6]. More
efficient acquisition in MRI, especially fast acquisition,
is of interest to many researchers. It is important to
reduce the scanning time on patients in order to avoid
physiological effects, to overcome physical constraints
of the imaging system, or to meet timing requirements
when imaging dynamic structures or processes. Tradi-
tionally, parallel imaging is designed to speed up the
image in MRI. In parallel imaging, a reduced data set
in the phase encoding directions of k-space is acquired
to reduce acquisition time, combining the signal of L
coils [7]. These coils operate simultaneously, giving a
set of MR signals with different information at once.
Each coil acquires data corresponding to a portion of
the imaging object. By combining the data obtained
from the separate coils, the full MRI image can be
reconstructed.

While many works on the theory of CS (whether
being random or deterministic) were being developed,
Lustig has successfully shown that random CS can be
applied to speed up the image acquisition in Mag-
netic Resonance Imaging (MRI) [8]; the method is
called sparse-MRI. The sparsity of the MRI images
in the wavelet domain is exploited to perform CS.
Recently, Puy et al. has applied CS to MRI with a
linear frequency-modulated excitation [9]. Inspired by
the sparse-MRI method for fast image acquisition, in
this paper we study chaotic CS for MRI.

We first give a deterministic perspective on CS. In this
context, firstly, we design the entries of the measure-
ment matrix as values generated from a deterministic
chaotic system. Secondly, we use some families of de-
terministic signals to design the measurement matrix.
Lastly, we generalize the deterministic structure of the
measurement matrix by decomposing into a number of
deterministic matrices that capture different structures
in the sensing system.

Next, we illustrate the view of chaotic CS on MRI.
The reason is that with MRI we can implement the
decomposition of the measurement matrix under dif-
ferent specific MRI techniques. They could be a Fourier
matrix (with standard MRI), undersampled permuta-
tion matrix (with sparse-MRI), hyperbolic-secant ma-
trix (with SWeep Imaging with Fourier Transformation
(SWIFT) [10]), etc.

The paper is organized as follows. Section 2 first
describes the principle of compressed sensing, and
then presents the fundamental of chaotic compressed
sensing. Section 3 explains the principles of two-
dimensional (2D) MRI acquisition and the specialized
methods for fast MRI acquisition using SWIFT and

parallel MRI, all in view of algebraic formulation. Sec-
tion 4 describes the first method that combines Fourier
imaging and chaotic CS (CCS-MRI). Section 5 describes
the second method, CCS-SWIFT, which integrates CCS-
MRI with SWIFT to exploit a frequency-swept excita-
tion pulse and virtually simultaneous signal acquisition
in a time-shared mode. These two methods have been
given in our previous papers and are presented here
for the next method which clearly shows the view of
the compound measurement matrix. Section 6 describe
the third method, CCS-pSWIFT, which further applies
parallel imaging to CCS-SWIFT. Simulation results to
illustrate the effectiveness of each method in terms of
normalized image reconstruction error are also given
accordingly. Finally, Section 7 concludes the paper and
gives discussions on the proposed methods.

2 Chaotic Compressed Sensing

2.1 Fundamentals of Compressed Sensing

We briefly presents the fundamental of CS in this sec-
tion, restricting our attention to the discrete-to-discrete
formulation of CS for simplicity.

Let x ∈ RN be the unknown signal of interest, to
be sensed by CS. Suppose that x is K-sparse, that is x
admits a sparse representation x = Ψα by the represen-
tation basis Ψ = [ψ1, . . . , ψN ] and the coefficient vector
α ∈ RN has K nonzero values out of N values. Thus, Ψ
is also called the sparsifying matrix.

A linear system, represented by a random measure-
ment matrix Φ ∈ RM×N , is designed to sense x by the
following model:

y = Φx, (1)

where y ∈ RM is the measurement vector. This linear
system is underdetermined; that is, M < N.

From only a small number of M measurements and
a priori information about Ψ and Φ, CS aims to deter-
mine/recover/reconstruct x. Since the system is under-
determined, it is necessary to rely on additional con-
straints in order to solve (1). One important constraint
is the sparsity of x that we have assumed. Another
constraint is the so-called Restricted Isometry Property
(RIP) which is explained as follows. Let Θ = ΦΨ,
then the model (1) is rewritten as y = Θα. Under the
RIP, Θ approximately preserves the length of K-sparse
signals; that is, all subsets of K columns of Θ are nearly
orthogonal. In other words, Θ is an almost orthonormal
system when restricted to sparse linear combinations.

One way to satisfy the RIP is to satisfy the incoherence
condition. The coherence, denoted as µ(Φ, Ψ), mea-
sures the largest correlation between any two columns
of Φ and Ψ and is constrained in the range [1,

√
N].

The incoherence corresponds to µ = 1 and compressed
sensing takes place when µ is close to 1. Note that,
while the sparsity is related to the signal of interest,
the incoherence is related to the sensing modality.

When the random entries of Φ are independently
and identically Gaussian distributed with zero mean
and variance of 1/M (hence, µ is small), if M ≥
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CK log(N/K) for some positive constant C, then ex-
act reconstruction of α (or essentially x because Ψ
is known) can be achieved with an overwhelming
probability by solving the following `1-minimization
problem:

α = arg min
α′
‖α′‖1, subject to Θα′ = y, (2)

where ‖ · ‖1 denotes the norm-1 operator. If there exists
an additive noise in the measurements, the optimiza-
tion problem is reformulated as follows:

α = arg min
α′
‖α′‖1, subject to ‖Θα′ − y‖2 < ε, (3)

where ε is a threshold that controls the fidelity of the
reconstruction Θα′ with respect to the measure data y,
and is normally set below the noise level.

2.2 Compressed Sensing using Chaos Filters

Conventionally, the measurement matrix Φ is ran-
dom and the signal reconstruction algorithm recon-
structs the signal x, or, equivalently, its K-sparse co-
efficient vector α from M random measurements in the
vector y.

It is known that the hardware implementation of a
deterministic system is often simpler than that of a
random one. Therefore, we makes Φ chaotic, which is
generated from a deterministic system. Inspired by the
design of the random filter for CS in [11], a design
of a chaotic filter for CS was proposed in [12], where
a chaotic Φ is constructed from a chaotic sequence
hG(n). This sequence is obtained by first generating the
Logistic map

h(n + 1) = ρh(n)(1− h(n)), (4)

and then converting it by the Logit Transform to be
Gaussian-like as

hG(n) = ln
[

h(n)
1− h(n)

]
. (5)

For h(n) to be chaotic, the control parameter ρ must be
equal to 4. The initial condition h(0) is very sensitive in
the sense that the output chaotic sequence is completely
different for a small change of h(0). More details on
how to construct Φ from hG(n) can be found in [12].
After that, the reconstruction is performed using the
Orthogonal Matching Pursuit technique.

Figure 1 shows the performance of both random and
chaos filters of length L in reconstructing the original
signal x, in terms of the probability of exact reconstruc-
tion. The signal of interest is a sequence of length 512
and is sparse in the time domain with K = 20 spikes;
the locations of the spikes were randomly generated.
The coefficients of the random filter were obtained
from the Gaussian distribution with zero mean and
unit variance. The coefficients of the chaotic filter were
generated by the Gaussian-Logistic map as explained
above. It can be seen that the chaotic filter offers a
performance similar to that of the random filter, except
when the filter length is very short (L = 32).
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Fig. 5. Performance comparison: Gaussian-Logistic chaos filter vs Gaussian
random filter.
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Fig. 6. Performance comparison: Chaos filter using Logistic map vs
Gaussian-Logistic map.

know yet the cause of this drop in performance.

C. Logistic map vs Gaussian-Logistic map

Performance of the chaos filter with taps generated only by
Logistic map was also compared with the chaos filter using
Gaussian-Logistic previously obtained, as shown in Fig. 6. It
is interesting to see that the use of the Logistic map lead
to better performance than the use of Gaussian-Logistic map,
while there was no drop in performance for the short filter,
i.e. L = 32.

VI. DISCUSSION

A. Convolution

There have been various ways of designing the measurement
matrix Φ. Bajwa et al. in [10] used a partial Toeplitz matrix
whose M rows are taken consecutively from the convolution
matrix. Tropp et al. in [6] on the other hand obtained the
matrix, which is Hλ in (4), by extracting rows that are equally

separated by a factor of λ = �N/m� through the downsam-
pling operator. Recently, Romberg in [11] proposed to select
the M rows randomly. Note that theoretical performance have
been addressed in [10], [11]. It is by all means that one
can apply similar structures for the measurement matrix using
chaos convolution in the design of chaos filters for compressed
sensing.

B. Types of chaos

In this paper, we only explored the use of a very sim-
ple chaotic sequence, the Logistic map, and its transformed
version to have Gaussian-like behavior. In addition, we only
used the initial condition hL(0) = 0.3 in the performance
study. We have neither addressed here other types of chaos
nor exploited any properties of chaos, that are very rich in the
literature. Study on various types of chaos and their parameters
should be performed to find out good candidates, especially
for signals with sparsity/compressibility in different domain:
time, frequency, or wavelet.

C. Benefits of chaos

In the case of randomly generated filter coefficients, we
have to essentially send all these coefficients to the decoder.
In the case of chaotic generated filter coefficients, we only
need to send the parameters of the chaos generators (initial
condition, and control parameters) and the decoder can easily
regenerate the coefficients. The use of chaos becomes more
beneficial when adaptive design of the chaos filter is needed.
One of such scenarios is the application of CS in ultra-
wideband cognitive radios [3], in which we have to detect
empty frequency bands (frequency holes) in the spectrum so as
to initiate a communication on the frequency hole. Obviously,
the sparsity of the spectrum varies from time to time, that
is the number of frequency holes varies in time. Hence, it is
likely that from time to time we have to work with different
classes of signals; difference here is the amount of sparsity in
the frequency domain. Therefore, we have to design the filters
adaptively.

VII. CONCLUSION

This paper has shown by empirical performance that, using
chaos filters, we can still acquire a time-sparse signal and
further successfully reconstruct it from undersampled chaos
measurements. In addition, chaos filters using the Logistic map
outperforms chaos filters using the Gaussian-Logistic map as
well as random filters using the Gaussian distribution. To the
best knowledge of the authors, there has been no work done
using chaos for compressed sensing. We would like to note
here also a recent work by Saligrama in which a deterministic
sequence is used [12].

222

Figure 1. Performance comparison of Gaussian-Logistic chaos and
Gaussian random filters.

3 Magnetic Resonance Imaging

3.1 Standard 2D Image Acquisition in Magnetic
Resonance Imaging

Magnetic resonance imaging (MRI) is a valuable
diagnostic research that has been used for medical
analysis since the 1980s. MRI is a noninvasive and non-
radioactive technology. An MRI test is often used as a
part of a medical examination because MRI could view
an object by two-dimensional (2D) or three-dimensional
(3D) images. MRI is based on the phenomenon of
magnetic resonance of tissue nuclei present in the object
under imaging. It produces images of the human body
with a quality higher than X-ray images.

During an MRI scan, some radio-frequency (RF)
waves are released in pulses through the object, exciting
movement in hydrogen nuclei in the object. When the
radio waves stop, the hydrogen nuclei relax and release
energy. Different parts of the object have different char-
acteristic patterns of how they are affected by the RF
waves. The resonance information of the nuclei can be
picked up by an RF receiving coil upon the stop of the
excitation RF waves.

A trained radiologist reads these images presented
in sections or slices. We present here the simplest case
of acquisition of a full 2D digital image of an object,
for example a brain slice as shown in Figure 3(a), to
explain how the image acquisition is done. During
a series of RF excitations each of which encodes the
2D location information of a particular point on the
brain slice, the receiving coil detects an analog MRI
time signal which contains the resonance information
at all encoded locations. The encoded locations are
represented in a temporary image space, which is called
k-space. The changes of locations in the k-space during
the acquisition time often form a smooth trajectory,
such as shown in Figure 2(a). Most of the encoded
information concentrates around the origin of the k-
space, and the density of the k-space approximately
follows a power decay law. A digital MRI signal is
then obtained by sampling the time (t) and the k-space.
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Figure 2. k-space of a brain MR image. (a)– analog acquisition, (b)–
linear sampling of (a), (c)– linear undersampling of (a). In (c), a binary
mask (of 128× 128 points) is applied to (a).

Next, the digital MRI image of the brain slice can be
reconstructed by applying a reconstruction algorithm
on the digital MRI signal. The image reconstruction
can be done in either the image domain or the k-space
domain. For example, the digital MRI image can be
obtained by a 2D Fourier transform on the digital MRI
signal from the k-space to the pixel domain.

Let m (x, y) be the image of the object that need to
be reconstructed. The digital MRI signal acquired by
the receiving coil is given by the following imaging
equation:

ν(kx, ky) =
Nx−1

∑
nx=0

Ny−1

∑
ny=0

m(nx, ny)e−j(kx x+kyy), (6)

where kx and ky respectively encode the k-space in-
formation of locations corresponding to the x and y
directions of the image, Nx and Ny respectively are the
numbers of pixels along the x and y axes of the image.
The k-space contains points k =

{
kx, ky

}
. Note that, the

discrete representation in (6) corresponds to a linear
full-sampling in the k-space along a Cartesian trajectory
as shown in Figure 2(b). In matrix form for the imaging
equation (6), the MRI signal acquired in the k-space ν
is expressed as

ν = Fm + n, (7)

where m is the image vector of length N to be acquired,
F is the Fourier matrix of size N × N, and n is the
additive noise.

Then, m can be reconstructed by solving the follow-
ing least-norm problem:

arg min ‖m‖, subject to ‖ν = Fm‖. (8)

to obtain the unique solution

m̂ = F∗(FF∗)−1ν, (9)

where the operator (·)∗ denotes the conjugate trans-
pose.

3.2 Specialized MRI as SWeep Imaging with Fourier
Transform (SWIFT)

The MRI technology has continued to develop and
is now an effective diagnostic tool in clinical medicine.
However, conventional MRI methods could not eval-
uate hard tissues in the body due to its inability to
capture the rapidly decaying signals of these tissues.
In this case, the echo time, which is the duration of
the RF excitation and signal acquisition process, is very
small. In 2006, Idiyatullin et al. proposed a new method
called SWeep Imaging with Fourier Transform (SWIFT)
in order to overcome this advantage of conventional
MRI [10]. The breakthrough idea of SWIFT is the use of
the time-shared RF excitation and acquisition to capture
signals originating from molecules which have very
short transverse relaxation times. This RF excitation
pulse is generally expressed by

g(t) = ω(t) exp
{
−j
∫ t

0
(ωRF(τ)−ωc) dτ

}
, (10)

where the amplitude modulation, ω(t), and the fre-
quency modulation, ωRF(t). These modulating sig-
nals are designed based on the family of adiabatic
hyperbolic-secant (HSn) pulses

fn(t) = sech
[

β

(
2t
Tp
− 1
)n]

, (11)

as follows:

ω(t) = γB1max fn(t) (12)

ωRF(t) = ωc + 2A


∫ t

0
f 2
n(τ) dτ∫ Tp

0
f 2
n(τ) dτ

− 1
2

 . (13)

Above, n is a shape vector (typically, n ≥ 1), β is a
truncation factor (usually, β ≈ 5.3), Tp is the pulse
length, γ is the gyromagnetic ratio, B1max is the max-
imum amplitude of the RF pulse, ωc is the center
angular frequency, and A is the bandwidth of the
pulse (−A ≤ ωRF − ωc ≤ A). In SWIFT, during the
excitation of the HSn pulse from 0 to Tp seconds, the
transmitter is repeatedly turned on and off to enable
the acquisition in short intervals of time, thus the
acquisition is virtually performed simultaneously with
the excitation [10] [13].

In comparison with the standard MRI acquisition, the
excitation in MRI acquisition is an impulse function
while that in SWIFT is the hyperbolic-secant signal
g(t). In other words, the image is viewed as being pre-
modulated by g(t). Then, the imaging equation in (6)
becomes

ν(kx, ky) =
Nx−1

∑
nx=0

Ny−1

∑
ny=0

m(nx, ny)g(nx, ny)e−j(kx x+kyy),

(14)
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and can be expressed, with additive noise, in matrix
form as

ν = FGm + n, (15)

where G is a diagonal matrix of size N×N whose
diagonal elements are obtained from the hyperbolic-
secant signal g(t) [14].

Consequently, the image m is the unique solution to
the following least-norm problem:

m̂ = arg min ‖m‖, subject to ‖ν = FGm‖. (16)

4 Chaotic Compressed Sensing for MRI
(CCS-MRI)

In MRI, the contrast information is concentrated at low
spatial frequencies; that is, (near the center) of the k-
space. MRI images are sparse in the wavelet domain.
Lustig et al. has successfully designed a random CS
matrix that can be applied to remove the residue in-
formation and hence speed up the image acquisition in
MRI and called the method sparse-MRI [8]. However,
designing a random system is difficult in practice. Thus,
we applied Gaussian-Logistic chaos to create a random-
like sampling matrix C instead of full-sampling as
shown in the imaging equation of (7). By using this
under-sampling technique, (7) can be rewritten as

ν = CFm + n. (17)

The image is reconstructed by solving the following
optimization [8]:

m̂ = arg min
m

{
‖CFm− ν‖2

2 + λ‖Ψm‖1

}
, (18)

using the non-linear conjugate gradient (NCG) algo-
rithm. In (18), λ is a regularization parameter and Ψ is
the sparsifying matrix in the wavelet domain. We can
see that, for CCS-MRI, the measurement matrix is given
by Φ = CF of size M× N.

We performed simulation to confirm the ability of
CCS-MRI [15]. In this simulation, the data source in
use is a brain slice of 128 × 128 pixels, as shown in
Figure 3(a). The Logistic map in (4) was simulated with
the control parameter ρ = 4 and the initial condition
h(0) = 3.

Figure 3(b) shows the aliasing image after reconstruc-
tion when the k-space was under-sampled linearly at
the compression ratio of r = 0.3, where this ratio is
defined as r = M/N. Figure 3(c) shows the recon-
structed image obtained by the CCS-MRI method, also
at r = 0.3. The aliasing effect in the reconstructed image
was reduced.

To compare the efficiency of the CCS-MRI method
with that of the sparse-MRI (random CS-MRI) method,
we acquired brain MRI data for a series of compression
ratios r from 0.1 to 0.5. Then, we determine for each
compression ratio the normalized error in the recon-
structed image m̂ with respect to the original image m
as

e =
1

Nx × Ny

Nx

∑
i=1

Ny

∑
j=1

∣∣mij − m̂ij
∣∣

M
, (19)

(a) (b)

(c) (d)

Figure 3. Original brain slice image (a), and its reconstructed
images (b) without using CS, (c) with CCS-MRI and (d) with CCS-
SWIFT, at compression ratio r = 0.3.
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where Nx × Ny is the number of pixels, and M is
the maximum value in m. Figure 4 shows the perfor-
mance of sparse-MRI (random CS-MRI) and CCS-MRI
methods. It can be seen that CCS-MRI offers a similar
performance as compared to sparse-MRI.

5 Chaotic Compressed Sensing for SWIFT
(CCS-SWIFT)

In this section, we proposed a scheme that exploits the
advantages of both chaotic CS and SWIFT; the method
is called CCS-SWIFT.

By using an impulse to excite a conventional MRI
system, the signal output is the response of the system
to the impulse, that is the MRI image. In frequency
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domain, it can be considered as pre-multiplying an
identity matrix with the frequency response of the MRI
system. By using hyperbolic-secant signal in the SWIFT
method, the output of the SWIFT scanner in frequency
domain is the multiplication of a diagonal matrix G,
which corresponds to the hyperbolic-secant signal, with
the image m, as given in (15). Consequently, based on
the imaging equation of (17) for SWIFT, we have the
imaging equation for the CCS-SWIFT as

ν = CFGm + n (20)
= CFm1 + n. (21)

We can see that, for CCS-SWIFT, the measurement
matrix is now given by Φ = CFG and has a size of
M× N.

Note that m1 is also sparse in the wavelet domain.
Therefore, the image is reconstructed by first solving
the following optimization using the non-linear conju-
gate gradient (NCG) algorithm [8] for m1:

m̂1 = arg min
m1

{
‖CFm1 − ν‖2

2 + λ‖Ψm1‖1

}
, (22)

and then solving for m as

m̂ = GT(GGT)−1m̂1. (23)

We analyze the CCS-SWIFT method with the same
simulation scenario as described in Section 4. For the
hyperbolic-secant pulse fn(t), we set n = 1 [16]. Fig-
ure 3(d) shows the reconstructed image when using
the CCS-SWIFT method at a compression ratio r =
0.3. Comparing that with Figure 3(c) for the CCS-
MRI method, it can be seen that CCS-SWIFT offers a
higher quality of reconstruction than CCS-MRI. This
is the result of spreading the k-space thanks to the
broadband hyperbolic-secant signal g(t), as shown in
Figure 5, which helps reduces the coherence between
the measurement matrix and the sparsifying matrix.

The performance of CCS-SWIFT is also shown in
Figure 4 with a range of compression ratios from 0.1 to
0.5. It can be seen that the CCS-SWIFT method outper-
forms both the sparse-MRI and the CCS-MRI methods,
notably in the range of [0.1, 0.3] of the compression
ratio.

 
(a)

 
(b)

Figure 5. Effect of spreading the k-space in SWIFT. 5(a)– usual k-
space with Fourier MRI, 5(b)– spreaded k-space with SWIFT.

6 CCS-SWIFT with Parallel MRI
(CCS-pSWIFT)

Parallel MRI (pMRI) is known to be a method to create a
special sampling matrix. When we concern to pMRI, we
would like to increase the speed of the MRI acquisition
by skipping a number of phase-encoding lines in the k-
space during the MRI acquisition. The data are received
simultaneously by L receiver coils with distinct spatial
sensitivities and are processed to reconstruct the values
in the missing k-space lines. Thus, both random and
chaotic CS can be applied to pMRI naturally [17, 18].

There are various parallel imaging methods. In this
paper, we only considers a simple and effective method
called Sensitivity Encoding for fast MRI (SENSE) which
was proposed in [19]. Given the k-space is fully sam-
pled, the imaging function of pMRI for the i-th coil is
given as follows:

νi
(
kx, ky

)
=

Nx−1

∑
nx=0

Ny−1

∑
ny=0

Si(nx, ny)

×m(nx, ny)e−j2π(nxkx+nyky),

(24)

where Si(nx, ny) is the sensitivity function of the i-
th coil. The image acquired by each individual coil
(channel) can then be expressed in matrix form as the
ideal image modulated by the corresponding sensitivity
function:

mi = Sim, i = 1, . . . , L. (25)

The mixed image matrix m∗ of size NL× N is formed
as m∗ = [m1; m2; . . . ; mL]. Consequently, the image m
can be reconstructed by

m̂ = arg min ‖m‖, subject to ‖ν = FNLSm∗‖, (26)

where S is a NL × NL matrix formulated from all L
sensitivity matrices Si and FNL is the Fourier matrix of
size NL × NL [19]. After a matrix reduction step, the
imaging equation in matrix form is given by

ν = FRm + n, (27)

where R is a reconstruction matrix of N × N derived
from S.

Now, we apply SWIFT to each coils (before applying
pMRI) and then chaotic CS to construct a method of
acquisition which combines chaotic CS with SWIFT and
parallel MRI. By using the imaging equation of CCS-
SWIFT in (21), the imaging equation of the resulting
CCS-pSWIFT method becomes

ν = CFRGm (28)
= CFRm1 (29)

We can see that, for the CCS-pSWIFT method, the
measurement matrix is given by Φ = CFRG.

Therefore, the image is reconstructed by first solving
the following optimization:

m̂1 = arg min
m1

{
‖CFRm1 − ν‖2

2 + λ‖Ψm1‖1

}
, (30)

and then obtain m as the unique solution of (23). Our
scheme can be summarized in Algorithm 1.
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Algorithm 1 Chaotic compressed sensing for parallel
SWIFT acquisition (CCS-pSWIFT)

Step 1: Set up for hyperbolic-secant excitation g(t).
Step 2: Generate kx, ky to be Gaussian-Logistic chaotic
sequences. The number of kx, ky based on pre-defined
compression ratio r = M/N.
Step 3: For each channel, determine the coordinates in k-
space based on kx, ky and store them as a mask.
Step 4: For each channel, acquire the digital data in the
k-space based on the mask and store them in a vector y.
Step 5: Estimate the L sensitivity maps using polynomial
fitting.
Step 6: Perform SENSE reconstruction using conjugated
gradient method.
Step 7: Perform SWIFT-demodulation using Equation (23).
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Figure 6. Performance comparison between CCS-pMRI and CCS-
pSWIFT.

To evaluate the CSS-pSWIFT method, the data source
for simulation is the human MPRAGE data from 8-
channel head array coil (L = 8). The data was ac-
quired with the following parameters: TE = 3.45 ms,
TR = 2350 ms, TI = 1100 ms, Flip angle = 7 deg.,
slice = 1, matrix = 128× 128, slice thickness
= 1.33 mm, FOV= 256 mm. We acquire the data for a
series of compression ratios from 0.1 to 0.35, and then
analyze the performance of both CSS-pMRI and CCS-
pSWIFT methods in terms of the normalized image
reconstruction error using Equation (19).

As can be seen in Figure 6, it is obvious that the
proposed CCS-pSWIFT method outperforms the CCS-
pMRI method for a range of relatively small compres-
sion ratios (r < 0.15). The reason is that the modulation
spreads the spectrum of m so that the information of
these vectors can be easily accessed in the k-space. With
a higher ratio (r > 0.15), the role of the parallel coils is
obvious when the information in the k-space from the
multiple channels can be combined in the reconstruc-
tion process. Therefore, the proposed designs applied
for parallel imaging can only show their advantage in
the low range of compression ratios.

7 Discussions

Above, based on the CS approach, we have presented
the design for a compound measurement matrix that is
aimed at improving the quality of MRI images with
reduced acquisition time. In the last method (CCS-
pSWIFT), this measurement matrix is formed by fac-
toring up to three single measurement matrices derived
respectively from the individual designs of CS, SWIFT
and pMRI methods, together with the Fourier matrix
which is inherent in the design of the conventional MRI
method. CCS-pSWIFT is therefore capable of providing
all the advantages offered by several methods in a
single operation. Our designs are aimed at reducing the
coherence between the compound measurement matrix
and the sparsifying matrix, thanks to relying on the
specialized SWIFT technique, that leads to a quality
improvement for the reconstructed MRI images.

The simulations show that, with the same normalized
relative error rate (e.g., e = 0.15), the CCS-SWIFT
method can save up to 6% of the sampling data as
compared to the CCS-MRI method. Similarly, the CCS-
pSWIFT method can save up to 4.5% of the sampling
data as compared to CCS-pMRI at the normalized
relative error rate e = 2.3× 10−3.

Another advantage of our proposed approach in
comparison with other CS-related methods is its better
applicability for hardware implementation thanks to
the deterministic property of the proposed measure-
ment matrix. To facilitate practical implementations,
some research efforts are focusing on designing mea-
surement matrices that are not completely random [20]
or totally deterministic [21]. In [21], several simple
criteria were provided for designing several families
of deterministic sensing matrices to guarantee a suc-
cessful recovery of sparse signals. The criteria were
also applied to random Fourier ensembles to deter-
mine bounds on the number of measurements required
for sparse approximation. In general, the deterministic
approach in CS provides some advantages over ran-
dom CS, such as more efficient recovery time, explicit
constructions, efficient storage, and tighter recovery
bounds [21].

In our particular design of the measurement matrix
for CS, we have chosen to use a chaotic system which is
a deterministic nonlinear dynamical system that is very
sensitive to initial conditions, and the time-series as the
output of the chaos system is random-like. Note that,
as with random CS, exact reconstruction in chaotic CS
is also guaranteed [22]. The hardware implementation
for a chaotic generator is just a simple circuit of a
nonlinear system, and thus is simpler than that for a
random generator. To generate a random sequence, one
uses a hardware random number generator (HRNG)
or a pseudo-random number generator (PRNG). The
HRNG works based on microscopic phenomena that
generate a low level, statistically random noise signal. It
uses a transducer to convert some physical phenomena
to an electrical signal, an amplifier to amplify this
random fluctuations, and an analog-to-digital converter
to convert the output into simple binary values of 0 or 1.
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By repeatedly sampling the randomly varying signal, a
sequence of random numbers is archived. The PRNG
can generate random-like numbers by feedback shift
registers, it is more practical than the HRNG. However,
a long register is needed to generate a sequence of
numbers that approximates the properties of random
numbers. Therefore, a large memory and logic circuits
are required.
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