
Ripple Down Rules for Question Answering
Dat Quoc Nguyen a,c,∗, Dai Quoc Nguyen b,c and Son Bao Pham c

a Department of Computing, Faculty of Science and Engineering, Macquarie University, Australia
E-mail: dat.nguyen@students.mq.edu.au
b Department of Computational Linguistics, Saarland University, Germany
E-mail: daiquocn@coli.uni-saarland.de
c Faculty of Information Technology, VNU University of Engineering and Technology, Vietnam
E-mail: {datnq,dainq,sonpb}@vnu.edu.vn

Abstract: Recent years have witnessed a new trend on building ontology-based question answering systems, that is to use semantic
web information to provide more precise answers to users’ queries. However, these systems are mostly designed for English,
therefore, we introduce in this paper such a system for Vietnamese, that is, to the best of our knowledge, the first one made for
Vietnamese. Different from most of previous works, we propose an approach that systematically builds a knowledge base of
grammar rules for processing each input question into an intermediate representation element. Then we take this element with
respect to a target ontology by applying concept-matching techniques for returning an answer. Experimental results show that
the performance of the system on a wide range of Vietnamese questions is promising with accuracies of 84.1% and 82.4% for
analyzing question and retrieving answer, respectively. Furthermore, our approach to the question analysis can easily be applied
to new domains and new languages, thus saving time and human effort.

Keywords: Question answering, Question analysis, Ripple Down Rules, Knowledge acquisition, Ontology, Vietnamese

1. Introduction

The availability of online information accessible to
human users often requires more support from ad-
vanced information retrieval technologies to obtain ex-
pected information. This brings new challenges to the
construction of information retrieval systems such as
search engines and question answering (QA) systems.
Most current search engines take an user’s query and
returns a ranked list of related documents that are then
scanned by the user to get the desired information.
In contrast, the goal of QA systems is to give exact
answers to the users’ questions without involving the
scanning process. It is also desirable to allow users to
specify questions using natural language expressions
rather than the keyword-based approach.

In general, an open-domain QA system aims to
potentially answer any user’s question, whereas a
restricted-domain QA system only handles questions

*Corresponding author.

related to a specific domain. Specifically, while tra-
ditional restricted-domain systems make use of rela-
tional databases to represent target domains, the recent
ones utilize knowledge bases such as ontologies as tar-
get domains [28] to take advantages of recent advances
in semantic web. Thus, semantic markups can be used
to add meta-information to provide precise answers to
complex natural language questions. This is an avenue
which has not been actively explored for Vietnamese.

In this paper, we introduce a knowledge-based QA
system for Vietnamese (KbQAS), the first ontology-
based QA system for Vietnamese. Our KbQAS sys-
tem consists of question analysis and answer retrieval
components. The front-end question analysis compo-
nent uses a knowledge base of grammar rules for pro-
cessing input questions, the back-end answer retrieval
component is responsible for making sense of the input
query with respect to a target ontology. The association
between these two components is an intermediate rep-
resentation element which contains some properties of
questions: construction type, category, keywords and

2 Nguyen et al. / Ripple Down Rules for Question Answering

semantic constraints between them for capturing the
semantic structure of the question.

The key innovation of our system propose a knowl-
edge acquisition approach for systematically construct-
ing a knowledge base for analyzing natural language
questions. To translate a natural language question into
an explicit representation in QA systems, most previ-
ous works so far have used rule-based approaches to
the best of our knowledge. Owing to their representa-
tion complexity and the variety of question-structure
types, manual creation of rules in an ad-hoc manner
is very expensive in terms of time, effort and error-
prone. For example, many rule-based methods such
as to handle English questions [25], to process Viet-
namese questions presented in our first KbQAS ver-
sion [34] manually define a list of pattern structures
to analyze questions. As rules are created in an ad-hoc
manner, those approaches share common difficulties
in managing the interaction between rules and keeping
consistency among them. In our approach, however,
we utilize Single Classification Ripple Down Rules
(SCRDR) [8,45] knowledge acquisition methodology
to acquire rules in a systematic manner where the con-
sistency between rules is maintained and the unin-
tended interaction among rules is avoided. Our method
allows an easy adaptation to a new domain and a new
language and saves a lot of time and effort of human
experts.

The paper is organized as follows: we revise related
works in section 2. We describe our overall system ar-
chitecture and our knowledge acquisition approach for
question analysis in section 3 and section 4, respec-
tively. We evaluate our KbQAS system in section 5.
The conclusion will be presented in section 6.

2. Short overview of question answering

2.1. Open-domain question answering

The goal of an open-domain QA system is to au-
tomatically return an answer for every natural lan-
guage question [18,62,29]. For example, such systems
as START [20], FAQ Finder [6] and AnswerBus [66]
try to answer questions over the Web. START uses
natural language annotations to extract answers in the
use of subject-relation-object form whilst AnswerBus
combines 5 search engines and dictionaries to extract
Web pages related to input factoid questions and then
returns the most suitable sentences containing answers.
Using frequently-asked question files as its knowledge

base, meanwhile, FAQ Finder’s goal is to identify the
similarity between user questions and question/answer
pairs from FAQ files. Question-paraphrase recognition
is then considered as one of the important tasks in QA
with many proposed approaches based on statistics,
machine learning as well as knowledge representation
and reasoning as mentioned in [5,19,46,65].

Since aroused by the QA track of the Text Re-
trieval Conference [58] and the multilingual QA track
of CLEF [40], there is a dramatic increase in the num-
ber of open-domain QA systems from the information
retrieval perspective [21]. For instance, Falcon [17]
adapting the similar architecture of its ancient Lasso
system [32] achieved the highest results in the TREC-
9 QA competition [56] at 58% for short answers and
78% for long answers. The innovation of Falcon fo-
cused on proposing a methodology for boosting knowl-
edge in exploiting WordNet [14]. In the QA track of
TREC 2002 [59], PowerAnswer [31] was cited as the
most powerful system with the result at 85.6% ob-
tained by relying on a deep linguistic analysis.

2.2. Traditional restricted-domain question
answering

Traditional restricted-domain QA systems usually
linked to relational databases are called natural lan-
guage interfaces to databases. A natural language in-
terface to a database (NLIDB) is a system that allows
the users to access information stored in a database
by typing questions using natural language expressions
[2]. In general, NLIDB systems focus on converting
input question into an expression in the correspond-
ing database query language. For instance, Sneiders
[48] presented a NLIDB system where the input is
converted into SQL query by using defined templates
that contain entity slots – free space for data instances
representing the primary concepts of the question. In
syntactic-based NLIDB systems, the user’s question
is syntactically transferred into a parsed tree, and the
tree is directly converted into an expression of some
database query language. LUNAR [63] is a typical ex-
ample of this approach. However, it is difficult to cre-
ate translating rules that will directly transform the tree
into the query expression.

Later NLIDBs as Planes [60], Eufid [50], C-Phrase
[30], the system proposed by Nguyen and Le [33] use
semantic grammar to analyze questions. These sys-
tems still respond to users’ questions by parsing the
input into a syntax tree and mapping the tree to a
database query, in which the semantic grammar’s cat-

Nguyen et al. / Ripple Down Rules for Question Answering 3

egories do not correspond to syntactic concepts [2].
Semantic grammars consist of hard-wired knowledge
orienting specific domain, hence, those NLIDB sys-
tems need to develop new grammars whenever port-
ing to new knowledge domains. For example, the PRE-
CISE system [44] maps the natural language question
to an unique semantic interpretation by analyzing some
lexicons and semantic constraints. PRECISE showed a
high precision of about 80% for a list of hundreds En-
glish questions. However, PRECISE requires all tokens
in input questions to be distinct and appear in its lexi-
con. Stratica et al. [49] described a template-based sys-
tem to translate the English question into SQL query
by matching the syntactic parsed tree of the question
with a set of fixed semantic templates.

Additionally, systems like TEAM [27] and Masque/sql
[1] use semantic information to analyze questions by
utilizing syntactic-semantic interpretation rules driv-
ing logical forms. These systems firstly transform
the input into an intermediate logical expression of
high level world concepts without any relation to the
database structure. The logical expression is then con-
verted to an expression in the database query language.
The use of logic languages is to possibly adapt to other
domains as well as different query languages [47].
Meanwhile, there are many open-domain systems also
using logical forms to process input questions such as
in [31,54,15,13,23].

2.3. Ontology-based question answering

Considered as a knowledge representation of a set
of concepts and their relations due to a specific do-
main, an ontology could provide semantic information
to solve ambiguities, interpret and answer user ques-
tions in terms of QA [24]. Discussion on an approach
to possibly build an ontology-based QA system can be
found in [4]. The approach was then applied to con-
struct the MOSES system [3] in focusing on question
analysis. Following is some typical ontology-based QA
systems.

Aqualog [25] performs semantic and syntactic anal-
ysis of the input question through the use of process-
ing resources provided by the GATE framework [9]
including word segmentation, sentence segment, part-
of-speech tagging. When a question is asked, the task
of its Linguistic Component is to transfer the natu-
ral language question to a Query-Triple with the fol-
lowing format (generic term, relation, second term).
Through the use of JAPE grammars in GATE, Aqua-
Log identifies terms and their relationship. The Rela-

tion Similarity Service in Aqualog uses Query-Triples
to create Onto-Triples where each term in the Query-
Triples are matched to elements in the ontology by
using string-based comparison methods and WordNet
[14]. Evolving from AquaLog system, PowerAqua sys-
tem [26] directs to the open-domain case by combin-
ing knowledge from various heterogeneous ontologies
autonomously created on the Semantic web. Following
Aqualog model, meanwhile, PANTO [61], relying on
the statistical Stanford parser to produce a parse tree of
an input natural language question, maps the input to
query-triples. The query-triples are then translated into
Onto-triples with the help of a lexicon of all entities
extracted out of a given target ontology enlarged with
WordNet synonyms. Finally, Onto-triples with poten-
tial words educed from the parse tree are used to pro-
duce SPARQL queries to the ontology.

Also, using the GATE framework, QuestIO [10]
recognizes concepts inside an input question through
gazetteers. Then QuestIO retrieves potential relations
between identified concept pairs before ranking them
due to the similarity, distance and specificity scores,
and then dynamically creates formal queries such as
SeRQL or SPARQL based on identified concepts and
ranked relations. FREyA [11] is the successor to Ques-
tIO, allowing users to enter questions in any form and
involving the users to resolve ambiguities through a
dialog if necessary. In ORAKEL [7], wh-questions
are converted to F-Logic or SPARQL queries by us-
ing domain-specific Logical Description Grammars.
Although ORAKEL supports compositional semantic
constructions and obtains a good performance, it in-
volves a customization process of domain-specific lex-
icon. Pythia [52] relies on the use of ontology-based
grammars generated from Lexicalized Tree Adjoining
Grammar tree to be able to process linguistically com-
plex questions. However, Pythia requires a manually
created lexicon. Another interesting work over linked
data as detailed in [53] also proposed an approach
to convert syntactic-semantic representations of input
natural language questions to SPARQL templates.

2.4. Question answering and question analysis for
Vietnamese

Turning to Vietnamese question answering, Nguyen
and Le [33] introduced a NLIDB system in Vietnamese
employing semantic grammars. Their system includes
two main modules: QTRAN and TGEN. QTRAN
(Query Translator) maps a natural language question to
an SQL query while TGEN (Text Generator) generates

4 Nguyen et al. / Ripple Down Rules for Question Answering

answers based on the query result tables. QTRAN uses
limited context-free grammars to analyze the user’s
question into a syntax tree via CYK algorithm [64].
The syntax tree is then converted into an SQL query
by using a mapping dictionary to determine names of
attributes in Vietnamese, names of attributes in the
database and names of individuals stored in these at-
tributes. TGEN module combines pattern-based and
keyword-based approaches to make sense of the meta-
data and relations in the database tables in order to
generate answers.

Our first KbQAS conference publication [34] re-
ported a hard-wire approach to convert a Vietnamese
natural language question into an intermediate repre-
sentation element which is then used to extract the cor-
responding elements from the target ontology for re-
turning the answer. Phan and Nguyen [43] later de-
scribed a method to map Vietnamese questions into
triple-like of Subject, Verb and Object in utilizing
JAPE rules. Subsequently, Nguyen and Nguyen [35]
presented another ontology-based QA System for Viet-
namese, where keywords in a user’s query are deter-
mined by using pre-defined templates and then pro-
ducing SPARQL query to retrieve triple-based answer
from ontology. In addition, Tran et al. [51] described
the VPQA system to answer person name-related ques-
tions. Besides, Nguyen et al. [39] presented another
Vietnamese NLIDB system, in economic-survey-data
domain, using JAPE grammars for converting input
questions into queries in R language to extract answers.

3. Our Question Answering System KbQAS

Figure 1 shows the architecture of our system which
contains two components: the Natural language ques-
tion analysis engine and the Answer retrieval.

Figure 1. System architecture.

The question analysis component consists of three
modules: preprocessing, syntactic analysis and seman-

tic analysis. It takes the user question as an input and
returns an intermediate element representing the ques-
tion in a compact form. The role of this intermedi-
ate representation is to provide structured information
about the input question for later processing as in re-
trieving answers.

The answer retrieval component includes two main
modules: Ontology Mapping and Answer Extraction.
It takes an intermediate representation produced by the
question analysis component and an Ontology as its
input to generate semantic answers.

3.1. Intermediate Representation of an input question

Unlike Aqualog [25], the intermediate representa-
tion in our system is used to cover a wider variety of
question types. It consists of a question-structure and
one or more query-tuples in the following format:

(sub-structure, question-category, Term1, Rela-
tion, Term2, Term3)

where Term1 represents a concept (object class),
Term2 and Term3, if exist, represent entities (objects
or instances) excluding the cases of question-structures
Definition and Compare. The Relation (property) is a
semantic constraint among terms in the question.

This representation is aimed to capture the seman-
tic of question. We define the following question-
structures: Normal, UnknTerm, UnknRel, Definition,
Compare, ThreeTerm, Clause, Combine, And, Or, Af-
firm, Affirm_3Term, Affirm_MoreTuples and ques-
tion categories: HowWhy, YesNo, What, When, Where,
Who, Many, ManyClass, List and Entity as described
in Appendixes A and B, respectively.

Simple questions only have one query-tuple and its
question-structure is the sub-structure of the tuple.
Complex questions such as composite questions have
several sub-questions, where each one is represented
by a separate tuple, and the question-structure captures
this composition attribute. Composite questions such
as:

“Phạm Đức Đăng học trường đại học nào và được
hướng dẫn bởi ai?”

Which university does Pham Duc Dang study in and
who tutors him?

having question-structure of type Or with two
query-tuples where ? represents a missing element:
(Normal, Entity, trường đại họcuniversity, họcstudy ,
Phạm Đức ĐăngPham Duc Dang, ?) and (UnknTerm,
Who, ?, hướng dẫntutor, Phạm Đức ĐăngPham Duc

Dang, ?).

Nguyen et al. / Ripple Down Rules for Question Answering 5

Figure 2. Illustrations of question analysis and question answering.

The intermediate representation element is designed
so that it can represent various types of question.
Therefore, such attributes as Term or Relation in the
query-tuple can be missing. For example, a question
has question-structure Normal if it has only one query-
tuple and Term3 is missing.

3.2. An illustrative example

For demonstration1 and evaluation purposes, we
reuse an ontology which models the organizational
system of the University of Engineering and Tech-
nology, Vietnam National University, Hanoi [38]. The
ontology contains 15 concepts like “trườngschool”,
“giảng viênlecturer”, “sinh viênstudent”, 17 attributes
or relations such as “họcstudy”, “giảng dạyteach”, “là
sinh viên củais student of” and 78 instances as de-
scribed in our first KbQAS version [34].

Given a complex-structure question:
“Liệt kê tất cả sinh viên học lớp K50 khoa học máy

tính mà có quê ở Hà Nội?”

1The KbQAS is available at http://150.65.242.39:8080/KbQAS/
with intro video on YouTube at http://youtu.be/M1PHvJvv1Z8

“List all students studying in K50 computer science
course, who have hometown in Hanoi?”

The question analysis component determines that
this question has question-structure And with two
query-tuples (Normal, List, sinh viênstudent, họcstudy ,
lớp K50 khoa học máy tínhK50 computer science course,
?) and (Normal, List, sinh viênstudent, có quêhas
hometown, Hà NộiHanoi, ?).

Query-tuples are mapped to ontology-tuples by the
Ontology mapping module in the Answer retrieval
component: (sinh viênstudent , họcstudy , lớp K50 khoa
học máy tínhK50 computer science course) and (sinh
viênstudent , có quêhas hometown , Hà NộiHanoi). With
each ontology-tuple, the Answer Extraction module
finds all satisfied instances in the ontology, and then
generates an answer based on the question-structure
And and the question category List. Figure 2 shows the
returned answer.

3.3. Natural language question analysis component

Natural language question analysis component is the
first component in any QA system. When a question
is asked, the task of the component is to translate the
natural language question to an intermediate represen-

6 Nguyen et al. / Ripple Down Rules for Question Answering

tation of the input question, which is utilized in the rest
of the system.

KbQAS makes the use of the JAPE grammars in
the GATE framework [9] to specify regular expression
patterns based on semantic annotations for question
analysis, in which existing linguistic processing mod-
ules for Vietnamese including Word Segmentation,
Part-of-speech tagging [41] are wrapped as GATE
plug-ins. The results of the modules are annotations
capturing information such as sentences, words, nouns
and verbs. Each annotation has a set of feature-value
pairs. For example, a word has a “category” fea-
ture storing its part-of-speech tag. This information
can then be reused for further processing in subse-
quent modules. New modules of preprocessing, syn-
tactic analysis, and semantic analysis are specifically
designed to handle Vietnamese questions using pat-
terns over existing linguistic annotations.

3.3.1. Preprocessing module
The preprocessing module generates TokenVn anno-

tations representing a Vietnamese word with features
as part-of-speech as displayed in figure 3. Vietnamese
is a monosyllabic language; hence, a word may con-
tain more than one token. However, the Vietnamese
word segmentation module is not trained for question
domain. There are words or word-phrases which are
indicative of the question categories such as “phải
khôngis that|are there”, “là bao nhiêuhow many”,
“ở đâuwhere”, “khi nàowhen”, “là cái gìwhat”.
In this module, we identify those and mark them
as single TokenVn annotations with corresponding
“question-word” feature and its semantic categories
like HowWhycause | method, Y esNotrue or false,
Whatsomething , Whentime | date, Wherelocation,
Manynumber, Whoperson. In fact, this information
will be used in creating rules in the syntactic analysis
module at a later stage.

Figure 3. Examples of TokenVn annotations.

In addition, we marked phrases that refer to compar-
ative phrases (such as “lớn hơngreater than” “nhỏ hơn
hoặc bằngless than or equal to” . . .) or special-words
(for example, abbreviation of some words on special-
domain) by single TokenVn annotations.

3.3.2. Syntactic analysis
This module is responsible for identifying noun

phrases and the relations between noun phrases. The
different modules communicate through the annota-
tions, for instance, this module uses the TokenVn anno-
tations which are the output of the previous module.

Table 1
JAPE grammar for identifying Vietnamese noun phrases

({TokenVn.category == “Pn”})? Quantity pronoun
({TokenVn.category == “Nu”} | Concrete noun

{TokenVn.category == “Nn”})? Numeral noun
({TokenVn.string == “cái”} | “cáithe”

{TokenVn.string == “chiếc”})? “chiếcthe”
({TokenVn.category == “Nt”})? Classifier noun
({TokenVn.category == “Nc”} | Countable noun

{TokenVn.category == “Ng”} | Collective noun
{TokenVn.category == “Nu”} |
{TokenVn.category == “Na”} | Abstract noun
{TokenVn.category == “Np”})+ Proper noun

({TokenVn.category == “Aa”} | Quality adjective
{TokenVn.category == “An”})? Quantity adjective

({TokenVn.string == “này”} | “nàythis; these”
{TokenVn.string == “kia”} | “kiathat; those”
{TokenVn.string == “ấy”} | “ấythat; those”
{TokenVn.string == “đó”})? “đóthat; those”

Concepts and entities are normally expressed in
noun phrases. Therefore, it is important that we can
reliably detect noun phrases in order to generate the
query-tuple. Based on the grammar of Vietnamese lan-
guage [12], we use the JAPE grammars to specify pat-
terns over annotations as shown in Table 1. When a
noun phrase is matched, an annotation NounPhrase
is created to mark up the noun phrase. Moreover, its
“type” feature is used to identify the concept and en-
tity that are contained in the noun phrase using the fol-
lowing heuristic:

If the noun phrase contains a single noun (not in-
cluding numeral nouns) and does not contain a proper
noun, it contains a concept. If the noun phrase contains
a proper noun or contains at least three single nouns, it
contains an entity. Otherwise, concepts and entities are
determined using a manual dictionary. In this step, a
manual dictionary is built for describing concepts and
their corresponding synonyms in the Ontology.

Nguyen et al. / Ripple Down Rules for Question Answering 7

Figure 4. Examples of question-structure patterns.

In addition, the question-phrases are detected by
using noun phrases and question-words identified by
the preprocessing module. QuestionPhrase annota-
tions are generated to cover question-phrases with a
corresponding “category” feature which gives infor-
mation about question categories.

The next step is to identify relations between noun
phrases or noun phrases and question-phrases. When
a phrase is matched by one of the relation patterns, an
annotation Relation is created to markup the relation.
We use the following four patterns to identify relation-
phrases:

(Verb)+
(Noun Phrasetype==Concept)
(Preposition)(Verb)?
(Verb)+((Preposition)(Verb)?)?
((“cóhave|has”)|(Verb))+
(Adjective)
(Preposition)
(Verb)?
(“cóhave|has”)
((Noun Phrasetype==Concept)|(Adjective))
(“làis|are”)

For example, with the following question as referred
to the first question in figure 4:

“liệt kê tất cả các sinh viên có quê quán ở Hà Nội?”
(“list all students who have hometown in Hanoi?”)

[QuestionPhrase: liệt kêlist [NounPhrase: tất cả
các sinh viênall students]] [Relation: có quê quán
ởhave hometown in][NounPhrase: Hà NộiHanoi]

The phrase “có quê quán ởhave hometown in” is the
relation phrase linking the question-phrase “liệt kê tất
cả các sinh viênlist all students” and the noun-phrase
“Hà NộiHanoi”.

3.3.3. Semantic analysis module
This module aims to identify the question-structure

and produce the query-tuples as the intermediate rep-
resentation (sub-structure, question-category, Term1,

Relation, Term2, Term3) of the input question using the
annotations generated by the previous modules. Ex-
isting NounPhrase annotations, and Relation annota-
tions are potential candidates for terms and relations
respectively, while QuestionPhrase annotations cover-
ing matched question-phrases are used to detect the
question-category.

In the first KbQAS version [34], following Aqua-
log [25], we developed an ad-hoc approach to detect
question patterns and then use the patterns for creating
the intermediate representation. For instance, figure 4
presents the detected structure patterns of the two ex-
ample questions “Liệt kê tất cả các sinh viên có quê
quán ở Hà Nội?” (“List all students who have home-
town in Hanoi?”) and “Danh sách tất cả các sinh viên
có quê quán ở Hà Nội mà học lớp khoa học máy tính?”
(“List all students having hometown in Hanoi, who
study in computer science course?”). We can describe
them by using annotations returned by pre-processing
and syntactic analysis modules as following:

[QuestionPhrase: Liệt kê tất cả các sinh viênList all

students] [Relation: có quê quán ởhave hometown in]
[NounPhrase: Hà NộiHanoi]

and
[QuestionPhrase: Liệt kê tất cả các sinh viênList all

students] [Relation: có quê quán ởhave hometown in]
[NounPhrase: Hà NộiHanoi] [And: [TokenVn: màand]]
[Relation: họcstudy in] [NounPhrase: lớp khoa học
máy tínhcomputer science course]

The intermediate representation of input question is
created in a hard-wire manner linking every detected
pattern via JAPE grammars to extract corresponding
elements. This hard-wire manner takes a lot of time
and effort to handle new patterns. For example, as can
be seen in figure 4, the hard-wire approach is unable
to reuse the detected structure pattern of the first ques-
tion for identifying the pattern of the second one. As
rules are created in an ad-hoc manner, the hard-wire
one encounters itself common difficulties in managing
the interaction among rules and keeping consistency.

8 Nguyen et al. / Ripple Down Rules for Question Answering

Consequently, in this module, we solve the men-
tioned difficulties by proposing a knowledge acquisi-
tion approach for semantic analysis of input questions
as detailed in the section 4. This is considered as the
key innovation of our KbQAS system.

3.4. Answer retrieval component

The Answer retrieval component includes two main
modules: Ontology Mapping and Answer Extraction
as shown in figure 1. It takes an intermediate repre-
sentation produced by the question analysis component
and an Ontology as its input to generate an answer. We
employed the Relation similarity service component of
the AquaLog system [25] to develop the Answer re-
trieval component.

Figure 5. Mapping Ontology module for query-tuple with two terms
and one relation.

The task of the Ontology Mapping module is to
map terms and relations in the query-tuple to con-
cepts, instances and relations in the Ontology by us-
ing string names. If an exact match is not possi-
ble, we employ a manually built lexicon of synonyms
and a string distance algorithm as presented in [55]
to find near-matched elements in the Ontology with
the similarity measure above a certain threshold. In
case ambiguity is still present, the KbQAS system
interacts with the users by presenting different op-
tions to get the correct ontology element. For in-

stance, with the question “liệt kê tất cả các sinh
viên học lớp khoa học máy tính ?” (“list all students
studying in computer science course ?”), the ques-
tion analysis component returns query-tuple (Normal,
List, sinh viênstudent, họcstudy , lớp khoa học máy
tínhcomputer science course, ?). As the Ontology Map-
ping cannot find the exact instance corresponding with
“lớp khoa học máy tínhcomputer science course” in the
target ontology, it requires users to select between “lớp
K50 khoa học máy tínhK50 computer science course” -
an instance of class “lớpcourse”, and “bộ môn khoa
học máy tínhcomputer science department” - an instance
of class “bộ môndepartment” in the ontology.

Following the AquaLog, for each query-tuple, the
result of the Mapping Ontology module is an ontology-
tuple where the terms and relations in the query-tuple
are now their corresponding elements in the Ontology.
How the Mapping Ontology module finds correspond-
ing elements in the ontology depends on the question-
structure. For example, when the query-tuple contains
Term1, Term2 and Relation with Term3 missing,
the mapping process follows the diagram shown in fig-
ure 5. It first tries to match Term1 and Term2 with
concepts or instances in the Ontology. After that, the
set of potential relations in the Ontology contains only
relations between the two mapped concepts/instances.
The ontology relation is then identified in a similar
manner as a mapping term to a concept or an instance.

With the ontology-tuple, the Answer Extraction
module finds all individuals of the corresponding On-
tology concept of Term1, having the ontology relation
with the individual corresponding to Term2 . Depend-
ing on the question-structure and question category,
the answer will be returned.

4. Single Classification Ripple Down Rules for
Question Analysis

As mentioned in section 3.3.3, because of the
complexity of the representation and the variety of
question-structure types, manually creating the rules in
an ad-hoc manner is very expensive and error-prone.
For example, many rule-based approaches as indicated
in [25,34,43] manually defined a list of sequence pat-
tern structures to analyze questions. As rules are cre-
ated in an ad-hoc manner, these approaches share com-
mon difficulties in managing the interaction between
rules and keeping consistency among them.

Nguyen et al. / Ripple Down Rules for Question Answering 9

In this section, we will introduce our knowledge ac-
quisition approach2 to analyze natural language ques-
tions by applying SCRDR methodology [8,45] to ac-
quire rules incrementally. Our contribution focuses on
the semantic analysis module by proposing a JAPE-
like rule language and a systematic processing to cre-
ate rules in a way that interaction among rules is con-
trolled and consistency is maintained.

A SCRDR knowledge base is built to identify the
question-structure and to produce the query-tuples as
the intermediate representation. We will firstly out-
line the SCRDR methodology and propose a rule lan-
guage for extracting this intermediate representation
for a given input question in sections 4.1 and 4.2, re-
spectively. We then illustrate the process of systemat-
ically constructing a SCRDR knowledge base for ana-
lyzing questions in section 4.3.

4.1. Single Classification Ripple Down Rules

This section presents the basic idea of Ripple-Down
Rules [8,45] which inspired our knowledge acquisition
approach for question analysis. Ripple Down Rules
methodology allows one to add rules to a knowledge
base incrementally without the need of a knowledge
engineer. A new rule (i.e. an exception rule) is only
created when the knowledge base performs unsatisfac-
torily on a given case. The rule represents an explana-
tion for why the conclusion should be different from
the knowledge base’s conclusion on the case at hand.

A Single Classification Ripple Down Rules (SCRDR)
[8,45] tree as illustrated in figure 6 is a binary tree with
two distinct types of edges. These edges are typically
called except and false edges (or can be named except
and if-not edges). Associated with each node in a tree
is a rule. A rule has the form: if α then β where α is
called the condition and β the conclusion.

Cases in SCRDR are evaluated by passing a case
to the root of the tree. At any node in the tree, if the
condition of a node N ’s rule is satisfied with the case,
the case is passed to the exception child of node N
using the except link if it exists. Otherwise, the case is
passed on to the node N ’s false child. The conclusion
given by this process is the conclusion from the last
node in the tree which fired (satisfied by the case).

2Vietnamese question analysis demonstration is available on-
line at http://150.65.242.39:8080/KbVnQA/
English question analysis demonstration is available on-line at
http://150.65.242.39:8080/KbEnQA/

Figure 6. A part of our SCRDR tree for processing English ques-
tions.

To ensure that a conclusion is always given, the root
node typically contains a trivial condition which is al-
ways satisfied. This node is called the default node. For
instance, the root node in our SCRDR knowledge base
constructed for analyzing English questions as shown
in figure 6 corresponds with a default rule of “if True
then null”. It means that every case (i.e. question) will
be satisfied by the condition of the default rule at the
root node, however, the rule gives a null conclusion
(i.e. an empty intermediate representation element for
the question). The default rule is the unique rule which
is not an exception rule of any other rule.

Starting with an empty SCRDR knowledge base
consisting of only default node, the process of build-
ing the knowledge base can be performed automati-
cally [37], or manually [42,36]. A new node contain-
ing a new rule (i.e. a new exception rule) is added to an
SCRDR tree when the evaluation process returns the
wrong conclusion. The new node is attached to the last
node in the evaluation path of the given case with the
except link if the last node is the fired one. Otherwise,
it is attached with the false link.

Section 4.3 will demonstrate the construction pro-
cess of the SCRDR tree displayed in figure 6. With the
tree, the rule at node (1) (simply, rule 1) is the excep-
tion rule of the default rule (rule 0). Rule 2 is an excep-
tion rule of rule 1. As node (3) is the false-child node
of node (2), the associated rule 3 is also an exception
rule of rule 1. Furthermore, both rules 4 and 9 are also
exception rules of rule 1. Similarly, rules 40 and 41 are

10 Nguyen et al. / Ripple Down Rules for Question Answering

exception rules of rule 5 whereas rules 42, 43 and 45
are all exception rules of rule 40. Therefore, the excep-
tion structure of the SCRDR tree extends to 5 levels,
for examples: rules 1 at layer 1; rules 2, 3, 4 and 9 at
layer 2; rules 5, 7, 21 and 22 at layer 3; and rules 40,
41, 46 and 50 at layer-4; and rules 42, 43, 44 and 45 at
the layer 5 of exception structure.

Given the case “who are the partners involved in
AKT project?”, it is satisfied by the default rule at root
node, it then is passed to the node (1) using except
link. As the case satisfies the condition of rule 1, it
is passed to the node (2). Because it does not satisfy
the condition of the rule 2, it will be transferred to the
node (3) using false link. Since the case satisfies con-
ditions of rules 3, 5 and 40 and does not fulfill con-
ditions of rules 42, 43 and 45, we have the evaluation
path (0)-(1)-(2)-(3)-(5)-(40)-(42)-(43)-(45) with fired
node at (40). With the case of “in which projects is en-
rico motta working on”, it satisfies conditions of rules
0, 1 and 2. As node (2) has no except-child node, we
have evaluation path (0)-(1)-(2) and fired node at (2).

4.2. Rule language

A rule is composed of a condition part and a conclu-
sion part. A condition is a regular expression pattern
over annotations using JAPE grammar in GATE [9].
It can also post new annotations over matched phrases
of the pattern’s sub-components. As annotations have
feature value pairs, we can impose constraints on an-
notations in the pattern by requiring that a feature of an
annotation must have a particular value. The following
example shows the posting of an annotation over the
matched phrase:
(
({TokenVn.string == “liệt kêlist”} | {TokenVn.string ==
“chỉ rashow”})
{NounPhrase.type == “Concept”}
) :QP 99K :QP.QuestionPhrase = {category = “List”}

Every complete pattern followed by a label must be
enclosed by round brackets. In the above pattern, the
label is QP. The pattern would catch phrases starting
with a TokenVn annotation covering either the word
“liệt kêlist” or the word “chỉ rashow”, followed by
a concept-typed noun phrase surrounded by a Noun-
Phrase annotation. When applying the pattern on a text
fragment, QuestionPhrase annotations having “cate-
gory” feature with its value of “List” would be posted
over phrases matching the pattern.

Additionally, the condition part of the rule can in-
clude additional constrains. For example, in rule 40 in

figure 6, the addition constrain “RDR1_QP.hasanno
== QuestionPhrase.category == QU-whichClass” is
used to make a prerequisite condition, which requires
a RDR1_QP annotation that must have a Question-
Phrase annotation covering their substring with “QU-
whichClass” as the value of its “category” feature.

The rule’s conclusion contains the question-structure
and the query-tuples corresponding to the intermediate
representation where each element in the query-tuple
is specified by a newly posted annotations from match-
ing the rule’s condition in the following order:

(sub-structure, question-category, Term1, Rela-
tion, Term2, Term3)

All newly posted annotations have the same prefix
RDR and the rule index so that a rule can refer to an-
notations of its parent rules. Examples of rules and
how rules are created and stored in exception structure
will be explained in details in the next sub-section of
knowledge acquisition process.

Given a new input question, a rule’s condition is
considered satisfied if the whole input question is
matched by the condition pattern. The conclusion of
the fired rule outputs the intermediate representa-
tion of the input question. To create rules for captur-
ing structures of questions, we use patterns over an-
notations returned by the previous modules of pre-
processing and syntactic analysis.

4.3. Knowledge Acquisition Process

It is because that the main focus of our approach
is on the process of creating the rule-base system,
therefore, it is language independent3. The language-
specific part is in the rules itself. Consequently, in
this section, we illustrate the process building the
SCRDR knowledge base of rules as presented in fig-
ure 6 for processing English natural language ques-
tions. We utilized JAPE grammars employed in Aqua-
Log [25] for detecting the prepositions, noun phrases,
question phrases, and relation phrases in English ques-
tions. As our Vietnamese question-category defini-
tions is not suitable to adapt to the English domain, we
reused those of the AquaLog system. Figure 7 shows
the graphic user interface of our natural language ques-
tion analyzer.

• The rest of this section describes how the knowl-
edge base building process works. In contrast to the

3The illustration of building a knowledge base of rules for ana-
lyzing Vietnamese questions can be found in our conference publi-
cation [36].

Nguyen et al. / Ripple Down Rules for Question Answering 11

Figure 7. Question analysis module to create the intermediate representation of question “who are the researchers in semantic web research
area?”

.

example in section 3.3.3 with respect to figure 4, we
start with demonstrations of reusing detected question-
structure patterns.

When we encountered the question: “who are the
researchers in semantic web research area ?”

[QuestionPhrase: who] [Relation: are the researchers
in] [NounPhrase: semantic web research area]

Supposed we start with an empty knowledge base,
the fired rule is the default rule R0 that gives an empty
conclusion - an incorrect intermediate representation.
This can be corrected by adding the following rule as
an exception rule of the rule R0 to the knowledge base:

Rule: R1
(
({QuestionPhrase}):QP
({Relation}):Rel
({NounPhrase}):NP
) :left 99K :left.RDR1_ = {category1 = “Unkn-

Term”}
, :QP.RDR1_QP = {}
, :Rel.RDR1_Rel = {}
, :NP.RDR1_NP = {}

Conclusion: question-structure UnknTerm and tuple
(RDR1_.category1, RDR1_QP.QuestionPhrase.category, ?,
RDR1_Rel, RDR1_NP, ?).

If the condition of rule R1 matches whole input
question, a new annotation RDR1_ will be created to
entirely cover the input question and new annotations
RDR1_QP, RDR1_Rel and RDR1_NP will also be
generated for covering sub-phrases of the input ques-
tion. Once rule R1 is fired, the matched input ques-
tion is deemed to have a query-tuple with sub-structure
taking the value of the “category1” feature of RDR1_
annotation, question-category taking the value of the
“category” feature of QuestionPhrase annotation sur-
rounding the same span as RDR1_QP annotation. In
addition, the query-tuple’s Relation is the string cov-
ered by RDR1_Rel, Term2 is the string surrounded by
RDR1_NP while Term1 and Term3 are missing. The
example of firing at rule R1 is displayed in figure 7.

Assumed that, in addition to the default rule R0 and
rule R1, the current knowledge base contains rule R2
as an exception rule of the rule R1. In the SCRDR tree
structure, the associated node (2) is the except-child
node of the node (1) as displayed in the figure 6. When

12 Nguyen et al. / Ripple Down Rules for Question Answering

we encountered the question: “which universities are
Knowledge Media Institute collaborating with ?”

[RDR1_: [RDR1_QP: which universities] [RDR1_Rel:
are] [RDR1_NP: Knowledge Media Institute]] [Rela-
tion: collaborating with]

We have evaluation path of (0)-(1)-(2) with the fired
rule R1. However, rule R1 produces an incorrect con-
clusion of question-structure UnknRel and query-tuple
(UnknTerm, QU-whichClass, ?, ?, Knowledge Media
Institute, ?) as the RDR1_ annotation only covers a part
of the question and “are” is not considered as a rela-
tion. The following rule R3 would be appended as an
exception rule of the fired rule R1 to knowledge base:

Rule: R3
(
{RDR1_} ({Relation}):Rel
) :left 99K :left.RDR3_ = {category1 = “Normal”}
, :Rel.RDR3_Rel = {}
Conclusion: question-structure Normal and query-

tuple (RDR3_.category1, RDR1_QP.QuestionPhrase.category,
RDR1_QP, RDR3_Rel, RDR1_NP, ?).

In the SCRDR tree structure, the corresponding
node (3) is added as the false-child node of the node
(2) which is the last node in the evaluation path. Re-
garding to the input question “which universities are
Knowledge Media Institute collaborating with ?”, we
have a new evaluation path of (0)-(1)-(2)-(3) with fired
rule R3. Using rule R3, the correct output of the input
question is question-structure Normal and query-tuple
(Normal, QU-whichClass, universities, collaborating,
Knowledge Media Institute, ?).

Similarly, another input question made an attach-
ment of the rule R4 which is an exception rule of the
rule R1. In the SCRDR tree structure, the associated
node (4) is linked to node (3) by false edge.

With the question: “who are the partners involved
in AKT project?”

[RDR3_: [RDR1_QP: who] [RDR1_Rel: are] [RDR1_NP:
the partners] [RDR3_Rel: involved in]] [NounPhrase: AKT
project]

We have evaluation path of (0)-(1)-(2)-(3) and rule
R3 is the fired rule. But rule R3 returns a wrong con-
clusion. The following rule R5 is added to correct the
conclusion as an exception rule of the rule R3 :

Rule: R5
(
{RDR3_} ({NounPhrase}):NP
) :left 99K :left.RDR5_ = {category1 = “Normal”}
, :NP.RDR5_NP = {}

Conclusion: question-structure Normal and tuple
(RDR5_.category1, RDR1_QP.QuestionPhrase.category,
RDR1_NP, RDR3_Rel, RDR5_NP, ?).

As the node (3) is the last node in the evaluation
path, the corresponding node (5) is attached as the
except-child node of the node (3) as displayed in figure
6. Using the rule R5, we have the correct conclusion
consisting of question-structure Normal and query-
tuple (Normal, QU-who-what, partners, involved, AKT
project, ?).

• The processes of adding above rules illustrate the
ability of quickly handling new question-structure pat-
terns of our knowledge acquisition approach against
the hard-wire manners [25,34]. The following exam-
ples demonstrate the ability of our method in solving
question-structure ambiguities.

With the question: “which researchers wrote publi-
cations related to semantic portals ?”

[RDR5_: [RDR1_QP: which researchers] [RDR1_Rel:
wrote] [RDR1_NP: publications] [RDR3_Rel: related
to] [RDR5_NP: semantic portals]]

it will be fired at node (5) which is the last node in
the evaluation path of (0)-(1)-(2)-(3)-(5). But rule R5
gives the wrong conclusion of question-structure Nor-
mal and query-tuple (Normal, QU-whichClass, publi-
cations, related to, semantic portals, ?). We add node
(40) containing the following exception rule R40 as the
except-child node of the node (5) to correct the con-
clusion returned by the rule R5 in using constrains via
rule condition:

Rule: R40
(
{RDR5_}
) :left 99K :left.RDR40_ = {category1 =“Normal”,

category2 = “Normal”}
Condition:

RDR1_QP.hasanno == QuestionPhrase.category ==
QU-whichClass

Conclusion: question-structure Clause4 and two
query-tuples:
(RDR40_.category1, RDR1_QP.QuestionPhrase.category,
RDR1_QP, RDR1_Rel, ?, ?) and
(RDR40_.category2, RDR1_QP.QuestionPhrase.category,
RDR1_NP, RDR3_Rel, RDR5_NP, ?).

4Clause question-structure is defined as consisting of two
query-tuples that returned results of sub-question represented by sec-
ond query-tuple indicate missing element of Term2 in the first query-
tuple. The readers can find more details in our question-structure
definitions in the appendix A.

Nguyen et al. / Ripple Down Rules for Question Answering 13

The additional condition of rule R40 matches a
RDR1_QP annotation that has a QuestionPhrase an-
notation covering their substring with QU-whichClass
as the value of its “category” feature. The extra an-
notation constraint of hasAnno requires that the text
covered by the annotation must contain the speci-
fied annotation. Additionally, the values of features
“category1” and “category2” of RDR40_ annotation
are assigned to the corresponding query-tuples’ sub-
structure. Rule R40 generates the correct output of
question-structure Clause and query-tuples (Normal,
QU-whichClass, researchers, wrote, ?, ?) and (Nor-
mal, QU-whichClass, publications, related to, seman-
tic portals, ?).

When it came to another question:
“which projects sponsored by eprsc are related to

semantic web ?”
[RDR40_: [RDR1_QP: [QuestionPhrasecategory

=QU−whichClass: which projects]] [RDR1_Rel: spon-
sored by] [RDR1_NP: eprsc] [RDR3_Rel: are related
to] [RDR5_NP: semantic web]]

The current knowledge base generates an evaluation
path of (0)-(1)-(2)-(3)-(5)-(40)-(42)-(43) with the fired
rule R40. However, rule R40 returns a wrong con-
clusion with question-structure Clause and two query-
tuples (Normal, QU-whichClass, projects, sponsored,
?, ?) and (Normal, QU-whichClass, eprsc, related to,
semantic web, ?) since Term1 cannot be assigned to
the instance “eprsc”. The following rule R45 which is
an exception rule the rule R40 is added to correct the
conclusion given by the rule R40:

Rule: R45
(
{RDR40_}
) :left 99K :left.RDR45_ = {category1 =“Normal”,

category2 = “Normal”}
Condition: RDR1_Rel.hasanno == Token.category

== VBN5

Conclusion: question-structure And and two query-
tuples of
(RDR45_.category1, RDR1_QP.QuestionPhrase.category,
RDR1_QP, RDR1_Rel, RDR1_NP, ?) and
(RDR45_.category2, RDR1_QP.QuestionPhrase.category,
RDR1_QP, RDR3_Rel, RDR5_NP, ?).

Rule R45 enables to return a correct intermediate
representation for the question with question-structure
And and query-tuples (Normal, QU-whichClass, projects,

5Token annotations are generated as outputs of the English tok-
enizer, sentence splitter and POS tagger in GATE framework [9].

sponsored, eprsc, ?) and (Normal, QU-whichClass,
projects, related to, semantic web, ?). In the SCRDR
tree structure, the associated node (45) is appended as
the false-child node of the node (43).

5. Experiments

We separately evaluate the question analysis and an-
swer retrieval components in section 5.1 and section
5.2, respectively. The reason is that the method em-
ployed in the question analysis component is domain-
and-language independent while the answer retrieval
component is to extract the answers from a domain-
specific ontology.

5.1. Experiments on analyzing questions

This section is to indicate the ability of using our
question analysis approach for quickly building a new
knowledge base, and then for easily adapting to a new
domain and a new language. We evaluate both our
approaches of hard-wire manner (section 3.3.3) and
knowledge acquisition (section 4) on Vietnamese ques-
tion analysis, and later present the experiment in build-
ing a SCRDR knowledge base for processing English
questions using the same intermediate representation.

5.1.1. Question Analysis for Vietnamese
Based on a training set of 400 various-structure

questions generated by four volunteer students, we
build a knowledge base of 92 rules. We evaluate the
quality of the knowledge base on an unseen list of 88
questions related to the VNU University of Engineer-
ing and Technology. Table 2 details the number of ex-
ception rules in each layer where every rule in layer n
is an exception rule of a rule in layer n − 1. The only
rule which is not an exception rule of any rule is the
default rule in layer 0. This indicates that the exception
structure is indeed present and even extends to level 4.

Table 2
Number of exception rules in layers in our SCRDR KB

Layer Number of rules

1 26
2 41
3 20
4 4

In our experiment, we evaluate both our approaches
to analyzing questions including the first one of hard-

14 Nguyen et al. / Ripple Down Rules for Question Answering

wire manner as mentioned in the section 3.3.3 and the
second of knowledge acquisition for building SCRDR
knowledge base, using the same training set of 400
questions and test set of 88 questions. Our second
method took one expert about 13 hours to build a KB.
However, most of the time was spent in looking at
questions to determine if they belong to the structure
of interest and which phrases in the sentence need to
be extracted for the intermediate representation. The
actual time required to create 92 rules by one expert is
only about 5 hours in total. In contrast, implementing
question analysis component corresponding to our first
method took about 75 hours for creating rules in an ad-
hoc manner. Anecdotal account indicates that the cog-
nitive load in creating rules in the second approach is
much less compared to that in the first one as in our
case, we do not have to consider other rules when craft-
ing a new rule.

Table 3
Number of correctly analyzed questions

Type #questions

Our first approach driving hard-wire manner 70 (79.5%)
Our second approach of knowledge acquisition 74 (84.1%)

Table 3 shows the number of correctly analyzed
questions of our approaches. By using knowledge base
for resolving some ambiguous cases, the second ap-
proach accounting for 74 of 88 questions to obtain the
accuracy of 84.1% performs better than the first one.
Table 4 provides the sources of errors for the remain-
ing questions that our second approach incorrectly pro-
cesses. It points out that most errors come from un-
expected structures. This could be easily rectified by
adding more exception rules to the current knowledge
base, especially when we have a bigger training set that
contain a larger variety of question-structure types.

Table 4
Number of incorrectly analyzed questions

Reason #questions

Unknown structures of questions 12
Word segmentation was not trained for
question-domain

2

For instance of failure by word segmentation with-
out training over questions domain, given the question
"Vũ Tiến Thành có quê và có mã sinh viên là gì?"
("what is the hometown and student code of Vu Tien
Thanh?"), the output of existing linguistic processing
modules for Vietnamese [41] wrapped as GATE plug-

ins [9], that we used, assigns the word “quêhometown”
as an adjective instead of a noun. Thus, “quêhometown”
is not covered by NounPhrase annotation leading the
unknown structure pattern of the question.

Table 5
Number of rules corresponding to each question-structure type
(QST) in the knowledge bases for Vietnamese (#V) and English
(#E), and the number of Vietnamese testing questions (#TQ) and the
number of Vietnamese correctly answered questions (#CA) associ-
ating to each rule.

QST #V #CA #TQ #E

Definition 2 1 2/2 3
UnknRel 4 4 4/7 4
UnknTerm 7 6 7/7 3
Normal 7 7 7/7 8
Affirm 10 5 5/5 4
Compare 5 0 2/4 0
ThreeTerm 9 7 7/10 5
Affirm_3Term 5 4 4/4 3
And 9 7 8/8 14
Or 23 18 21/24 1
Affirm_MoreTuples 3 1 2/3 0
Clause 6 0 4/5 13
Combine 1 1 1/2 0

Total: 91 61 74/88 58

Regarding to question-structure-based evaluation,
table 5 presents the number of rules built in the Viet-
namese knowledge base in corresponding for each type
of question-structure and the number of correspond-
ing testing questions associated with each rule. For ex-
ample, in the second row and fourth column of table
5, with 7 testing questions tending to have question-
structure UnknRel, there are 4 testing questions cor-
rectly analyzed, and remaining 3 testing questions in-
correctly processed.

5.1.2. Question Analysis for English
For the experiment in English, we take 170 English

question examples of AquaLog6 [25], which Aqualog
is able to correctly analyze. Those questions are speci-
fied to the Knowledge Media Institute and its research
area on semantic web. Using our knowledge acquisi-
tion approach, we built a knowledge base of 59 rules
including the default one. It took 7 hours to build the
knowledge base, which includes 3 hours of actual time
to create all rules. Table 6 shows the number of rules
in English knowledge base layers while the number of

6http://technologies.kmi.open.ac.uk/aqualog/examples.html

Nguyen et al. / Ripple Down Rules for Question Answering 15

rules corresponding with each question-structure type
is presented table 5.

Table 6
Number of exception rules in layers in our English SCRDR KB

Layer Number of rules

1 9
2 13
3 20
4 11
5 5

In order to demonstrate that our approach could be
applied to an open domain, we use the built English
knowledge base to process a test set of 500 questions7

from the TREC-10 Question Answering Track [57].

Table 7
Number of questions corresponding with each question-structure
type

Question-structure type #questions

Definition 130
UnknTerm 66
UnknRel 4
Normal 20
ThreeTerm 15
And 6

Table 7 presents the number of correctly analyzed
questions corresponding with each question-structure
type. Table 8 gives the sources of errors for 259 incor-
rect cases. This could be corrected by adding more ex-
ception rules to the current English knowledge base in
the use of a larger training data set such as the corpus
of 5500 open domain questions8 [22].

Table 8
Error results

Reason #questions

Have special characters (such as / –
“ ” ’s) and abbreviations

64

Not have compatible patterns 185
Semantic error in elements of the
intermediate representation

10

As the intermediate representation of our system is
different to AquaLog, it is impossible to directly com-
pare our approach with Aqualog on the English do-

7http://cogcomp.cs.illinois.edu/Data/QA/QC/TREC_10.label
8http://cogcomp.cs.illinois.edu/Data/QA/QC/train_5500.label

main. However, the experiments are indicative of the
ability in using our approach to quickly build a new
knowledge base for a new domain and a new language.

5.2. Experiment on answering Vietnamese questions

To evaluate our KbQAS system by specifying in the
Answer retrieval component, the ontology modeling
the organizational structure of the VNU University of
Engineering and Technology as mentioned in the sec-
tion 3.2 is used as target domain. This ontology was
manually constructed by using the Protégé platform
[16]. From the list of 88 questions as mentioned in sec-
tion 5.1.1, we employed 74 questions for which our
question analysis component correctly processed.

Table 9
Questions successfully answered

Type # questions

No interaction with users 30
With interactions with users 31

Overall 61 (82.4%)

The performance result is shown in table 9. The an-
swer retrieval component gives correct answers to 61
questions (over 74 questions) to obtain a promising ac-
curacy of 82.4%. Out of those, 30 questions can be
answered automatically without interaction with the
user. The number of correctly answered questions cor-
responding with each question-structure type can be
found in the third column of table 5.

Table 10
Questions with unsuccessful answers

Type # questions

Ontology mapping errors 6
Answer extraction errors 7

Table 10 gives the limitations that would have to
be handled in future KbQAS versions. The errors
occurred by the Ontology mapping module are be-
cause of the ontology construction of lacking domain-
specific conceptual coverage and the few relationships
between concept pairs. This leads to that specific terms
or relations in the intermediate representation cannot
be mapped or incorrectly mapped to corresponding el-
ements in the target ontology to produce the Ontology-
tuple. Furthermore, KbQAS fails to extract the answers
to 7 other questions due to: (i) Dealing with ques-
tions belonging to structures of “Compare” involves
specific services. For example, handling the question

16 Nguyen et al. / Ripple Down Rules for Question Answering

“sinh viên nào có điểm trung bình cao nhất khoa công
nghệ thông tin?” (which student has the highest grade
point average in faculty of Information Technology?)
requires a comparison mechanism for ranking students
according to their GPA. (ii) In terms of “Clause” ques-
tions and one “Affirm_MoreTuples” question, combin-
ing sub-questions triggers complex inference tasks and
bugs which cannot be resolved in this version.

6. Conclusion

In this paper, we described the ontology-based Viet-
namese question answering system KbQAS. It con-
sists of two components of the Natural language ques-
tion analysis engine and the Answer retrieval. The two
components are connected by an intermediate repre-
sentation element capturing the semantic structure of
the input question, facilitating the processing of match-
ing with the target ontology to find the answer. To the
best of our knowledge, this is the first ontology-based
question answering system for Vietnamese.

Additionally, we proposed our knowledge acquisi-
tion approach to systematically acquiring rules for con-
verting a natural language question into an intermedi-
ate representation. Given a complex intermediate rep-
resentation of a question, our approach allows system-
atic control of interactions between rules and keeping
consistency among them. We believe our knowledge
acquisition approach for question analysis is impor-
tant especially for under-resourced languages where
annotated data is not available. Our approach could be
combined nicely with the process of annotating corpus
where on top of assigning a label or a representation to
a question, the experts just have to add one more rule
to justify their decision using our system. Incremen-
tally, an annotated corpus and a rule-based system can
be obtained simultaneously. The structured data used
in the question analysis evaluation falls into the cate-
gory of querying database or ontology but the problem
of question analysis we tackle go beyond that, as it is
a process that happens before the querying process. It
can be applied to question answering in open domain
against text corpora as long as the technique requires
an analysis to turn the input question to an explicit rep-
resentation of some sort.

Experimental results of our KbQAS system with a
wide range of questions are promising. Specifically,
the answer retrieval module achieves an accuracy of
82.4%. Moreover, the experiments - on analyzing nat-
ural language questions with an accuracy of 84.1% for

the Vietnamese corpus and time of 7 hours to build the
English knowledge base - show that our knowledge ac-
quisition approach for question analysis enables ones
to easily build a new system or adapt an existing system
to a new domain or a new language. In the future, we
will extend our system to employ a near match mecha-
nism to improve the generalization capability of exist-
ing rules in the knowledge base and to assist the rule
creation process.

Appendix

A. Definitions of question-structures

We define question-structures: Normal, UnknTerm,
UnknRel, Definition, Compare, ThreeTerm, Clause,
Combine, And, Or, Affirm, Affirm_MoreTuples, Af-
firm_3Term as below. In each query-tuple, in general,
Term1 represents a concept, excluding cases of Affirm,
Affirm_3Term and Affirm_MoreTuples.

• A question will have question-structure Normal
if it has only one query-tuple, and the query-tuple’s
Term3 is missing.
• A question will have question-structure UnknTerm

if it has only one query-tuple, and the query-tuple lacks
Term1 and Term3.
• A question will have question-structure UnknRel

if it has only one query-tuple in the lack of Rela-
tion and Term3. For instance, the question “List all
the publications in knowledge media institute” has
question-structure UnknRel and query-tuple (UnknRel,
QU-listClass, publications, ?, knowledge media insti-
tute, ?).

• A question will have question-structure Definition
if it has only one query-tuple lacking all of Term1,
Relation and Term3. For instance, the question “what
are research areas?” has a query-tuple (Definition, QU-
who-what, ?, ?, research areas, ?).
• If a question belongs to one of three question-

structure types Normal, UnknRel and UnknTerm and
appears in question category YesNo, the question will
have question-structure Affirm. For example, the ques-
tion “Is Tran Binh Giang a Phd student?” has question-
structure Affirm and query-tuple (Affirm, YesNo, Phd
student, ?, Tran Binh Giang, ?)

• A question will have question-structure ThreeTerm
if it has only one query-tuple, and it allows to miss
either Term1 or Relation. For instance, the question
“Who is the director of the compendium project in
Knowledge Media?” has question-structure ThreeTerm

Nguyen et al. / Ripple Down Rules for Question Answering 17

and query-tuple (ThreeTerm, QU-who-what, ?, direc-
tor, compendium project, Knowledge Media).

• If a question has question-structure ThreeTerm
and also belongs to YesNo category, it will have
question-structure Affirm_3Term. Given the question
“số lượng sinh viên học lớp K50 khoa học máy
tính là 45 phải không?” (“45 is the number of stu-
dents studying in K50 computer science course, is
not it?”), it has query-tuple (Affirm_3Term, Many-
Class, sinh viênstudent, họcstudy , lớp K50 khoa học
máy tínhK50computersciencecourse, 45). Another exam-
ple for this type of question-structure is illustrated in
figure 2.
• A question will have question-structure Com-

pare if it belongs to one of three question-structure
types Normal, UnknRel and UnknTerm, and contains a
comparing-phrase which is detected by preprocessing
module; the query-tuple’s Term3 in this case is used to
hold this comparison information.

For example, the question “sinh viên nào có điểm
trung bình cao nhất khoa công nghệ thông tin?”
(“which student has the highest grade point average
in faculty of Information Technology?”) has query-
structure of Compare and query-tuple (Normal, Entity,
sinh viênstudent, điểm trung bìnhgrade point average,
khoa công nghệ thông tinfaculty of Information Technology ,
cao nhấthighest).
• If a question contains either token “màand”/“vàand”

or “hoặcor”, it will have two or more query-tuples cor-
responding with And or Or question-structure respec-
tively. For instance, the question “which projects are
about ontologies and the semantic web?” has question-
structure And and two query-tuples (UnknRel, QU-
whichClass, projects, ?, ontologies, ?) and (UnknRel,
QU-whichClass, projects, ?, semantic web, ?);

The question “which publications are in knowledge
media institute related to compendium?” has question-
structure And and two query-tuples (UnknRel, QU-
whichClass, publications, ?, knowledge media insti-
tute, ?) and (Normal, QU-whichClass, publications,
related to, compendium, ?);

The question “who is interested in ontologies or in
the semantic web?” has question-structure Or and two
query-tuples (UnknTerm, QU-who-what, ?, interested,
ontologies, ?) and (UnknTerm, QU-who-what, ?, inter-
ested, semantic web, ?).

However, with some question as “Phạm Đức Đăng
học trường đại học nào và được hướng dẫn bởi ai?”
(“Which university does Pham Duc Dang study in
and who tutors him?”), it contains “vàand”, but it
has question-structure Or and two query-tuples (Nor-

mal, Entity, trường đại họcuniversity, họcstudy , Phạm
Đức ĐăngPham Duc Dang, ?) and (UnknTerm, Who, ?,
hướng dẫntutor, Phạm Đức ĐăngPham Duc Dang, ?).

• If a question appearing in question category YesNo
belongs to question-structure types And or Or, it will
have question-structure Affirm_MoreTuples. For exam-
ple, the question “tồn tại sinh viên có quê ở Hà Tây
và học khoa toán phải không ?” (is there some student
having hometown in Hatay and studying in faculty of
Mathematics?) has two query-tuples (Normal, YesNo,
sinh viênstudent, có quêhave hometown, Hà TâyHatay ,
?) and (Normal, YesNo, sinh viênstudent, họcstudy ,
khoa Toánfaculty of Mathematics, ?).
• If a question associates with two query-tuples and

returned results of one query-tuple is considered as
miss-element in the remaining query-tuple, it will have
question-structure Clause.

For example, the question “how many projects are
headed by researchers in the open university?” has
question-structure Clause and query-tuples (Normal,
QU-howmany, projects, headed, ?, ?) and (UnknRel,
QU-howmany, researchers, ?, open university, ?).

Specially, in case of the question contains comparing-
phrase like “số lượng sinh viên học lớp K50 khoa học
máy tính lớn hơn 45 phải không ?”9 (the number of
students studying in K50 computer science course is
higher than 45, is not it?) will have question-structure
Clause and two query-tuples (Compare, YesNo, 45,
?, ?, lớn hơnhigher than) and (Normal, ManyClass,
sinh viênstudent, họcstudy , lớp K50 khoa học máy
tínhK50 computer science course, ?).

• If a composite question is constructed from
two or more independent sub-questions, it will have
question-structure Combine. For example, the ques-
tion “Ai có quê quán ở Hà Tây và ai học khoa
công nghệ thông tin?” (who has hometown in Hatay,
and who study in faculty of Information Technol-
ogy?) has two query-tuples (UnknTerm, Who, ?, có
quê quánhas hometown, Hà TâyHatay , ?) and (Un-
knTerm, Who, ?, họcstudy , khoa công nghệ thông
tinfaculty ofInformation Technology , ?).

B. Definitions of Vietnamese question-categories

In our system, question is classified into one of the
following classes of HowWhy, YesNo, What, When,
Where, Who, Many, ManyClass, List, and Entity. To
identify question categories, we specify a number of

9This is the case of our system failing to correctly analyze due
to an unknown structure pattern.

18 Nguyen et al. / Ripple Down Rules for Question Answering

JAPE grammars using NounPhrase annotations and
the question-word information identified by the pre-
processing module. Obviously using this method in
question-phrases detection phase will result in ambi-
guity when a question belongs to multiple categories.
• A HowWhy-type question refers causes or methods

by containing the word re-annotated by single TokenVn
annotation such as “tại saowhy”, or “vì saowhy”, or
“thế nàohow”, or “là như thế nàohow”. In English, it
is similar to Why-question or How is/are question.
• A YesNo-type question requires true or false an-

swer by holding the word re-covered by single To-
kenVn annotations such as “có đúng làis that”, or “có
phải làis this”, or “phải khôngare there”, or “đúng
khôngare those”.
• A What-classified question refers to something in

consisting of the word “cái gìwhat”, or “là gìwhat”, or
“là những cái gìwhat”. In English, this question type
is What is/are-question-like.
• A When-type question contains the word rela-

belled by single TokenVn annotation such as “khi
nàowhen”, or “vào thời gian nàowhich time”, or “lúc
nàowhen”, or “ngày nàowhich date”.
• A Where-classified question requires answers

about location in containing words such as “ở nơi
nàowhere”, or “là ở nơi đâuwhere”, or “ở chỗ nàowhere”.
• A question will be categorized to Who class, if it

contains the word indicating answer referring to a per-
son such as “là những aiwho”, or “là người nàowho”,
or “những aiwho”.

• A question expecting the answer about number
will belong to Many class (in English, these questions
are How much/many is/are-questions). This question
type holds the word like “bao nhiêuhow much|many”,
or “là bao nhiêuhow much|many”, or “số lượnghow many”.

• A question will appear in ManyClass class, if it
contains the word like “bao nhiêuHowmany”, or “số
lượngNumberof” . . . followed by a noun phrase (in En-
glish, this type is the same kind of How many Noun-
Phrase-question).
• A question will appertain in Entity category if it

holds a noun phrase followed by the word “nàowhich”
or “gìwhat” (in English, this kind of question belongs
to set of which/what Noun Phrase questions such as:
which students, what class,...).
• A question will categorized to List class if it

contains the word referring commands such as: “cho
biếtgive”, “chỉ rashow”, “kể ratell”, “tìmfind”, “liệt
kêlist” . . . followed by a noun phrase.

References

[1] I. Androutsopoulos, G. Ritchie, and P. Thanisch.
Masque/sql– an efficient and portable natural language
query interface for relational databases. In Proceed-
ings of the 6th International Conference on Industrial &
Engineering Applications of Artificial Intelligence and
Expert Systems, pages 327–330, 1993.

[2] Ion Androutsopoulos, Graeme Ritchie, and Peter
Thanisch. Natural language interfaces to databases -
an introduction. Natural Language Engineering, 1(1):
29–81, 1995.

[3] Paolo Atzeni, Roberto Basili, Dorte Haltrup Hansen,
Paolo Missier, Patrizia Paggio, Maria Teresa Pazienza,
and Fabio Massimo Zanzotto. Ontology-based question
answering in a federation of university sites: The moses
case study. In Proceedings of 9th International Confer-
ence on Applications of Natural Languages to Informa-
tion Systems, NLDB 2004, pages 413–420, 2004.

[4] Roberto Basili, Dorte H. Hansen, Patrizia Paggio,
Maria Teresa Pazienza, and Fabio Massimo Zanzotto.
Ontological resources and question answering. In HLT-
NAACL 2004: Workshop on Pragmatics of Question
Answering, pages 78–84, 2004.

[5] Delphine Bernhard and Iryna Gurevych. Answer-
ing Learners ’ Questions by Retrieving Question Para-
phrases from Social Q & A Sites. In Proceedings of the
Third Workshop on Innovative Use of NLP for Build-
ing Educational Applications, EANL ’08, pages 44–52,
2008.

[6] Robin D. Burke, Kristian J. Hammond, Vladimir A.
Kulyukin, Steven L. Lytinen, Noriko Tomuro, and Scott
Schoenberg. Question answering from frequently asked
question files: Experiences with the faq finder system.
AI Magazine, 18(2):57–66, 1997.

[7] Philipp Cimiano, Peter Haase, Jörg Heizmann,
Matthias Mantel, and Rudi Studer. Towards portable
natural language interfaces to knowledge bases -
the case of the orakel system. Data & Knowledge
Engineering, 65(2):325–354, 2008.

[8] P. Compton and R. Jansen. A philosophical basis for
knowledge acquisition. Knowledge Aquisition, 2(3):
241–257, 1990.

[9] Hammish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. GATE: A Framework
and Graphical Development Environment for Robust
NLP Tools and Applications. In Proceedings of
the 40th Anniversary Meeting of the Association for
Computational Linguistics, ACL’02, pages 168–175,
2002.

[10] Danica Damljanovic, Valentin Tablan, and Kalina
Bontcheva. A text-based query interface to owl on-
tologies. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), 2008.

Nguyen et al. / Ripple Down Rules for Question Answering 19

[11] Danica Damljanovic, Milan Agatonovic, and Hamish
Cunningham. Natural language interfaces to ontolo-
gies: combining syntactic analysis and ontology-based
lookup through the user interaction. In Proceedings of
the 7th international conference on The Semantic Web:
research and Applications - Volume Part I, ESWC’10,
pages 106–120, 2010.

[12] Quang Ban Diep. Ngữ pháp tiếng Việt (Grammar of
Vietnamese language). Vietnam Education Publishing
House, 2005.

[13] Tiansi Dong, Ulrich Furbach, Ingo Glöckner, and Björn
Pelzer. A natural language question answering system
as a participant in human q&a portals. In Proceedings
of the Twenty-Second international joint conference on
Artificial Intelligence - Volume Three, IJCAI’11, pages
2430–2435, 2011.

[14] Christiane D. Fellbaum. WordNet: An Electronic Lexi-
cal Database. MIT Press, 1998.

[15] Ulrich Furbach, I Glöckner, and B Pelzer. An ap-
plication of automated reasoning in natural language
question answering. AI Communications, 23:241–265,
2010.

[16] John H. Gennari, Mark A. Musen, Ray W. Fergerson,
William E. Grosso, Monica Crubzy, Henrik Eriksson,
Natalya F. Noy, and Samson W. Tu. The evolution
of protégé: An environment for knowledge-based sys-
tems development. International Journal of Human-
Computer Studies, 58:89–123, 2002.

[17] Sanda Harabagiu, Dan Moldovan, Marius Paşca, Rada
Mihalcea, Mihai Surdeanu, Zvan Bunescu, Roxana
Girju, Vasile Rus, and Paul Morarescu. Falcon: Boost-
ing knowledge for answer engines. In Proceedings of
the Ninth Text REtrieval Conference (TREC-9), pages
479–488, 2000.

[18] L. Hirschman and R. Gaizauskas. Natural language
question answering: the view from here. Natural Lan-
guage Engineering, 7(4):275–300, 2001.

[19] Valentin Jijkoun and Maarten de Rijke. Retrieving an-
swers from frequently asked questions pages on the
web. In Proceedings of the 14th ACM international
conference on Information and knowledge manage-
ment, CIKM ’05, pages 76–83, 2005.

[20] Boris Katz. Annotating the world wide web using nat-
ural language. In Proceedings of the 5th RIAO Confer-
ence on Computer Assisted Information Searching on
the Internet - RIAO 1997, pages 136–159, 1997.

[21] Oleksandr Kolomiyets and Marie-Francine Moens. A
survey on question answering technology from an in-
formation retrieval perspective. Information Sciences,
181(24):5412–5434, 2011.

[22] Xin Li and Dan Roth. Learning question classifiers.
In Proceedings of the 19th international conference on
Computational linguistics - Volume 1, COLING ’02,
pages 1–7, 2002.

[23] Zhao Liu, Xipeng Qiu, Ling Cao, and Xuanjing Huang.
Discovering logical knowledge for deep question an-

swering. In Proceedings of the 21st ACM interna-
tional conference on Information and knowledge man-
agement, CIKM ’12, pages 1920–1924, 2012.

[24] V Lopez, V Uren, M Sabou, and E Motta. Is question
answering fit for the semantic web?: a survey. Semantic
Web, 2:125–155, 2011.

[25] Vanessa Lopez, Victoria Uren, Enrico Motta, and
Michele Pasin. Aqualog: An ontology-driven question
answering system for organizational semantic intranets.
Web Semantics: Science, Services and Agents on the
World Wide Web, 5(2):72–105, 2007.

[26] Vanessa Lopez, Miriam Fernández, Enrico Motta, and
Nico Stieler. Poweraqua: Supporting users in querying
and exploring the semantic web. Semantic Web, 3(3):
249–265, 2012.

[27] Paul Martin, Douglas E. Appelt, Barbara J. Grosz, and
Fernando Pereira. Team: an experimental transportable
natural-language interface. In Proceedings of 1986
ACM Fall joint computer conference, ACM ’86, pages
260–267, 1986.

[28] Deborah L. McGuinness. Question answering on the
semantic web. IEEE Intelligent Systems, 19(1):82–85,
2004.

[29] Ana Cristina Mendes and Luísa Coheur. When the an-
swer comes into question in question-answering: survey
and open issues. Natural Language Engineering, pages
1–32, 2012.

[30] Michael Minock. C-phrase: A system for building ro-
bust natural language interfaces to databases. Data &
Knowledge Engineering, 69(3):290–302, 2010.

[31] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu,
F. Lacatusu, A. Novischi, A. Badulescu, and O. Bolo-
han. Lcc tools for question answering. In Proceedings
of the 11th Text REtrieval Conference (TREC-2002),
2002.

[32] Dan Moldovan, Sanda Harabagiu, Marius Pasca, Rada
Mihalcea, Roxana Girju, Richard Goodrum, and Vasile
Rus. Lasso: A tool for surfing the answer net. In Pro-
ceedings of the 8th Text REtrieval Conference (TREC-
8), 1999.

[33] Anh Kim Nguyen and Huong Thanh Le. Natural lan-
guage interface construction using semantic grammars.
In Proceedings of the 10th Pacific Rim International
Conference on Artificial Intelligence: Trends in Artifi-
cial Intelligence, PRICAI ’08, pages 728–739, 2008.

[34] Dai Quoc Nguyen, Dat Quoc Nguyen, and Son Bao
Pham. A Vietnamese Question Answering System. In
Proceedings of the 2009 International Conference on
Knowledge and Systems Engineering, KSE ’09, pages
26–32, 2009.

[35] Dang Tuan Nguyen and Tri Phi-Minh Nguyen. A ques-
tion answering model based evaluation for ovl (ontol-
ogy for vietnamese language). International Journal of
Computer Theory and Engineering, 3(3), 2011.

20 Nguyen et al. / Ripple Down Rules for Question Answering

[36] Dat Quoc Nguyen, Dai Quoc Nguyen, and Son Bao
Pham. Systematic Knowledge Acquisition for Question
Analysis. In Proceedings of the International Confer-
ence Recent Advances in Natural Language Processing
2011, pages 406–412, 2011.

[37] Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham,
and Dang Duc Pham. Ripple Down Rules for Part-of-
Speech Tagging. In Proceedings of the 12th interna-
tional conference on Computational linguistics and in-
telligent text processing - Volume Part I, CICLing’11,
pages 190–201, 2011.

[38] Dat Quoc Nguyen, Dai Quoc Nguyen, and Son Bao
Pham. KbQAS: A Knowledge-based QA System. In
Proceedings of the ISWC 2013 Posters & Demonstra-
tions Track, pages 109–112, 2013.

[39] Dat Tien Nguyen, Tam Duc Hoang, and Son Bao Pham.
A vietnamese natural language interface to database. In
Proceedings of the 2012 IEEE Sixth International Con-
ference on Semantic Computing, pages 130–133, 2012.

[40] Anselmo Peñas, Bernardo Magnini, Pamela Forner,
Richard Sutcliffe, Álvaro Rodrigo, and Danilo Gi-
ampiccolo. Question answering at the cross-language
evaluation forum 2003-2010. Language Resources and
Evaluation, 46(2):177–217, 2012.

[41] Dang Duc Pham, Giang Binh Tran, and Son Bao Pham.
A hybrid approach to vietnamese word segmentation
using part of speech tags. In Proceedings of the 2009
International Conference on Knowledge and Systems
Engineering, KSE’09, pages 154–161, 2009.

[42] Son Bao Pham and Achim Hoffmann. Efficient knowl-
edge acquisition for extracting temporal relations. In
Proceedings of the 2006 conference on ECAI 2006:
17th European Conference on Artificial Intelligence,
August 29 – September 1, 2006, Riva del Garda, Italy,
pages 521–525, 2006.

[43] T.T. Phan and T.C. Nguyen. Question semantic analysis
in vietnamese qa system. In Edited book "Advances in
Intelligent Information and Database Systems" of The
2nd Asian Conference on Intelligent Information and
Database Systems (ACIIDS2010), pages 29–40, 2010.

[44] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
Towards a theory of natural language interfaces to
databases. In Proceedings of the 8th international con-
ference on Intelligent user interfaces, IUI ’03, pages
149–157, 2003.

[45] Debbie Richards. Two decades of ripple down rules
research. Knowledge Engineering Review, 24(2):159–
184, 2009.

[46] Fabio Rinaldi, James Dowdall, Kaarel Kaljurand,
Michael Hess, and Diego Mollá. Exploiting para-
phrases in a Question Answering system. In Proceed-
ings of the second international workshop on Para-
phrasing - Volume 16, PARAPHRASE ’03, pages 25–
32, 2003.

[47] Sanjay Silakari, Mahesh Motwani, and Neelu Nihalani.
Natural language interface for database: A brief review.

IJCSI International Journal of Computer Science Is-
sues, 8:600–608, 2011.

[48] Eriks Sneiders. Automated question answering using
question templates that cover the conceptual model of
the database. In Proceedings of the 6th International
Conference on Applications of Natural Language to
Information Systems-Revised Papers, NLDB’02, pages
235–239, 2002.

[49] Niculae Stratica, Leila Kosseim, and Bipin C. Desai.
Nlidb templates for semantic parsing. In Proceedings
of the 8th International Conference on Applications of
Natural Language to Information Systems, pages 235–
241, 2003.

[50] Marjorie Templeton and John Burger. Problems in
natural-language interface to dbms with examples from
eufid. In Proceedings of the first conference on Ap-
plied natural language processing, ANLP’83, pages 3–
16, 1983.

[51] Mai-Vu Tran, Duc-Trong Le, Xuan-Tu Tran, and Tien-
Tung Nguyen. A model of vietnamese person named
entity question answering system. In Proceedings of
the 26th Pacific Asia Conference on Language, Infor-
mation, and Computation, pages 325–332, 2012.

[52] Christina Unger and Philipp Cimiano. Pythia: compo-
sitional meaning construction for ontology-based ques-
tion answering on the semantic web. In Proceedings of
the 16th international conference on Natural language
processing and information systems, NLDB’11, pages
153–160, 2011.

[53] Christina Unger, Lorenz Bühmann, Jens Lehmann,
Axel-Cyrille Ngonga Ngomo, Daniel Gerber, and
Philipp Cimiano. Template-based question answering
over rdf data. In Proceedings of the 21st international
conference on World Wide Web, WWW ’12, pages 639–
648, 2012.

[54] Benjamin Van Durme, Yifen Huang, Anna Kupść, and
Eric Nyberg. Towards light semantic processing for
question answering. In Proceedings of the HLT-NAACL
2003 workshop on Text meaning - Volume 9, pages 54–
61, 2003.

[55] M. Vargas-Vera and E. Motta. An ontology-driven sim-
ilarity algorithm. Technical report, Knowledge Media
Institute, The Open University, 2004.

[56] Ellen M. Voorhees. Overview of the TREC-9 Ques-
tion Answering Track. In Proceedings of the 9th Text
Retrieval Conference (TREC-9), pages 71–80, 2000.

[57] Ellen M. Voorhees. Overview of the trec 2001 ques-
tion answering track. In Proceedings of the Tenth Text
REtrieval Conference (TREC-10), 2001.

[58] Ellen M. Voorhees. The trec question answering track.
Natural Language Engineering, 7(4):361–378, 2001.

[59] Ellen M. Voorhees. Overview of the trec 2002 question
answering track. In Proceedings of the 11th Text RE-
trieval Conference (TREC 2002), pages 115–123, 2002.

Nguyen et al. / Ripple Down Rules for Question Answering 21

[60] David L. Waltz. An english language question answer-
ing system for a large relational database. Commun.
ACM, 21(7):526–539, 1978.

[61] Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu.
Panto: A portable natural language interface to ontolo-
gies. In Proceedings of the 4th European conference on
The Semantic Web: Research and Applications, pages
473–487, 2007.

[62] Bonnie Webber and Nick Webb. Question Answering.
In The Handbook of Computational Linguistics and
Natural Language Processing, pages 630–654. 2010.

[63] W. A. Woods, Ron Kaplan, and Nash B. Webber. The
LUNAR sciences natural language information system:
Final report. Technical Report BBN Report No. 2378,

Bolt Beranek and Newman, 1972.
[64] Daniel H. Younger. Recognition and parsing of context-

free languages in time n3. Information and Control, 10
(2):189 – 208, 1967.

[65] Shiqi Zhao, Ming Zhou, and Ting Liu. Learning Ques-
tion Paraphrases for QA from Encarta Logs. In Pro-
ceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, pages 1795–1801,
2007.

[66] Zhiping Zheng. Answerbus question answering system.
In Proceedings of the Second International Conference
on Human Language Technology Research, HLT ’02,
pages 399–404, 2002.

