
DSMAV: An Improved Solution for Multi-Attribute

Search Based on Load Capacities

ThanhDat NGUYEN, Claudiu Vasile KIFOR

Faculty of Engineering

Lucian Blaga University

Sibiu, Romania

ntdat@qnu.edu.vn, claudiu.kifor@ulbsibiu.ro

HoaiSon NGUYEN

Faculty of Information Technology

VNU University of Engineering and Technology

sonnh@vnu.edu.vn

Abstract— DHT (Distributed Hash Table) such as CHORD or

PARTRY facilitates information searching in scalable systems.

Two popular DHT-based approaches for range or multi-attribute

search are to rely on attribute-value tree and a combination of

attributes and values. However, tradeoff between a load

balancing mechanism and query efficiency is a challenging task

for such information searching systems. In this paper, we

propose improved algorithms for a system called DSMAV in

which information resources are distributed fairly among nodes

and found based on multi-attribute queries in a small number of

hop counts. Our system creates identifiers from resource names,

each of which is a combination of attribute-value pairs (AV

pairs). In order to overcome problem of load imbalance among

nodes because of frequent appearance of AV pairs in many

resource names, we control the quantity of information resources

distributed to a node based on load capacity of each node.

Moreover, periodical updating processes on a node enable our

load balancing mechanism to be maintained accurately. As a

result, our improvement evaluated by simulated results depicts a

good degree of load balance as well as query efficiency.

Keywords: DHT, multi-attribute search, load balancing,

threshold values, load capacity.

I. INTRODUCTION

These days, information searching is a popular habit of
many people. A person often update his or her knowledge by
using connectable devices such as mobile phones, tablets and
computers, or even smart televisions and refrigerators. Hence,
information share and search systems with useful properties of
scalability, efficiency and fault-tolerance are necessary for the
requirement. Recently, DHT-based approaches such as
CHORD [2], and PASTRY [3] offer promising solutions for
the systems such as usage of Chord in Wireless Mess Network
[1] or a heavily modified OpenChord version in Online Social
Networks [12], in which information content can be distributed
and searched exactly.

In particularly, a DHT-based CHORD network provides
one operation [4]: given a value (i.e. piece of information or a
representation of an information resource), it is mapped to a
key by using a consistent hashing function. The value and key
are sent to the node responsible for the key. In order to route
messages, each node stores routing information of about O(log
N) links to its neighbor nodes, where N is the number of nodes
in the network and uses no more than O(log N) routing
messages to find the location of any node responsible for a key.
However, the operation is challenged by two problems. First, in

DHT-based networks the node, which is responsible for a key,
stores all values corresponding the key. If the key is frequently
queried, the node may have a high load compared to others.
This situation causes a load imbalance of DHT-based network.
Second, the pure DHT-based information search system is
challenged by complex queries in distributed manner such as
range or multi-attribute queries.

In general, there are two typical solutions for the problems.
The first approach is to base on a combination of AV pairs in
order to limit the number of information resources in each
node. In [5] [6], a content name is described by a set of AV
pairs. One or several AV pairs are then combined to assign to
DHT keys, which are used to locate nodes responsible for the
content name. The second solution utilizes AV tree as a
representation of an information resource [7] [8] [9] [10]. The
main idea of the solution is that each strand of the AV tree is
hashed to DHT keys. Information content is then distributed to
target nodes that take responsibility for the keys. However, a
tradeoff between load balance and query efficient is one of the
challenges found in these solutions. Load imbalance caused by
the existence of common AV pairs can be found in [7] [9],
while a number of solutions [5] [6] [8] [10] suffer a high cost
for maintaining load balance or executing queries.

In [11], we presented a solution for multiple-attribute
search (SMAV). In the solution, information contents are
distributed on the basis of DHT keys, which is created by one
or a combination of AV pairs. The number of information
contents stored in a node is limited by a pre-define value Nmax.
In order to find information contents, our system maintains
key-to-CN and key-to-subkeys mappings. Hence, SMAV can
keep a good degree of load balance. Yet, only one value Nmax is
applied to all nodes in a DHT network, where load capacity of
each node is different in reality. Hence, the performance of
SMAV depends on how Nmax is chosen. The smaller Nmax, the
bigger the number of hop counts for forwarding query
messages. In contrast, the bigger Nmax the higher number of
overloaded nodes.

In this paper, we propose an improvement for SMAV [11]
in order to facilitate implementation and enhance a degree of
load balance as well as query efficiency in a DHT-based
system. Our improved solution called DSMAV enables to
define various threshold values for nodes so that the number of
content names does not exceed load capacity of each node.
Moreover, it considerably limits the number of mappings

7

mailto:ntdat@qnu.edu.vn
mailto:claudiu.kifor@ulbsibiu.ro
mailto:sonnh@vnu.edu.vn
admin
goodStamp

stored in nodes and utilize improved algorithms during
information distribution and search. Finally, we also present
the result of simulations in more detail with the consideration
of load capacity of nodes. This paper is organized as follows.
We present our improved solution in Section 2. In Section 3,
we present and evaluate our work and show the effectiveness
of our work by simulation results. Related works are
introduced in Section 4. Section 5 is to conclude our paper.

II. SYSTEM MODEL

A. Overview

Our DSMAV system is built on top of a ring-based DHT
network and implements our improved algorithms of
information distribution and search.

DHT algorithm is used to define an n-bit ID/key space from
0 to 2n-1. IDs are assigned to nodes while keys are assigned to
representations of information resources. Thereby, Node IDs
and keys reside in the same identifier space and each of them is
the result of a consistent hashing function such as SHA (Secure
Hash Algorithm). The use of the hashing function is necessary
for load balancing purpose of the DHT-based network. A
DHT-based protocol such as PARTRY [3] or CHORD [2] is
implemented in order to organize nodes and route messages.
Nodes are therefore arranged into a virtual ring-shaped
network, and each node is responsible for storing a portion of
the n-bit key space from its counter-clockwise neighbor node
to its own identifier [10].

In order to support multiple-attribute queries, the proposed
system represents information resources such as data files, text,
description of products, or pieces of information as content
names. A content name (CN) is a representation of an
information resource and is formed from a set of AV pairs. For
example, a CN of a laptop can be represented as follows:
(Manufacturer = “XXX”, Model = “YYY”, CPU = “2.0GHz”,
RAM = “4.0 GB”, HDD = “256 GB”), where Manufacturer,
Model, CPU, RAM, HDD are attributes, and Manufacturer =
“XXX” is a pair of attribute-value. This representation is not
useful only to describe semantic of information resources but
also to support multiple-attribute queries. The result of a query
involving various AV pairs (e.g. Manufacturer = “XXX”,
RAM = “4.0 GB”) must include all content names that contain
all the AV pairs in the query.

An information resource is represented by a CN, which is a
set of Attribute-Value pairs, CN = {(a1, v1), (a2, v2)... (am, vm)}.
Each AV pair {(ai, vi)} is hashed into a key ki by using a
consistent hashing function, such as SHA-1.

We maintain a load balancing and query efficiency through
hierarchical key generation approach and a threshold value of
each node. Keys are organized in a hierarchical structure
consisting of multiple levels of key such as level-1 keys, level-
2 keys… level-h keys. A level-h key is hashed from h pairs of
common AV pairs of a CN. For instance, a level-2 key is
created by combining two common AV pairs (a1, v1) and (a2,
v2) into a hashing function h(a1, v1, a2, v2). A level-h key is
generated if the total of CNs holding an AV pair exceeds the
load capacity of a node. Thereby, the AV pair becomes a
common AV pair, and its corresponding key is also called a
common key. Moreover, we propose a formula (1) of a

threshold value to limit the number of CNs (NCN) of each key
in a node to the threshold value of the node.

For a key, its common status is controlled by two flags
(Flag and ComFlag) that are kept in a mapping table of keys
and CNs (key-to-CNs mapping) in the node responsible for the
key (Table 1). A key’s ComFlag is used to check if the key has
ever been common one or not while Flag is used to check if
NCN of the key exceeds the threshold value of a node or not. A
new key’s ComFlag and Flag are always initialized by “False”.
If NCN of the key is over the threshold value of the node
responsible for the key then the key’s flags are changed to
“True”. If ComFlag is “True” then the key is always a common
key even though the key’s Flag can be changed to “False” in
the process of periodical updating a node’s threshold value.
ComFlag with “True” also reveals that mappings between key
and level-h keys (h>1) have been created for the key. We
supplement ComFlag in order to maintain integrity and
accurateness of mappings in whole DSMAV system.

Simply, a node distributes a CN to a few of nodes in
DSMAV system through keys called distribution keys. First of
all, each AV pair split from a CN is hashed to a key. If the key
is a common one, it would be combined with other keys to
create a new distribution key. Otherwise, it is used as a
distribution key. Then, the CN can be distributed to the nodes
that take responsibility for the distribution keys. This means
that several replications of the CN can be created and stored in
whole DSMAV system. Information of a distribution key and
CN, as well as a distribution key and other keys are stored in
mapping tables of each node. In order to search the CN, a node
must create a query name that contains at least one key
corresponding to an AV pair in the CN and sends to the node
responsible for the key.

If a key becomes a common key, the node responsible for
the key can store more CNs than its load capacity. The node
can be overloaded and several CNs can be lost because the
overloaded node cannot store new CNs more. The node can
cause problems of querying performance. Hence, in this article,
we propose a formula of threshold values and improved
algorithms of distribution and search based on the load
capacity of every node. Our improved system can archive
advantages as the follows:

A good degree of load balancing: A CN will be distributed
calculatedly to a few of nodes. NCN stored in a node is less than
the node’s load capacity. The common AV pairs are stores in
various nodes.

Efficient Search: Our improved system reduces
significantly the lookup time by limiting the number of hop
levels of a query. A query can find its all CNs at most three
hops. Furthermore, because the number of overloaded nodes is
diminished considerably, the rate of successful queries is high.

B. Formula of Dynamic Threshold Value

DSMAV system limits NCN corresponding with each key at
a node based on threshold values. A threshold value is
specified for each node based on current status information of
the node involving its load capacity, the number of created
keys and NCN stored in the node.

8

Assuming that Np is the maximum number of CNs that a
node is capable of storing (i.e. the load capacity of the node)
and Nk is the number of keys created and stored in the node, we
define a threshold value Nth for the node as follows:

 (1)

When NCN corresponding to a key stored in a node is over
Nth, the key is considered as a common key. Np can be
specified based on the configuration of a node such as storage,
bandwidth and the size of information resources.

By the use of a threshold value for a node, we can limit the
total number of CNs stored in a node to be less than the load
capacity of the node. For example, assume that a load capacity
of a node A is 100; the number of created keys in node A is 10.
Hence, node A’s threshold value is 10. It means that each key
managed by node A, can receive 10 CNs in maximum before
the key becomes a common key.

The threshold value for a node may change frequently due
to the change of the number of keys Nk stored in the node.
Hence, we create flags to check the status of Nth corresponding
to Nk and update Nth periodically based on the number of
existed CNs corresponding to each key stored in a node. The
flags are stored in mapping tables of each node.

C. Updating Threshold Value Periodically

In CHORD protocol, every node runs Stabilization process
periodically in order to keep the node’s successor pointers up
to date. Basing on this progress of each node, we also update
the threshold values and flags in the key-to-CNs mapping table
in two steps.

Step 1. A threshold value is updated based on formula (1).
A periodical updating progress in a node is done as follows:
Firstly, the updating node counts the number of keys Nk stored
in the node. It also checks its key-to-CNs mapping table to find
the maximum number NCNmax of CNs corresponding to a key.
Secondly, the node checks if Nk ∗ NCNmax is over Np or not. If
yes, the threshold value is assigned by Np/Nk. Since, the
threshold value may be updated by a new value. Basing on the
updated threshold value, step 2 is fulfilled.

Step 2. The flags in the key-to-CNs mapping table are
updated. If NCN of a created key is over the threshold value Nth,
the key’s Flag becomes “True”. Otherwise, Flag is assigned by
“False”.

In a node, if a threshold value Nth is changed, the status of
every common key can be changed. For example, assuming
that a node’s Nth is 10 and the node contains a common key k,
which has been mapped to 14 CNs. After a periodical updating
process, if Nth would be updated to 15, the common key k
would become an uncommon one. Next, supposing that if Nth
is updated to 12 after another periodical updating process, the
uncommon key k becomes a common key again. This affects
seriously the integrity of mappings as well as the query
algorithm. Thereby, the common status of a key need to be
kept correctly during updating a threshold value of each node.

D. Improved Distribution Algorithm

Assuming that an information resource represented by a
content name CN need to be distributed to DHT-based network
through a node called a distribution node. The distribution node
first generates keys ki (i=1..m) from each pair {ai, vi}.
Improved distribution process is fulfilled in two steps (Fig. 1):

Step 1: First of all, the distribution node sends messages to
nodes responsible for each ki and check the common status of
ki. Information of ki can be found in the node responsible for ki

as in Table 1. If ki.Flag is “False”, ki is a distribution key,
otherwise, it is a common one. Next, the distribution node
sends content messages comprising CN and ki, and key ki-to-
CNs mapping information to each node responsible for each
distribution key ki. If each distribution key is a level-2 key then
mapping information of a level-1 key and the level-2 key is
kept in the node responsible for the level-1 key. Otherwise, all
mapping information of the level-2 key and level-h keys (h>2)
is kept in the node responsible for the level-2 key. Mapping
information of a level-1 key and level-2 keys or a level-2 key
and level-h keys (h>2) are store in the key-to-level-h-keys
mapping table (Table 2).

TABLE 1: KEY-TO-CNS MAPPING TABLE

Distribution

key

Information

Resource

Content

number

Flag ComFlag

K1 CN1, CN2, …, CN10 10 True False

K2 CN1, CN 2 2 True False

… … … … …

A node that receives a content message stores content of the
message in its database. Mapping information of key k and CN
is stored in the key-to-CNs mapping table and NCN of the key k
is increased. If NCN exceeds the node’s threshold value, the
key’s Flag and ComFlag are assigned to “True”.

TABLE 2: KEY-TO-LEVEL-H-KEYS MAPPING TABLE

Key Level-h keys (h>1)

K1 L2K1

K2 L3K1, L4K1, …

… …

Step 2: If there exists a list of p1 common keys (p1<=m),
there are two cases. In the first case (p1>1), new level-h keys
(h>1) are created by hashing h-1 common AV pairs with one of
remaining common AV pairs from CN. Case 2 (p1=1), if there
exists a list of p2 distribution keys (p2=m-p1, p2>0), a new
level-h key is created by hashing h-1 common AV pairs with
one of remaining AV pairs, which NCN is biggest. The first step
is repeated with level-h keys until there is no common key.

Thereby, CNs and mappings are stored in the nodes that
take responsibility for distributed keys.

Fig. 1. Generation of distribution keys and mappings.

9

As the Fig. 1 shown, K4, K5, L2K2, L2K3, L4K4 are
distribution keys, and K1, K2, K3, L2K1, L3K1 are common
keys. Level-3 key L3K1 is created by using hashing function
H((a1, v1),(a2, v2),(a3, v3)). Assuming that L3K1 is a common
key and NCN mapped to K4 is biggest compared with K5. Then,
L4K1 is created by the function: H((a1, v1),(a2, v2),(a3,
v3),(a4, v4)).

E. Improved Lookup Algorithm

In the improved lookup algorithm, we use the flag
ComFlag of each key in order to determine the number of key-
to-key mappings of each key. If a key’s ComFlag is “True”
then the key has ever been a common one with key-to-level-h-
key mappings kept in the node responsible for the key.
Thereby, a node can find all mappings of a key. The lookup
process is improved as follows (Fig. 2):

A node called a query node initiates a lookup process with
a query name that includes a set of AV pairs, q = {(a1, v1), (a2,

v2)... (am, vm)}. A query message includes information of a
query key, a query name, and the location of the query node.
The query node first creates query keys ki (i=0…m) from each
AV pair and send query messages to the nodes responsible for
each key ki. Next, the query node checks the common status of
each key ki based on flag ComFlag of each key. If there exists a
list of keys whose ComFlag is “False”, the query node choose
randomly a key in the list and send a query message to the
node responsible for the key.

If all ComFlags of query keys are “True”, the lookup
process is fulfilled in two steps. First of all, if there are at least
two AV pairs, a level-2 key would be created by two AV pairs
that corresponding to the first common keys {(a1, v1), (a2, v2)}.
Second, the query node sends query messages to the nodes
responsible for each of the first common key and the level-2
key. The result of the query name is information resources
including CNs returned from the nodes that receiving query
messages (Fig.2).

A queried node, which receives a query message, searches
resource information in its database including mapping tables.
First, it looks up CNs that match a query name in its key-to-
CNs mapping table. Then, the queried node returns the CNs
found to the query node. Next, the queried node checks the

common status of the query key. If the key’s ComFlag is
“True”, it will search the query key’s mappings in the key-
level-h-key mapping table (h>1). If there exist the mappings of
the query key, the queried node forwards the query message to
the nodes responsible for the level-h keys.

III. EVALUATION

In order to evaluate effectiveness of our improved solution,
a simulation program that simulates three solutions of
information distribution and searches as the follows:

 A conventional solution: Each distribution key is
created from each AV pair in a content name. There is
no level-h key (h>1) created. Therefore, the content
name is distributed to nodes responsible for only the
distribution keys. A process of a multiple-attribute
query is performed based on a query key created by
random choosing an AV pair in a query name.

 SMAV solution: The distribution of information
resource are based on a pre-defined threshold value
Nmax. Key mapping of level-h key and level-h+1 key is
kept by the node responsible for the level-h key.

 Our improved solution, called DSMAV.

We implement Chord [2] protocol in order to organize
5,000 nodes into a DHT-based network as well as to route
messages. Nodes/keys are mapped into the same identified
space with 228 = 268,435,456 identifiers. Every node with a
load capacity Np fluctuating from 200 to 500 is responsible for
keeping a portion of 20,000 content names that are formed
from 150,073 AV pairs. Each content name is a set of from 5 to
10 AV pairs chosen randomly. For SMAV solution, a pre-
defined threshold value Nmax is 10, while a threshold value of
each node in DSMAV is defined by the equation (1). In all
three solutions, the load capacity of every node is the same. If
the number of content names exceeds the load capacity of a
node, new content names are rejected by the node. Besides,
commonality of every AV pair depends on a parameter called a
rank r. Each AV pairs are generated based on the Zipf

distribution and the formula: , where is a constant.

Efficiency of our improved solution is evaluated based on a
simulation experiment and comparable analysis between
DMSAV with two the remaining solutions in two major
aspects: a degree of load balancing and efficiency of
information search algorithm that are discussed in the next
sections.

Fig. 3: The distribution of AV pairs in content names

Fig. 2. Block diagram of lookup process. IR: Information Resource,

LiK: level-i key

10

A. Load balancing

Load capacity of the system is evaluated based on the total
of content names stored in each node, the total of queries
processed by each node, and the number of overloaded nodes.

In our simulation network, 69,507 different AV pairs are
found in 20,000 content names. The popularity of the each AV
pair is different, some of the AV pairs occur at a high
frequency. For example, as Fig. 3 shown that there are just over
128 AV pairs that occur with a frequency of well over 30 times
per pair. Especially, we can see in Fig. 3 that an AV pair
repeated by the highest frequency is 4,425 times, accounting
for over 6.3% of total AV pairs. For the conventional solution,
it is clear that the distribution of CNs stored in each node is
similar to the popularity of AV pairs. More notably, over 10%
of CNs are kept by only 10 nodes. Therefore, it is not
surprising to find around 0.52% of nodes overloaded in
Conventional solution compared to SMAV (0.14%) and
DSMAV (0.02%) (Fig. 6). In the case of SMAV and DSMAV
solutions, all CNs are distributed more equally. Only at most
0.6% of total CNs are kept by a node for SMAV while 0.2% of
that for DSMAV (Fig. 4). However, while the distribution rate
of CNs in SMAV can be changed depending on how Nmax is
pre-defined, DSMAV shows a more efficient distribution of
CNs based on the formula (1). 1,133 threshold values Nth were
updated periodically in the process of distributing CNs to
nodes. Compared to SMAV and Conventional solutions,
DSMAV solution creates a distribution of queries more equally
(Fig. 5). Moreover, the number of queries carried out by each
node is much lower compared with SMAV. This is reasonable
because the number of level-h keys (h>1) created by SMAV is
bigger than that created by DSMAV, 46,202 and 23,548 keys
respectively. Fig. 5 also shows that the maximum number of
queries carried out by each node in DSMAV solution is nearly

50 and much smaller than that in SMAV and Conventional
solutions, 225 and 350 respectively.

B. Query Efficiency

The efficiency of information search in our simulation is
evaluated based on the number of hop counts found for each
query name in three solutions. The smaller the number of hop
counts, the lower the query cost.

As presented in Fig. 7, the most striking feature is that the
number of hop counts in DSMAV solution is not bigger than 3.
The reason is because the number of nodes, which are
responsible for forwarding query messages to other nodes, are
limited considerably. Therefore, the query cost based on hop
counts in DSMAV is lower than that in SMAV, 3 hops
compared to 6 hops respectively. In the case of the
conventional solution, the number of hop counts carried out by
each query is only 1. Therefore, the cost of query time for the
solution seem to be the best. Yet, a very low rate of successful
queries caused by overloaded nodes is the biggest disadvantage
that the Conventional solution has to pay (57.1%). In contrast,
the number of successful queries in SMAV and DSMAV is
very high, over 99% and nearly 100% respectively.

IV. RELATED WORKS

The problem of information distribution in a scalable
system so that information can be found based on multi-
attribute queries while ensuring a good degree of load balance
as well as a low query cost has been getting an attention of
researchers. Overall, two typical approaches are introduced in
recent years.

The first significant approach is to base on AV trees to
represent information resources. Balazinska and co-authors [7]

Fig. 4: Distribution of content names in 5,000 nodes

Fig. 5. The number of queries processed by each node

Figure 6: The rate of overloaded nodes

Fig. 7: The maximum number of hops of each query name

11

present a system called INT/Twine to distribute and query
intentional names to a DHT-based system. A noteworthy point
in their system is that information contents are described as AV
trees. Each unique prefix subsequence of AV pairs corresponds
to a strand of an AV tree. The strands are then mapped to DHT
keys, which are used to locate all nodes responsible for the
information contents. Similarly, Garces-Erice and authors in
[8] also introduce an AV tree-based approach in order to
describe and store data in DHT networks. The authors’
approach is to generate multiple indexes of data that contain
key-to-key (or query-to-query) mappings and then distribute
data to only one (or few) of the nodes responsible for a unique
DHT key created from a part of an AV tree. In [9] a Resource
Category Tree (RCT) is proposed in order to organize
resources. Sun H. and the colleagues also describe resources as
a distributed tree in which each node is a specific range of
primary attribute values. Their solution allows performing
commonly used queries including range queries or and multi-
attribute queries.

Another notable approach for this research problem is to
utilize a combination of AV pairs to create DHT keys. Gao and
Steenkiste [5] have proposed a Content Discovery System
(CDS) that enables to perform content registration and flexible
queries based on the approach. Their method is to represent
contents based on a combination of attributes and values and
maintain a load balance by a logical matrix. Particularly, each
set of AV pairs is a representation of a content name. AV pairs
are assigned to DHT keys in order to locate the nodes
responsible for storing content names. Thereby, a content name
can be found based on only a DHT key chosen randomly in a
set of candidates. Moreover, the authors resolve a problem of
load imbalance because of an appearance of common AV pairs
by constructing logical matrixes of nodes named Load
Balancing Matrix (LBM) that responsible for common keys. In
[6], Arakawa and co-authors also second a combination of AV
pairs in their solution. The authors combine several AV pairs
split from a content name to produce a content distribution key.
The number of content names in a node is always limited to a
constant value, and the number of AV pairs in a combination is
just small enough. Their solution can ensure a load balance
because of a presence of common keys.

Although mentioned solutions support range queries or
multiple- attribute queries, they still have their own drawbacks.
The first problem is load imbalance between nodes because of
common keys. In the case of INT/Twine [7] and RCT [9], the
appearance of common AV pairs is one of the major causes
that result in a load imbalance between nodes. Moreover,
sending the same information to various nodes as in
INT/Twine system causes information redundancy. Another
important problem is to concern with the costs of information
distribution and query. In DHT-based systems such as CDS
[5], Data Indexing [8], and [6], the problem of load imbalance
is improved better. However, the high number of query steps,
as well as an inefficient load balance mechanism raise costs for
query execution or maintenance of load balance in the systems.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an improved solution for
multiple-attribute search system in DHT-based networks. We

have formed a formula that determines the threshold value of
every node based on NCN, created keys, and load capacity of
the node. Although a periodical change of a threshold value
can affect the common status of a key that can lose mapping
information of a key, supplementing the flag ComFlag and
improving distribution and lookup algorithms help our system
to overcome the obstacle. Thereby, our system can keep
integrity and accurateness of mappings. Moreover, the result of
simulation shows that DSMAV system can archive a good
degree of load balancing even though the distribution of AV is
not equal. The result of a query name can be found in only
three hops. Therefore, our improvement allows reducing the
lookup time efficiently. However, the results of the paper are
only evaluated on the basis of conventional, SMAV and
DSMAV solutions, hence a comparative analysis between
DSMAV and other solutions such as INT/TWINE and CDS is
necessary. For the future work, we will implement algorithms
of the solutions to our simulations in order to compare query
and load balancing efficiency of DSMAV to the solutions.
Moreover, we will also implement DSMAV solution in a tested
system and apply into a knowledge management system.

REFERENCES

[1] P. P. M., Krishna, M. V., Subramanyam, & K. S. Prasad, “Investigation

of Chord Protocol in Peer to Peer-Wireless Mesh Network with

Mobility”, in WAS., ET., International Journal of Electrical, Computer,
Energetic, Electronic and Communication Engineering, 934-938, 2015.

[2] I. Stoica, R. Morris, D. Karger, M. Kaashoek and H. Balakrisnan,

"Chord: A Scalable peer-to-peer lookup service for Internet
applications," in In Proceedings of ACM SIGCOMM’01, Aug. 2001.

[3] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems," in In
Proceedings of IFIP/ACM International Conference on Distributed

Systems Platforms, Nov. 2001.

[4] R. Vijayalakshmi and S. M. Kumarasamy, "LOAD BALANCING WITH
PARTIAL KNOWLEDGE OF SYSTEM IN PEER TO PEER

NETWORK," International Journal of Advances in Engineering &

Technology, Vols. 3(2), 422, 2012.

[5] J. Gao and P. Steenkiste, "Design and Evaluation of a Distributed

Scalable Content Discovery System," IEEE Journal on Selected Areas in

Communications, Jan. 2004.

[6] Y. Arakawa, H. Minami, M. Matsuo, M. Yamaguchi and H. Saito, "DHT

based Peer-to-Peer Search System using Pseudo-candidate Key

Indexing," IEICE Transactions on Communications, Vols. vol. J88-B,
no. no. 11, pp. pp 2158-2170, Nov. 2005.

[7] M. Balazinska, H. Balakrishnan and D. Karger, "INS/Twine: A Scalable

Peer-to-Peer Architecture for Intentional Resource Discovery," in In
Proceedings of International Conference on Pervasive Computing, 2002.

[8] L. Garces-Erice, P. Feebler, s. E. Bier, G. Purvey-Keller and K. Ross,

"Data Indexing in Peer-to-Peer DHT Networks," in In Proceedings of
24rd International Conference on Distributed Computing Systems, 2004.

[9] H. Sun, J. Huai, Y. Liu, R. Buyya and ., "RCT: A distributed tree for

supporting efficient range and multi-attribute queries in grid computing,"
Future Generation Computer Systems, no. 24(7), pp. 631-643, 2008.

[10] N. Hoaison, T. Yasuo and Y. Shinoda, "D-AVTree: DHT-Based Search

System to Support Scalable Multi-Attribute Queries," in IEICE
Transactions on Communications, 2014.

[11] N. HoaiSon, N. ThanhDat and P. ThiHue, "SMAV: A solution for

multiple-attribute search on DHT-based P2P network," in In Advanced
Technologies for Communications, IEEE, 2009.

[12] A., Disterhoft, & K., Graffi. “Protected chords in the web: secure P2P

framework for decentralized online social networks”, in Peer-to-Peer
Computing (P2P), IEEE International Conference on (1-5). IEEE. 2015

12

