
A type system for calculating the maximum log memory
used by transactional programs
Nguyen Ngoc Khai - K22, Software Engineering, Faculty of Information Technology,
University of Engineering and Technology, Vietnam National University, Hanoi

Abstract
We developed a type system for estimating an upper bound of memory that multi-threaded and nested trans-

actional programs may require for their transaction logs. In our previous works, we only estimated the maximum
number of logs that can coexist by static type and effect systems. This work extends our previous language that al-
lows ones to specify also the size of logs in a transaction, and then develop a type system that can infer the memory
bound required by the transaction logs.

Introduction
This work addresses the problem to determine the memory bound of a transactional program during
the compile time to ensure that the program can run smoothly without memory overflow errors. To
describe the problem more precisely, we use a core language based on [2]. Our language here focuses
on features that allows the programmers to mix creating new threads and transactions. We can for-
mulate the problem as follows. Given the memory requirement of each transaction in the program,
compute the maximal memory requirement for the whole program, and determine where in the ex-
ecution of the program the maximal memory requirement is reached. The figure below represent a
nested multi-threaded program.

Figure 1: A nested multi-threaded program

Abstract Language TM (Transactional Multi-threaded)

Syntax of the language TM

P ::“ 0 | ppeq |P ‖ P
e ::“ e1; e2 | e1 ` e2 |

spawnpeq | onacidpnq | commit

Figure 2: TM syntax

Dynamic semantics
The (global) run-time environment is structured as a collection of local environments. Each local en-
vironment is a sequence of logs with their size. We formally define the local and global environments
as follows.
Definition 1 (Local environment). A local environment E is a finite sequence of log id’s and their
size: l1:n1; . . . ; lk:nk. The environment with no element is called the empty environment and denoted
by ε.
Definition 2 (Global environment). A global environment Γ is a collection of thread id’s and their
local environments, Γ “ tp1:E1, . . . , pk:Eku.

p1 fresh spawnpp, p1,Γq “ Γ1

Γ, P ‖ ppspawnpe1q; e2q ñ Γ1, P ‖ ppe2q ‖ p1pe1q
S-SPAWN

l fresh startpl:n, p,Γq “ Γ1

Γ, P ‖ pponacidpnq; eq ñ Γ1, P ‖ ppeq
S-TRANS

tp : Eu P Γ E “ ..; l : n; intransepΓ, l:nq “ p̄ “ tp1, .., pku commitpp̄, Ē,Γq “ Γ1

Γ, P ‖
šk

1 pipcommit; eiq ñ Γ1, P ‖ p
šk

1 pipeiqq
S-COMM

i “ 1, 2
Γ, P ‖ ppe1 ` e2q ñ Γ, P ‖ ppeiq

S-COND
Γ “ Γ2 Y tp : Eu vEw “ 0

Γ, P ‖ ppcommit; eq ñ error
S-ERROR

Table 1: TM dynamic semantics

Type system
The main purpose of our type system is to identify the maximum log memory that a TM program
may require. The type of a term in our system is computed from what we call sequences of tagged
numbers, which is an abstract representation of the term’s transactional behavior w.r.t. logs.

Types
Inspired from our previous works [4], our types are finite sequences over the set of so called tagged
numbers. A tagged number is a pair of a tag and a natural number. We use four tags, or signs,
t`,´, , 7u for denoting opening, commit, joint commit and accumulated maximum of memory used
by logs, respectively. The set of all tagged number is denoted by TN. So TN “ t`n , ´n , 7n , n |
n P N`u.
Definition 3 (Canonical sequence). A sequence S is canonical if tagpSq does not contain ’´´’, ’77’,
’`´’, ’`7´’, ’` ’ or ’`7 ’ and |Spiq| ą 0 for all i.

The intuition here is that we can always simplify/shorten a sequence S without changing its inter-
pretation. The seq function below is to reduce a sequence in T N̄ to a canonical one. Note the pattern
’`´’ does not appear at the left, but we can insert 70 to apply. The last two patterns, ’` ’ and ’`7 ’,
will be handled by the function jc later.
Definition 4 (Simplification). Function seq is defined recursively as follows:

seqpSq “ S when S is canonical

seqpS 7m 7nS1q “ seqpS 7maxpm,nqS1q

seqpS ´m ´nS1q “ seqpS ´pm` nqS1q

seqpS `m `k 7l ´nS1q “ seqpS `m 7
pl ` kq ´pn´ 1qS1q

Definition 5 (Join). Let S “ s1 . . . sk be a canonical sequence, assume i “ firstpS,´q. Then,
function joinpSq recursively replaces ´ in S by as follows:

joinpSq “ S if i “ 0

joinpSq “ s1..si´1
 1 joinp´p |si| ´ 1qsi`1..skq otherwise

Definition 6 (Merge). Let S1 and S2 be joint sequences such that the number of elements in S1 and
S2 are the same (can be zero). The merge function is defined recursively as:

mergep 7m1 ,
7m2 q “

7
pm1 `m2q

mergep 7m1
 n1 S

1
1,
7m2

 n2 S
1
2q “

7
pm1 `m2q

pn1 ` n2q mergepS11, S

1
2q

Definition 7 (Choice). Let S1 and S2 be two sequences such that if we remove all 7 elements from
them, then the remaining two sequences are identical. The alt function is recursively defined as:

altp 7m1 ,
7m2 q “

7maxpm1,m2q

altp 7m1
˚n S11,

7m2
˚n S12q “

7maxpm1,m2q
˚n altpS11, S

1
2q

Typing rules
The language of types T is defined by the following syntax:

T “ S | Sρ

The second kind of type Sρ is used for terms inside a spawn expression which needs to be synchro-
nized with their parent thread. The treatment of two cases are different, so we denote kindpT q the
kind of T , which can be empty (normal) or ρ depending on which case T is.

The type environment encodes the transaction context for the expression being typed. The typing
judgment is of the form:

n $ e : T

where n P N is the type environment. When n is negative, it means e uses n units of memory for its
logs when executing e. When n is positive, it means e can free n units of memory of some log.

´n $ onacid(n) : `n
T-ONACID

n $ commit : ´1
T-COMMIT

n $ e : S
n $ spawnpeq : joinpSqρ

T-SPAWN
n $ e : S

n $ e : joinpSqρ
T-PREP

ni $ ei : Si i “ 1, 2 S “ seqpS1S2q

n1 ` n2 $ e1; e2 : S
T-SEQ

n1 $ e1 : S1 n2 $ e2 : Sρ2 S “ jcpS1, S2q

n1 ` n2 $ e1; e2 : S
T-JC

n $ ei : Sρi i “ 1, 2 S “ mergepS1, S2q

n $ e1; e2 : Sρ
T-MERGE

n $ ei : Ti i “ 1, 2 kindpT1q “ kindpT2q Ti “ S
kindpTiq
i

n $ e1 ` e2 : altpS1, S2q
kindpS1q

T-COND

Table 2: Typing rules

Definition 8 (Joint commit). Function jc is defined recursively as follows:

jcpS11
`n `k 7n1 , 7l1 l S12q “ jcpseqpS11

`n 7pn1 ` kq q, seqp 7pl1 ` l ˚ kqS12qq if l ą 0

jcp 7n1 , 7l1 l S12q “ seqp 7maxpn1, l1q l S12q otherwise

As our type reflects the behavior of a term, so the type of a well-typed program contains only a
sequence of single 7n element where n is the maximum number of units of memory used when
implementing the program.
Definition 9 (Well-typed). A term e is well-typed if there exists a type derivation for e such that
0 $ e : 7n for some n.

A typing judgment has a crucial property for our correctness proofs. It states that the typing envi-
ronment when combined with the type of the expression always produces a ’well-formed’ structure.
Theorem 1 (Type judgment property). If n $ e : T and n ě 0, then simp`n , T q “ 7m for some
m (i.e. simp`n , T q has the form of single element with tag 7) and m ě n where simpT1, T2q “

seqpjcpS1, S2qq with S1, S2 is T1, T2 without ρ.

Conclusion
We have presented a novel type system that can estimate the maximum memory used by transaction
logs for a minimal language whose features are multi-threaded and nested transactions. Although
the type system in this work have similar type structures to the ones in our previous works [1, 4, 5],
the semantics of type elements and typing rules are novel and the size information obtained from
well-typed programs are of practical value.

Our next tasks are to implement a type inference tool and to apply the core language to some real-
world languages.

References
[1] Marc Bezem, Dag Hovland, and Hoang Truong. A type system for counting instances of software

components. Theor. Comput. Sci., 458:29–48, 2012.
[2] Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. A transactional object calculus.

Sci. Comput. Program., 57(2):164–186, August 2005.
[3] Thi Mai Thuong Tran, Martin Steffen, and Hoang Truong. Compositional static analysis for im-

plicit join synchronization in a transactional setting. In SEFM 2013, volume 8137 of LNCS, pages
212–228. Springer Berlin Heidelberg, 2013.

[4] Anh-Hoang Truong, Dang Van Hung, Duc-Hanh Dang, and Xuan-Tung Vu. A type system for
counting logs of multi-threaded nested transactional programs. In Distributed Computing and In-
ternet Technology - 12th International Conference, ICDCIT 2016, Bhubaneswar, India, January
15-18, 2016, Proceedings, pages 157–168, 2016.

[5] Xuan-Tung Vu, Thi Mai Thuong Tran, Anh-Hoang Truong, and Martin Steffen. A type system for
finding upper resource bounds of multi-threaded programs with nested transactions. In Sympo-
sium on Information and Communication Technology 2012, SoICT ’12, Halong City, Quang Ninh,
Viet Nam, August 23-24, 2012, pages 21–30, 2012.

