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Abstract—The demand of navigation and guidance have
been urgent tor many vears. In fact, INS is daily used in
controlling flight dyvnamies. Nowadays. with the strong
growth of Mlicro-Electro-Mechanical-Syvstem (MEMNS)
technology, the Inertial Navigation Svstems (INS) are
applied widely. However, there are existing errors in the
accelerometer and  gvroscope signals  that cause
unaceeptable drifts. There are two kinds of noise in the
INS:  deterministic  and  stochastic  errors.  The
deterministic  noises are wusually eliminated by the
carefully calibration process but the stochastic noises are
always  difficult to treat. In this paper. we have
determined successfully the characteristies of the MENS
sensors” noise by analyzing the Allan variance of the
experiment data. After characterizing the IMU errors, the
information of these noises is brought to the Wavelet
Multi-Resolution Analysis (WMRA) block in order to
improve the sensors” signal-to-noise ratios, remove sensor
errors that are mixed with motion dvnamics, and provide
more reliable data that is applied directly to the Noise
Eliminating Block (NEB).

Reywords: Nuvigarion, 1AL INS. MEMS. Aflun variance,
Nalman

I. INTRODUCTION

Navigation and  guidance arc  very important
problems for marine. acronautics and space technology.
In such systems, Inertial Measurement Unats (IMUs) are
widely used as the core of the Inertial Navigation
Svstems (INS) [1]. In principle, an IMU consists of
gyroscopes and accelerometers that measure angular
velocities and accelerations m three dimensions. Due to
the strong growth of MEMS technology. the INS is
widely applied to navigation and guidance of aircraft
moevements. However, there are exisung crrors in the
accelerometer  and  gyroscope  signals  that  cause
unacceptable drifis and bias. These errors are classified
into deterministic errors and stachastic errors [2].

Kalman filter 1s often used for integrating Inertial
Navigation System sensors with GPS measurements. In
this case, the parameters of those errors must be
specified. To elimnate the deterministic crrors, we can
specity them quantitatively by calibrating the deviee. It
is, however, more complex in determination of the
stochastic errors. In this paper, we have determined
noise parameters of both deterministic and stochastic
errors of MEMS based IMUs. For the deterministic
errors. the calibration process is not so difficult. For the
stochastic errors, we have tried two different methods
PSD (Power Spectrum Density) and Allan variance.
The PSD 15 known as a classical method to analyze
signal, while Allan variance 1s a new method that can
show more information than the PSD. In this paper. the
Allan variance method was applied to give us a reliable
noise model that is applicd directly to the Kalman
Filtering Block (KB},

The Wavelet Multi-Resolution Analvsis (WMRA) Is
studied and applied as a proposed tool to improve the
sensors” signal-to-noise ratios. remove Sensor errors
that are mixed with motion dynamics, and provide more
reliable data to the KF based MEMS-INS/GPS
integration module.

. MEASUREMENT AND CHARACTERIZATION
In this paper, the MICRO-ISU BP3010 (scc Fig. 1)
is used to measure the six degree of movement. [t

consists of three ADXRS300 gyros and three heat
compensated ADXL210Y  accelerometers  [3]. The
measurements are synthesized by micro-controliers and
transmitted out via the RS8232 interface. The umit
transmits output data as angular incremental and
velocity incremental data in serial frames of 16 bytes at
64 Hz.



4. Dererministic crrors

Deterministic errors are corrected by accelerometer
and gyroscope calibrations. In the calibration procedure
of the accelerometers. the earth gravity has been
utilized. In this method, the IMU is initially positioned
so that the Z-axis of the IMU aligned with the location
level frames U-axis. the Y-axis of the IMU aligned with
the N-axis and the X-axis aligned with the E-axis (Fig.
2). Tt means that the gravity component will affect only
the accelerometer along Z-axis by an amount of +g (g =
4.8 m’s’). I the IMU 15 then rotated 180" around the Y-
axis. a new measurement could be taken when the
accelerometer along Z-axis senses the negative gravity
(-g).

Fig [ The MICRO-ISU BP3010) — A MEMS unit

When the IMU with the 7 accelerometer aligned
with the U-axis in the navigation tframe. the output of
the accelerometer 1s:

1 .
2’y = v (ay, + g (h
Where «, . «, and «" are accclerometer bias.

i
accelero-meter scale factor, and accelerometer output in
body frame coordinates, respectively.

Rotating the IMU 180" around perpendicular axis

and  making another measurement will give the
following output of the accelerometer:
2 by o
Zal )y e, —(a; )y (2)

Salving set of (1} and (2) above, we can estimate of
the accelerometer bias and scale factor;

:][u,{')-f-:‘(a,'f’)

3

(4)
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The collecting data process is performed for about
10 minutes for cach position, then the data is averaged
: 2o ) ‘ -

10 give = (uf) and z (ux ) I'wo equalions (4) and (5) arc
tinally used to extract the accelerometer bias and scale
factor.  Calibration results showed that the
accelerometer along Z-axis has bias of 0.1330 m/s™ and
scale factor of 0.0041.

The gyroscope calibration procedure is performed
by using a precise rate table which contains scquence of
ditferent rates for cach dimension has been used. The
IMU is initialiy positioned in center of rate table and
cach rate is run approximately tor [ minutes.

The error model equation of the gyro is:

Wo = B+ (5 + D0 +w)

(3)

Where 3w, 18 nominal gyro angular rate at table
angular rate w; [deg/h, rad/s].

w, _average table angular rate for data scgment j
[deg/h, rad/s].

., . sensed component of earth rotation rate [deg/h.
rad/s].

5;- gyro bias (deg/h, rad’s].

B - gyro scale factor.
From (3). we have:
(W — Wya b= () =)
[;H = mi — ] - (6)
(v, —ws)
Wop T Wen Wty + 2w,
B :_,171\7(/}” +1)—1..4~_L- (7)

2

2

We can then estimate gyro bias scale factor based on
(6) and (7). Results showed that the Z-axis gyro has
bias of 0.3172 “/s and scale factor ot -0.0070.

B, Stochastic IMU ervors

Some stochastic errors that affect the Initial
Navigation Systems are listed as follows [4.5].
« (Quantization noise

Quantization noise is made from encoding the
analog signal into digital form. This noisc is caused by
the small difference between the actual amplitudes of
the sampled signal and bit resolution of A-I> Converter.
We can reduce quantization noises by improving
encode methods, adjusting sample rate, or increasing bit
resolution.

» White noise
White noise can be a major source of the IMU error
and it has a censtant power spectrum over whole



frequency axis. Angle random walk (for gyroscope) and
velocity random walk (for accelerometer) are caused by
the white noise.

-

Random walk

This is the random process of uncertain origin,
possible of a limiting case of an exponcnually
correlated noise with long correlation time. The
gyroscopes are affected by angular rate random walk.
while the accelerometers are affected by acceleration
random walk.

Ea
.

Dangular rate
Slwhate nouse

-Angle rate
randorn walk ]

standard dewvtaion

=

Adlan

s s
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randem walk,

Averagng tune (8
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Fie 20 The stundard slopes of the Allan standard
deviation of gyroscopes (a) and accelerometers (b)

* Flicker noise

Flicker noise is low-frequency noise term that shows
as bias fluctuations in data. This noise 1s caused by the
electronics or other components that are susceptible to
random {lickering.

In order to analyze stochastic IMU errors. we have
utilized the Allan variance method. [t 15 a powertul tool
for analyzing and charactenizing data. and ftor stochastic
modeling. The Allan variance technique has been
originally  developed  for the  charactenization,
estimation. and prediction of precision clocks and
oscillators in the time domain. The different types of
noise associated with inertial sensors can be revealed
via Allan variance method.

The Allan wvariance is statistical measure o
characterize the stability of a time-frequency system
[6]. The PSD can only extract white noiwse standard
deviation. In contrast, using the Allan variance. several
other error parameters can be comprehensively derived.

The basic 1dea of the Allan variance 15 to take a long
data sequence and divide it into scgments based on an
averaging time 7 to process, let give a sequence with
Nelements v, . k= 0. 1,..., N-/

5

Then, we define for cach n=1/ 2 3., MSN/2 a
new sequence of averages of subsequence with fength
"

.rrri - -)‘u,-‘V] +..F .Vw’*n—]

v, () ; (8)

i= 0.1,..,.L—1J—1

If the sampling time is A7, the time span within an

Where

averaged sequence of length noist = nAr. The Allan
variance, for a given subsequence length n,1s detined
as:

N

Z (.\';‘l(n)*,\‘,(ﬂ))l (%)

;=4

A

S

NEIR
N H

The typical slopes of the Allan variance for the
ayroscope and the accelerometers in log-log plot are

shown in Fig. 3a and Fig. 3b with data collected from
the IMU ISU BP30310 during an hour.

To extract the noise parameters, we need to fit the
standard slopes in Fig 2. For example, if data contains
white noise, the slope -1/2 will appear in the log-log
plot of the Allan standard deviation.

The log-log plot of the Allan standard deviation 11
Fig. 3a indicates the presence of angular rate
quantization noise (slope -1), angular rate white noise
(slope -1/2). angular rate random walk (slope 1.2).
while angular rate flicker noise (siope 0) is absent. This
result 1s fully consistent with that obtained by the PSD-

AT N)
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Figure 3.b shows the log-log plot of the Allan
standard deviation for the accelerometer. This shows
the presence of accelerometer quantization noise (slope
-1 aceeleromceter white noise  (slope  -142),
accelerometer flicker notse (slope 0), and acceleration
random walk (slope 1:2). This result 1s well consistent
with that {rom the PSI) plot. In addition, this shows the
presence ot acceleration trend (slope 1) that is unable to
be indieated by only using the PSD plot,

The white noisc coefficient is obtained by fitting the
slope line atr=1. Table 1 shows the estimated noise
coefficients for the gyros and the accelerometers.

Character x means that the sensor lacks the error or
this error 1s much smaller than the others. Q,. Q. B. K
and R denote quantization noisc. white noise, {licker
notse. random walk and trend noise, respectively.

L. APPLICATION TO WAVELET MULTI-RESOLUTION
ANALYSIS

Fig. 4. Comparison of the raw measurement and
WARA: o the raie table

Adter characterizing the IMU ¢rrors, the information
of these noises is applied to the Wavelet Multi-
Resoluton  Analysis (WMRA) block in order to
tmprove the sensors’ signal-to-nolse ratios. remove
sensor errors that are mixed with motion dynamies. and
provide more reliable data to the KF based MEMS-
INS/GPS integration module [7. 8], Applving WMRA
to the MEMS inertial signal comprises two main steps.
The first involves eliminating the high frequency sensor
noise using wavelet de-noising methods. The sccond
step then follows by specifying a proper threshold
through which the motion dynamics can be scparated
from the short-term and long-term sensor errors as well
as other disturbances.

The output data rate of both linear and angular
MEMS inertial sensors was 04 Hz. After applying
wavelet analysis 1o all inertial sensors. their
measurements  were  processed by the KF  based
INS/GPS integration algorithm. The Daubechies “db&"
wavelet was applied first with hard then with soft
threshold — criterion.  Fig. 4 compares the raw
measurements ot the Ax accclerometer to the same



measurements  after applving the proposed WMRA
technique in the case IMU is placed on the precise rate
table of 10 “s. Fig. 5 shows the signal obtained from
Ax aceelerometer when the MU is placed on the
vehicle for outside experimentation. Atter processing
by WMRA. the short term noise is eliminated. in both
it can be seen that the stgnal was
etficiently de-noised. while all sharp transition details
of the true signal remain,

Fig. 4 and Fig. 3.

Fig. 5. Comparison of the raw measurentents and
WMEA: on the road

[

empioyed widely in many applications while INS is
daily used in controlling flight dynamics [9]. Recently.
thank to the development of MEMS techinology. the
IMUs become smaller, cheaper and more precise,
However, the position crror of an INS increases rapidly
with navigation due to the integration of measurement
crrors in the gyroscopes and accelerometers [10]. In
order to make the corrections, there appears a new trend
in navigation and guidance domain: it consists of the
integration of INS and GPS altogether. Integrating these
two methods can improve the performance of the
system and reduce concurrently the disadvantages of
both INS and GPS.

After Allan variance and WMRA processes. the
more reliable data is brought to the KF based MEMS-
INS/GPS integration module.

The update from the INS was taken every
0.013625s. the GPS update was taken every s and the
KF was run every 0.3s to achieve better accuracy.
Every alternate 0.5s instant. when the GPS update is not
available: we have to predict the error state by using the
most recent GPS update as the measurement. ie. the
GPS update is taken constant for that wholc one second.
This alse comes in use when there are GPS outages.

For the experiment of the IMU on road [11]. GPS
and the data acquisition system were installed in a
vehicle. The vehicle was driven for 12 minutes in
a 5 km trajectory. [nitially the vehicle was at rest.
with the engine on. for about 43 scconds. This
stationary data was used for ecalibration and
alignment purposes.

The 2-D trajectory is presented in Fig. 6. This
figure shows the position of the vehicle along
North and East direction on the Earth instead of
the latitude and the longitude. The reason is that
we can  prevent  numerical instabilities  in
caleulating the Kalman gain. It can be seen the
INS/GPS trajectory supported by KF It can be
seen the INS/GPS trajectory supported by KF
{(solid curve) follows the GPS one (dot curve)
with small error for a quite long trip.

Fig. 6. Comparison of the GPS measurements and
Kalmun outpur

IV APPLICATION 10 INS/GPS SYSTEM

The demand of navigation and guidance has been
urgent for many years. In fact. GPS have been

[k
¥

V. CONCLUSION

This  paper has succeeded in  specifving  the
parameters of the IMU errors. which is a necessary step
when applying error-processing algorithms for the INS.
Estimation of the stochastic errors is more complicated
than for the deterministic ones. The Allan variance



method has been used here to estimate the stochastic
errors of the IMU. The extracted results will be used as
the parameters in WMRA and Kalman filter for the
INS-GPS ntegrated system. The experimental results
have shown that the initial calibration and alignment is
accurate cnough 1o allow navigation with IMU sensors
for extended period of time with low dead reckoning
CITOrS.
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