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ABSTRACT

We consider the problem of fast acquisition in magnetic resonance
imaging (MRI). A recent breakthrough concept called compressed
sensing (CS) shows that sparse or, more generally, compressible sig-
nals can be recovered from a small number of linear random mea-
surements. CS, using random measurements, has also been success-
fully applied to MRI for fast acquisition. In a recent work, we have
preliminarily employed deterministic chaos in CS that potentially of-
fers a more practical and efficient CS framework. This paper adapts
chaotic CS to MRI acquisition. In particular, we use chaotic logis-
tic map for CS and adapt it to acquire the 2-dimensional MRI. In
addition, we numerically analyze the performance of the proposed
chaotic CS for MRI and show that it performs better random CS.

Index Terms— Compressed sensing, MRI, fast acquisition, de-
terministic chaos.

1. INTRODUCTION AND STATE-OF-THE-ARTS

In medical science and technology, Magnetic Resonance Imaging
(MRI) has revolutionized diagnostic imaging, thanks to the phe-
nomenon of magnetic resonance of tissue nuclei (e.g., the hydrogen
nucleus H) present in the object under imaging (e.g., the brain). In
principle, by exciting the object with a time-varying excitation RF
pulse, the resonance information of the nuclei can be picked up by
a receiving RF coil. We take the simple case of acquisition of a full
two-dimensional (2D) digital image (e.g., a brain slice) of the object
to explain how the image acquisition is done. During a series of RF
excitations, in which the 2D locations of points on the brain slice
are encoded, the receiving coil receives an analog MRI time signal
which contains the resonance information at all encoded locations.
The encoded locations are often represented in the so-called k-space
in which the changes of locations during the acquisition time form
a smooth trajectory in the k-space. A digital MRI signal is then ob-
tained by sampling the time and the k-space. The digital MRI image
is then obtained (reconstructed) by applying a reconstruction algo-
rithm on the digital signal to obtain the digital MRI image of the
brain slice; for example, we apply the 2D Fourier transform on the
digital MRI signal from the k-space to the pixel domain.

Fast image acquisition in MRI is important in order to enhance
image contrast and resolution, to avoid physiological effects or
scanning time on patients, to overcome physical constraints inher-
ent within the MRI scanner, or to meet timing requirements when
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imaging dynamic structures or processes. State-of-the-art tech-
niques for fast MRI are mainly in the form of parallel imaging in
which multiple coils are simultaneously used. Each coil acquires
data corresponding to a portion of the imaging object. There exists
some redundancy in the acquired data across all the coils. While the
acquisition time is inversely proportional to the number of coils, it is
this redundancy that can be exploited to reconstruct the final object
image. The reconstruction of the image can be done in the image
domain, the k-space domain or the k-t-space domain.

A recent breakthrough in mathematics and signal processing un-
der the name of compressed sensing (CS) shows that sparse or, more
generally, compressible signals can be recovered from a small num-
ber of linear random measurements [1, 2]. Exact reconstruction can
be achieved by nonlinear algorithms, using such as l1 minimiza-
tion [1] or Orthogonal Matching Pursuit [3]. In the context of signal
sampling, CS is seen as random undersampling. This method is im-
portant because many signals of interest, including natural images,
diagnostic images, videos, speech and music, are sparse in some ap-
propriate domain of signal representation. Among various applica-
tions of CS, it has recently been shown to be successfully applied to
MRI for fast acquisition by Lustig, Donoho & Pauly in [4]. In par-
ticular, random undersampling is carried out in the k-space. In other
words, by acquiring the image with a smaller number of measure-
ments as compared to normal full sampling, the speed of acquisition
can be enhanced. Note that if we combine CS and parallel imaging,
the speed will be further enhanced. Inspired by this work, further de-
velopments in the direction of using CS for MRI continues (see [5]
and references therein).

In CS, random measurement process is often used, providing a
mathematical convenience for proving exact reconstruction of the
signals. This naturally poses a question: can the measurement pro-
cess be designed deterministically? As an answer to this question,
recently, chaotic CS has been proposed in the form of a chaos fil-
ter by Linh-Trung et al. [6]. Chaos is aperiodic long-term behavior
in a deterministic system that exhibits sensitive dependence on ini-
tial conditions. The system is so nonlinear that the output quickly
becomes random-like. The proposed chaos filter was numerically
showed to perform signal reconstruction better than random filters
while enjoying a potential benefit of simple hardware design for
chaotic generator as opposed to random generator. In practice, a
“random” sequence is generated by a periodic pseudo-random gen-
erator, realized by a feedback shift register. A long register is needed
to make the period long for the sequence to be more “random”, and
hence a large storage capacity and logic circuits are needed [7]. In
this paper, we apply the method in [6] to MRI for fast acquisition
and compare it with the random CS method developed by Lustig et
al. [4].



The paper is organized as follows. In Section 2, we introduce the
principle of compressed sensing theory and MRI acquisition. Sec-
tion 3 presents our proposed method for MRI acquisition by chaotic
measurements. Simulation results to demonstrate the efficiency of
our method are presented in Section 4. Section 5 concludes the pa-
per with discussions on the results and remarks for future work.

2. BACKGROUND

2.1. Compressed sensing

Consider a discrete-time signal x ∈ RN and assume that x is K-
sparse in the N -dimensional space spanned by the set of N basis
vectors {Ψi}Ni=1, that is:

x =

N∑
i=1

Ψisi = Ψs, (1)

where Ψ = [Ψ1, . . . ,ΨN ] is the sparsifying matrix, and s =
[s1, . . . , sN ]T is the transform vector, containing exactlyK nonzero
coefficients with K � N . Examples of commonly used Ψ are
Fourier transform, Discrete-Cosine transform, and Wavelet Trans-
form. Note that when x is a time-sparse signal, i.e. sparse in the
time domain, then Ψ becomes the identity matrix. For simplicity
of presentation, we restrict ourselves to sparsity, rather than the
more general case of compressibility. In the framework of CS, x
is linearly acquired by an underdetermined system, represented by
a measurement matrix Φ. The obtained measurements y ∈ RM ,
M < N , are then given by:

y = Φx = ΦΨs = Θs. (2)

Given y, Φ and Ψ, the objective is then to faithfully recover
x (and hence s) from y with the smallest possible value of M . If
the sparsity information in x is still fully kept, though being hidden,
in y, exact reconstruction of s is feasible if we find a way to fully
restore this sparsity from y. It has been proved that if Θ satisfies
a sufficient condition called the Restricted Isometry Property, then
the sparsity information is maintained. A useful indicator for this
property is incoherence. Φ is incoherent with Ψ in the sense that
one cannot sparsify the other [8]. One way to ensure the incoher-
ence is to have Φ as a random matrix with Gaussian i.i.d. elements.
Under such a condition, s can be faithfully recovered from y when
M is such that cK log(N/K) < M < N , where c is some con-
stant, using various sparse approximation techniques, for examples,
l1-optimization based Basis Pursuit (BP) [1] or Orthogonal Match-
ing Pursuit (OMP) [3].

2.2. 2D-MRI acquisition

Consider the imaging of a 2D slice of the object in the 2D plane
{x, y}. Let m(x, y) be this image. The analog signal acquired by
the receiving coil is represented in a temporary image space, called
k-space, by the following imaging equation:

v(kx, ky) =

∫∫
m(kx, ky)e−j2π(xkx+yky) dxdy, (3)

where kx and ky encode the information of location along the x and
y directions of the image respectively, and k = {kx, ky} is said to

Fig. 1. k-space of a brain MR image. Left– full k-space showing the
concentration of encoded information at the origin. Right– Sampling
of the k-space along Cartesian trajectory, with linear fullsampling.

lie in the k-space. Clearly, the image m(x, y) can be obtained by
applying a 2D-Fourier transform on v(kx, ky). Note that, the time
dimension is implicitly included in kx and ky . Upon sampling the
k-space, we have the discrete version of (3) as follows:

v(kx, ky) =

Nx−1∑
nx=0

Ny−1∑
ny=0

m(nx, ny)e−j2π(kxnx+kyny), (4)

whereNx andNy are the numbers of pixels along x and y axes of the
image. There are various ways of defining kx and ky , depending on
the k-space trajectory in use. A common trajectory for 2D imaging
is the Cartesian trajectory used in this paper. Fig. 1 presents the k-
space of an MR image of a brain slice, which is shown in Fig. 3. We
see that most of the encoded information concentrates around the
origin of the k-space. In practice, the density of the k-space follows
a power law. We can see from Fig. 1 that most encoded information
is concentrated at the origin. In practice, the density of the k-space
follows a power law.

2.3. Random CS for MRI using Gaussian random measure-
ments

We have just mentioned that the density of the k-space follows a
power law. For simplicity, we use Gaussian random measurements
for undersampling in the k-space. The number of k-space samples
is much smaller than that by linear fullsampling as described above.
MRI reconstruction from the k-space samples is performed by Non-
linear Conjugate Gradient (NCG) [4] (see Algorithm 1). Suppose
the image of interest is a vector m. The reconstructed image, m̂, is
obtained by solving the following constrained optimization problem:

m̂ = arg min
m

{
‖Fum− y‖22 + λ ‖Ψ‖1

}
subject to ‖Fum− y‖2 < ε,

(5)

where y are k-space measurements, Fu is the undersampled Fourier
operator associated with measurements, Ψ is the sparsifying trans-
form operator, and λ is a data consistency tuning constant.



Algorithm 1 – Nonlinear conjugate gradient [4]
Inputs:

y, Fu, Ψ, λ
Optional parameters:
G: smallest gradient magnitude (default: 10−4)
I: maximum number of iterations (default: 100)
α, β: line search parameters (default: α = 0.05, β = 0.6)

Initialization:
k = 0; m = 0; g0 = ∇f(m0); ∆m0 = −g0;

Iterations:
while (‖gk‖2 < G or k> I)
t = 1;
while( f(mk + t∆mk) > f(mk) + αt.Re(g∗k∆mk))

t = βt;
mk+1 = mk + ∆mk; gk+1 = ∇f(mk+1);

γ =
‖gk+1‖22
‖gk‖22

; ∆mk+1 = −gk+1 + γ∆mk;

k = k + 1;

3. PROPOSED CHAOTIC CS FOR MRI USING LOGISTIC
MEASUREMENTS

In a recent paper [6], we proposed to design the measurement ma-
trix whose elements are generated by chaotic processes rather than
random processes. Chaos is aperiodic long-term behavior in a de-
terministic system that exhibits highly sensitive to initial conditions.
The system is so nonlinear that, given appropriate initial conditions,
the output quickly becomes random-like. For example, with input
x(n), the output of a choatic system called logistic map is given by

x(n+ 1) = αx(n)[1− x(n)]. (6)

Under suitable conditions (e.g., α = 4, x(0) = 0.3), x(n) sequence
has the chaotic property. Fig. 2(a) illustrates the time-series of the
logistic map.

In [6], the chaotic measurements are used to acquire one-
dimensional sparse signals in the form of a chaos filter. After
that, the reconstruction is performed by the OMP algorithm. There,
the simulated results indicated that the chaotic approach outper-
formed the random approach in terms of the probability of exact
reconstruction.

In this paper, we use chaotic measurements for MRI acquisi-
tion. We generate the values of kx and ky by a logistic map process,
and a couple of kx and ky will determine a co-ordinate in k-space
that will be acquired. However, the distribution of information in
k-space concentrates nearby the origin and decays when kx and ky
increase. Therefore, we convert the distribution of logistic map se-
quence to Gaussian distribution; its time-series and histogram are
shown on Fig. 2(b,c). Once the MRI data have been acquired, the
reconstruction is performed by the NCG algorithm. Our scheme can
be summarized in Algorithm 2.

4. SIMULATIONS

In the simulation, we use a 512 × 512 brain MRI for input data,
undersampling is performed in the k-space by the logistic map. We
choose α = 4 and x(0) = 0.3. Fig. 3 acquisition of a brain slice
(Fig. 3.a) using chaotic CS with compression ratios of 0.15 (Fig. 3.b)

0 50 100 150 200

0

0.5

1

(a) Time-series of logistic map.

0 50 100 150 200
−10

0

10

(b) Time-series of Gaussian converted logistic map.

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

(c) Normalized histogram of Gaussian converted logistic map.

Fig. 2. Logistic map.

and 0.25 (Fig. 3.c). It can be seen that not only the chaotic CS was
successful in acquiring the brain image but also, with a compres-
sion ratio of around 0.35, the reconstruction quality was reasonable.
Equivalently, the speed of acquisition can be enhanced by around 3
times as compared to using linear fullsampling of the k-space.

To compare the efficiency of the design of chaotic measure-
ments, we acquire brain MRI data for a series of compression ratios
by measurements which are both chaotic and random. Then, we de-
termine, for each compression ratio, the error in the reconstructed
image as compared to the original image. Suppose that m is an
N ×M original image and m̂ is the reconstructed image. The error
can be defined as

e =
1

N ×M

N∑
i=1

M∑
j=1

|mij − m̂ij | . (7)

Fig. 4 shows the results of this comparison. We can see that, for
compression ratios that are less than 0.2, the image reconstructed by
chaotic CS has smaller mean-squared-errors than that reconstructed
from random CS.

Algorithm 2 – Chaos-based CS for MRI acquisition
Step 1: Generate kx, ky that are Gaussian logistic sequences. The
number of kx, ky are based on pre-defined compression ratio, r =
M/N .
Step 2: Determine co-ordinates in k-space based on kx, ky and
store as a mask.
Step 3: Acquire digital data in k-space based on the mask and
store them in a vector y.
Step 4: Reconstruct image by NCG (Algorithm 1).



(a) Original brain slice

(b) CS with r = 0.15 (c) CS with r = 0.35

Fig. 3. Reconstructed images by chaotic CS.

5. DISCUSSIONS AND CONCLUDING REMARKS

Based on the work of [6] using chaotic CS for 1D sparse signals, we
presented an application to fast acquisition of 2D brain MRI images.
Our results confirm the success of using chaotic measurements for
MRI acquisition. In addition, chaotic measurements are generated
by a deterministic process; hence, we can change and control them
by changing initial conditions. This property will be an important
advantage when we want to design a hardware system implementing
CS for MRI. Lastly, this approach outperforms the random CS pro-
posed by Lustig, Donoho & Pauly [4] in terms of error performance
in image reconstruction.

The reason for better performance of chaotic CS as compared
to random CS is currently unknown and, thus, require further inves-
tigation to get more insight. In addition, the logistic map is only a
simple chaotic process within a large set of processes well developed
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Fig. 4. Performance comparison between chaotic CS and random
CS.

in chaotic theory. Properties of different chaotic processes and the
relationship between these and exact reconstruction conditions in CS
should be investigated.

Current CS algorithms are made successful due to the prior in-
formation of sparsity, which is inherent in natural signals and im-
ages. For examples, MR angiography images viewing blood ves-
sels are sparse in the pixel domain and MRI-scanned brain slices are
sparse in the wavelet domain. However, few research results in the
context of CS are proposed with additional prior information. These
may take the form of hard constraints motivated by the physics of
the application, for example the distribution of k-space represent-
ing the time-varying gradients in an MRI scanner decays by a power
law. Another form of prior information is the structural properties
of the data, such as angiograms have smooth curves and tree-based
representation. Generally, we would be interested in finding out the
relationships between structures of chaotic processes and structures
of the data.

Interestingly, much development in CS is currently focusing on
the theory of CS and the design of efficient algorithms for acquisi-
tion and reconstruction of source signals/images based only on one
sensor; this can be named as single-channel compressed sensing. An
extension to multi-channel CS is not only natural but also practical.
In the context of MRI acquisition, due to the need of fast imaging,
several well-known parallel imaging techniques have been deployed
in state-of-the-art MRI scanners (see [5] and references therein). Our
proposed chaotic compressed sensing can be combined with parallel
imaging methods to achieve further gain in the speed of MRI data
acquisition.
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