
A Method for Automated Unit Testing of C
Programs

Duc-Anh Nguyen, Pham Ngoc Hung, Viet-Ha Nguyen
VNU University of Engineering and Technology

Email: {nguyenducanh, hungpn, hanv}@vnu.edu.vn

Abstract—This research proposes an automated test case
generation method for C functions. In this method, the source
code is transformed into a control flow graph corresponding to
the given coverage criterion. After that, a list of feasible test
paths are discovered by traversing the control flow graph using
backtracking algorithm, symbolic execution, and Z3 solver. We
also generate test cases for functions containing one loop or
two-nested loop. A tool supporting the proposed method has
been developed and applied to test on some C functions. The
experimental results show the high coverage with the minimum
number of test cases, the ability to improve the total time of the
test case generation with a specified coverage criterion, and the
increasing precision of checking the feasibility of test paths if
comparing with the random technique. The experimental results
display the potential usefulness of this tool for automated test
case generation in practice.

I. INTRODUCTION

The C language has been known as one of the most popular
languages to develop embedded systems as well as system
applications. Actually, because these systems require high
reliability, it is necessary to perform a rigorous and strict
testing phase. Up to now, the white-box testing is considered
as a safe and effective approach in order to ensure the high
reliability of systems because of the ability to discover many
potential problems caused in the coding phase. The control
flow testing technique (CFT) is a traditional form of the
white-box testing and is used widely in the testing phase.
In the current application industrial environment, the white-
box testing needs to be performed automatically as much as
possible to reduce the cost of time, expenditure, and human
resources [1]. Especially, the expenditure can be up to 40 -
60% of the budget in the application development process.
Therefore, the testing process will become more boring to
testers. Automated test case generation is necessary when the
projects not only do not have enough resources but also need
to be evolved in regression testing.

CFT divides into two distinct directions: static direction
and dynamic direction [1], [10]. In the dynamic direction, the
test cases are generated by executing the source code many
times in runtime environment [7]. This method deals with the
complexity of the source code, easily gains a high coverage
with a list of test cases, and solves the problem of infeasible
test paths. However, this method has a lot of disadvantages
beside many above advantages. Firstly, the number of test
cases satisfying the coverage criterion might be huge or
unknown which causes a lot of difficulties in management.

Secondly, the total time of the test case generation can be long
because the source code is compiled and run in the runtime
environment repeatedly. The static direction is an effective
solution to deal with many above disadvantages of the dynamic
direction. This direction generates new test cases by parsing
the source code instead of running source code many times
[1]. With the source code that does not contain any loop, the
number of test cases is minimum. In contrast, the number of
test cases is specified with a smaller number in comparison
with the dynamic direction. Moreover, the cost to generate the
test cases of this direction is lower than that of the dynamic one
because the test cases are generated without running the source
code. Besides, the static direction typically reaches a high
coverage. Furthermore, both of static and dynamic directions
have difficulty in solving path constraints to compute input of
test cases in real time. The traditional solution to this problem
is using the random technique, but it leads to high cost.

This paper proposes a method to the automated test case
generation for unit testing of C programs using the CFT
technique in the static direction. Initially, the source code is
analyzed to construct control flow graph (CFG) corresponding
to the given coverage criterion. Next, we traverse the CFG to
obtain all feasible test paths using the backtracking algorithm
as follows. At each decision, a path from the initial vertex
to this decision is checked whether it is feasible or not by
SMT-Solver Z3 [11]. If this path is feasible, it means that all
test paths contain the path may be feasible. All branches from
the decision are therefore continued traversing. If it is not,
the path is infeasible so that all test paths traverse this path
are always infeasible. This result makes the traverse process
from this decision terminate. After getting a list of feasible test
paths, a minimum number of test paths satisfying the coverage
criterion is selected from this set, and we parse the feasible test
paths containing one loop or two-nested loop to generate test
cases. Finally, we execute test cases in runtime environment
to obtain the test report.

The structure of the paper is organized as follows. At first,
Section II describes the process for control flow graph (CFG)
generation from source code. The method of generating test
cases from CFG is presented in Sect. III. Section IV shows
an implemented tool for supporting the proposed method and
experimental results. Section V discusses some related works.
Finally, we conclude the paper in Sect. VI.



II. CONTROL FLOW GRAPH GENERATION

CFG is a directed graph visualizing logic structures of
program simplify [8] and defined as follow.

Definition 1 (CFG): Given a function, a corresponding CFG
is defined as a pair G = (V,E), where V = {v0, v1, .., vn} is a
list of vertices representing statements, E = {(vi, vj)|vi, vj ∈
V } ⊂ V ×V is a list of edges. Each edge (vi, vj) implies the
statement corresponding to vj is executed after vi.
With the statement/branch coverage criterion, each state-
ment/branch is executed at least one time with a list of test
cases. Therefore, vertices of CFG are corresponding to state-
ments: decision, assignment statement, declaration statement,
return, break, continue. Otherwise, the multiple condition
coverage criterion requires all combinations of conditions in
each decision are checked. It means that all decisions should
be divided into single conditions in order to generate test cases
more simplify.

Algorithm 1: CFG generation
input : f : source code; t: coverage criterion
output: graph: CFG

1: B = a list of blocks by dividing f
2: G = a graph by linking all blocks in B to each other
3: Update graph by replacing f with G
4: if G contains return/break/continue statements then
5: Update the destination of return/break/continue pointers

in graph
6: end if
7: for each block M in B do
8: if block M can be divided into smaller blocks then
9: Generate CFG(M , t)

10: end if
11: end for

Details of CFG generation algorithm are described in Al-
gorithm 1. The input of the algorithm includes source code
as a C function f and a coverage criterion t. The output is a
CFG graph satisfying the given coverage criterion. Before
performing this algorithm, graph is initialized as a global
variable and contains only one vertex representing for the
given source code. Initially, the source code f is divided into
a list of blocks named B: block0, block1, ..., blockn−1, blockn
(line 1). In this case, the type of each block may be a statement,
or a control block. Subsequently, a graph G describing the
order execution of all above blocks is generated (line 2). CFG
graph is then updated by replacing the vertex f with the
graph G (line 3). After that, if graph G contains vertices
corresponding to break/continue/return statements (line 4),
CFG graph continues to be updated by pointing these vertices
to right destinations (line 5). Next, each block M of the list B
is checked whether it can be continued dividing into smaller
blocks (line 8). If it is, it means that block M does not satisfy
the given coverage criterion. CFG graph is then continued
updating by parsing these smaller blocks. Otherwise, it means
that B satisfies the given coverage criterion. The algorithm
terminates when all blocks in graph do not divide into smaller
blocks any more.

III. TEST INPUT GENERATION

In order to generate test inputs, a list of feasible test paths
are discovered by traversing the given CFG. Path, test path are
defined as follows.

Definition 2 (Path): Given a CFG G = (V,E), a path is a
sequence of vertices {v0, v1, .., vk|(vi, vi+1) ∈ E, 0 < k < n}
, where n is the number of vertices.

Definition 3 (Test path): Given a CFG G = (V,E), a test
path is a path {v0, v1, .., vn−1|(vi, vi+1) ∈ E}, where v0 and
vn−1 are corresponding to the initial vertex and end vertex of
the CFG.

The cost of process for test case generation from test
paths is high due to the unexpected solving time of path
constraints. In order to generate a list of test paths satisfying
the coverage criterion, the backtracking algorithm is applied
firstly to discover all feasible test paths. With the source code
containing many loops or if − else blocks, the total time for
the feasible test paths generation might be terrible. To reduce
the total time, our method proposes to apply an SMT solver
named Z3 rather than the random technique. Furthermore, this
research also proposes algorithms to evaluate the reliability of
simple loop test paths and two-nested loop test paths.

A. Test Paths Generation

Algorithm 2: CFG traverse
input : v: the initial vertex of the CFG; depth: the maximum

number of iterations for a loop; path: a global variable
used to store a discovered test path

output: P : a list of feasible test paths
1: if v == NULL or v is the end vertex then
2: Add path to P
3: Save the test cases of path
4: else if the number occurrences of v in path <=depth then
5: Add v to the end of path
6: if (v is not a decision) or (v is decision and path is feasible)

then
7: for each adjacent vertex u to v do
8: TraverseCFG(u, depth, path)
9: end for

10: end if
11: Remove the latest vertex added in path from it
12: end if

This research proposes Algorithm 2 to obtain feasible test
paths. The input includes the initial vertex v, a maximum
number of iterations for a loop depth, and a string path used
to store an obtained test path when traversing the CFG. The
output is a list of feasible test paths P . Both P and path
are global variables and initialized to ∅. Initially, we check
that if v is the end vertex or equivalent to NULL (line 1).
If it is, path is then added to P (line 2) and its test case
is collected (line 3). Otherwise, it means that v is traversed
under depth times (line 4), v is put at the end of path (line 5).
Subsequently, we check whether v is not a decision, or v is a
decision and path has a solution (line 6). It these conditions
satisfy, all adjacent vertices u to v are then traversed (line
7, 8). If path has no solution, the traverse process from this



decision terminates. Finally, path removes the latest vertex
added before in order to change the end branch to its negative
branch (line 11). The algorithm terminates when feasible test
paths satisfying the number of iterations for each loop under
depth times are discovered.

The value depth should be chosen based on parameters:
structure of loops (simple loop, nested loop, concatenated loop,
or unstructured loop), structure of if−else blocks, the number
of loop blocks, and the number of if − else blocks.

B. Test Path Generation for Loops

Each loop of a feasible test path is only executed a small
number time due to the explosion of test paths when the
maximum number of iterations for this loop is large enough.
In fact, the block of loops may contain many potential errors
so that it is necessary to check the reliability of these blocks.
The paper focuses on how to generate test cases to ensure
the quality of simple loop test paths and two-nested loop test
paths that are defined as follows.

Definition 4 (Simple loop test path): Given a CFG G =
(V,E), a simple loop test path is a test path that has one
loop, denoted as p:

p = {v0, v1, .., vk, .., vk, .., vn−1|(vi, vi+1) ∈ E} (1)

, where vk is corresponding to a decision, v0 and vn−1 are
corresponding to the initial vertex and end vertex of CFG.

Definition 5 (Two-nested loop test path): Given a CFG G =
(V,E), a two-nested loop test path is a test path that has an
inner loop and an outer loop, denoted as p:

p = {v0, .., vk, .., vm, .., vm, .., vk, .., vn−1|(vi, vi+1) ∈ E}
(2)

, where vk and vm is corresponding to the decision of the
outer loop and the inner loop. v0 and vn−1 are corresponding
to the initial vertex and end vertex.

Test path generation for simple loops. Several test paths
are generated by duplicating loop of a simple loop test path
more than one time. In the case the maximum number of
iterations for this loop is a concrete number n, 7 test paths
are created corresponding to 0, 1, 2, a random number, n-1, n,
and n+1 times. Otherwise, it means that the maximum number
of iterations for this loop is not specified. In this case, 4 test
paths are generated corresponding to 0, 1, 2, and a random
number times.

Test path generation for two-nested loops. The key
idea for testing a two-nested loop test path is destroying
the structure of one loop at one time in order to obtain a
simple loop test path. A set of test cases is then generated by
analyzing the simple loop test path.

In order to test the inner loop, Algorithm 3 is applied as
follows with the given two-nested loop test path path. At first,
the vertices which come into and escapes the outer loop of the
given two-nested loop test path are identified, named u and
v respectively (line 1, 2). Next, the iteration variable of the
outer loop iterationV ar is determined by parsing the outer
loop (line 3). In this step, a variable is identified as an iteration

variable when it exists in the condition of the outer loop, and
its value is increased or decreased. Subsequently, we assume
the outer loop had been executed under a specified number
times. Therefore, an assignment statement of iterationV ar to
an available value is saved in newV ertex (line 4). To destroy
the loop structure of the outer loop, output is then generated
by removing v from path (line 5). After that, newV ertex is
inserted into path before u in order to set the iteration variable
of the outer loop to a new value (line 6). The algorithm
terminates and returns a simple loop test path output.

Algorithm 3: Get test path for testing inner loop
input : path: a two-nested loop test path
output: output: a simple loop test path

1: u = the vertex which comes into the outer loop
2: v = the vertex which escapes the outer loop
3: iterationV ar = the iteration variable of the outer loop
4: newV ertex= the statement to assign iterationV ar to an

available value
5: Remove v from path
6: output = insert newV ertex before u in path
7: return output

To check the reliability of the outer loop, the vertex which
escapes the inner loop is removed from the given two-nested
loop test path. The two-nested loop test path then becomes a
simple loop test path.

C. Test Case Generation

1) Path Constraints Generation: Path constraints are gener-
ated by parsing a path using the symbolic execution technique
and defined as follow.

Definition 6 (Path constraints): Path constraints are com-
posed of logic expressions, denoted as PC.

PC = c0 ∧ c2 ∧ ... ∧ cn−1 (3)

, where n is the number decisions of the given test path, ci
denotes one constraint corresponding to a decision in the given
test path.

Algorithm 4: Path constraints generation
input : path: a path
output: PC: a list of path constraints

1: V = a list of vertices in path
2: varList = ∅
3: PC = ∅
4: for each vertex v in set V do
5: Simplifies the statement corresponding to v
6: if v is construction statement then
7: Add new variable to table varList
8: else if v is assignment statement then
9: Update the assigned variable in table varList

10: else
11: Add vertex v to set PC
12: end if
13: end for
14: return PC



Algorithm 4 is applied in order to obtain path constraints
PC from a path path. Initially, a list of vertices V in path
are identified (line 1). Next, table of variables varList and
PC are initialized to ∅ (line 2, 3). In the for block, the
statement corresponding to v is simplified as much as possible
(line 5). Depending on the type of this statement, there then
happen three following cases. If the type of this statement is
construction, a new variable is created and added to the table
varList (line 7). In this case, the default value of the new
variable is the upper case name of itself when this variable
is not initialized. In case 2, the type of this statement is
assignment, the value of the assigned variable is then updated
in table varList (line 9). Otherwise, it means that the type of
this statement is condition. In this case, PC add this statement
at the end of the list (line 11). The algorithm terminates when
all vertices are handled.

Fig. 1: The simplification process for an expression.

Figure 1 describes the simplification process for a statement
in line 5 of Algorithm 4. The simplified expressions are
index of arrays, the right side of assignment statements, and
conditions. The details of this phase are described as follows.
At first, all variables are replaced with its symbolic values.
Next, the index of array variables is calculated to obtain the
concrete values. Then we check whether the value of the
expression is a concrete number or cannot be simplified any
more. If it does not, the simplification process is continued
and otherwise algorithm terminates.

2) Test Input Generation: Figure 2 describes the process
for converting a path constraints to a corresponding SMT-LIB
expression. At first, each logic expression in the given path
constraints, which is referred to infix expression, is altered to
a postfix expression. Next, the postfix expression is handled to
obtain a corresponding expression tree. Finally, the expression
tree is traversed to generate an SMT-LIB expression.

For example, with the logic expression !(!(a > 0&&a <
10)). The process for converting a logic expression to SMT-
LIB expression is described as follows. Firstly, the infix
expression is converted to the postfix expression a 0 > a
10 < & ! !. Next, the analysis of the postfix expression is
conducted to get the expression tree. Finally, the expression
tree is traversed in order parent, left child, right child to obtain
a SMT-LIB expression (not(not(and(> a 0)(< a 10)))).

IV. IMPLEMENTATION

We implement the proposed method in a tool called
CFT4CUnit [12]. In order to show the effectiveness of the
proposed method, CFT4CUnit is compared with two tools:
PathCrawler and another which is described in [3]. The tool

which is implemented in [3] is not available, so we had
implemented it based on author idea and called it ATGC.

Table I shows comparisons in details about the average exe-
cution time for deriving all feasible test paths of 20 executions,
and the number of feasible test paths between CFT4CUnit
and ATGC. The input coverage criterion is branch coverage.
ATGC uses the random technique to solve the path constraints
with two parameters including the domain of test cases in [-
10 .. 10] and 15000 iterations. In contrast, CFT4CUnit obtains
the test cases by applying the powerful SMT-Solver Z3. The
time out case happens when the execution time is over 400
seconds. With all examples without any loop, the maximum
number of iterations for each loop depth is represented by zero.
The input of CFT4CUnit and ATGC includes a C function
(containing integer variables, float variables and arrays), a
coverage criterion and a maximum number of iterations for
each loop. The output is a list of test cases satisfying the
coverage criterion.

In examples Tritype, grade, uninit var (depth = 2, 3),
and GCD (depth = 1..3), the number of feasible test paths
in CFT4CUnit is greater than that of ATGC. Using random
technique, 20 executions result in different number of feasible
test paths. In contrast, the number of feasible test paths in
CFT4CUnit is always identically and exactly in all of 20
executions. The feasibility of some test paths is evaluated
incorrectly with ATGC.

Simple examples foo and ComplexIndex only contain
if − else blocks without any loop. In these examples, the
number of possible test paths is small and the complexity of
path constraints is simple. As a result, the statistics in Table I
does not show differences between two tools clearly. However,
in example Tritype, which only contains a lot of if − else
blocks, shows the gap in time clearly: an approximation to
1 seconds in CFT4CUnit and 16 seconds in ATGC. Many
other examples such as GCD, Average, SelectionSort,
uninit var show the effectiveness of our proposed method
when depth is large enough. The execution time of ATGC
is greater than CFT4CUnit many times, even time out in two
examples: GCD and uninit var with depth = 4.

Table II lists five C programs that have been used in the
experiments. The first example and the final example do not
contain any loops. The second example contains a simple loop
and the passing parameters consist of an array variable. The
third example includes a simple loop. The fourth example
contains the index of array variable as an expression. In
all cases, the depth of CFT4CUnit is 1. With PathCrawler,
the size of array variables are in [1..10] and the value of
variables are in [-10..10]. In the first case, both CFT4CUnit
and PathCrawler reach 100% code coverage with 5 test cases.
In the case second and case third, CFT4CUnit and PathCrawler
reach the same branch coverage, however, our tool generates
less test cases than PathCrawler very much. In the case fourth,
CFTCUnit obtains 100% code coverage with 2 test cases while
PathCrawler only reachs 75% code coverage. In the case five,
PathCrawler fails to generate test cases white CFT4CUnit
reaches 100% code coverage. The reason is PathCrawler fails



Fig. 2: The process for analyzing the logic expression to SMT-LIB format.

TABLE I: Comparison of CFT4CUnit with ATGC

Input CFT4CUnit ATGC
Example depth total test paths time feasible test paths time feasible test paths
Tritype 0 18 <1s 7 16s 6

ComplexIndex 0 4 <1s 4 <1s 4
foo 0 3 <1s 3 <1s 3

Grade 0 6 <1s 6 <1s 5

GCD

1 20 1s 16 61s 6
2 36 2s 32 109s 10
3 68 2s 64 211s 18
4 132 4s 128 time out -

Average

1 6 < 1s 3 8s 3
2 14 <1s 7 22s 7
3 30 1s 15 63s 15
4 62 2s 31 138s 31

SelectionSort

1 4 <1s 3 <1s 3
2 13 < 1s 3 15s 3
3 40 1s 3 51s 3
4 121 4s 8 145s 8

uninit var

1 23 1s 3 8s 3
2 83 2s 14 75s 13
3 275 13s 22 261s 20
4 875 27s 25 time out -

TABLE II: Comparison of CFT4CUnit with PathCrawler

Input PathCrawler CFT4CUnit
test case coverage test case coverage

Grade 5 100% 5 100%
Average 192 83.33% 3 83.33%
GCD 201 100% 7 100%
ComplexIndex 4 75% 2 100%
Foo - - 3 100%

to generate the first test input, so the test case generation can
not continue.

V. RELATED WORKS

There are many works that have been recently proposed for
automated test case generation, by several authors. Focusing
only on the most recent and closest ones, we can refer to [1],
[3], [4], [9].

Nicky Williams and et al. introduce a tool named
PathCrawler to generate test cases using a solver which is
developed in CEA LIST [1]. The solver is based not on
an SAT, linear or SMT solver but on the finite domain
constraint solver named COLIBRI. COLIBRI is implemented
in constraint logic programming (CLP). COLIBRI can treat
non-linear arithmetic and provides specialized constraints for

modular integer. PathCrawler continues to develop COLIBRI
to treat bit operations, dynamic allocation, arrays with variable
dimensions, and array accesses using variable index values
arithmetic and floating-point arithmetic.

Sangeeta Tanwer and et al. proposed a process for generat-
ing test cases using random technique in [3]. It is a traditional
technique to generate a list of test cases automatically. To
generate test cases effectively, the range of values variable
should be small. Moreover, the number of random generation
is enough large to treat special test paths. However, the total
time of this technique is high and it is difficult to specify the
feasibility of test paths.

Zheng Wang proposed an algorithm to generate test cases
in [4]. The proposed algorithm can treat pointer variables,
primitive variables, structures, and arrays. To handle pointer
variables, there are two tasks. The first one is to construct
proper memory storages to which these pointers point. The
second is to generate the value stored in that memory storages.
In the case the program contains several pointers pointing to
the same variable, a relation matrix of pointers on the base of
the path constraints is build. Structures and arrays are divided
into primitive variables. This method can deal with in the case
which the index of the array is a variable exciting but not
completely due to the explosion of array variables.



Leonardo de Moura and et al. have published a paper about
Z3 solver in [9]. Z3 is a new SMT solver from Microsoft Re-
search and based on SAT Solver. Many problems in software
verification and software analysis can be solved with Z3. To
solve path constraints with Z3, the path constraints must be
converted to SMT-LIB format. This work can be conducted
through API or our proposed algorithm. Z3 supports arith-
metic, fixed-size bit-vectors, extensional arrays, data types,
uninterpreted functions, and quantifiers.

Not only Z3, some other SMT solvers such as SMTInterpol
[13], MathSAT [14], CVC4 [15], and Yices [16] can generate
test cases from path constraints effectively. All of these SMT
solvers accept SMT-LIB format.

VI. CONCLUSION

We have presented a method for generating test cases for
C functions using a static direction. Our method can treat
integer variables, float variables, and arrays. At first, CFG is
generated with inputs including source code as a C function,
a coverage criterion, and a maximum number of iterations for
a loop. Feasible test paths are then explored by traversing the
generated CFG using the backtracking algorithm, symbolic
execution and an SMT-Solver named Z3. At each decision
in the traverse process, we check whether the path from the
initial vertex to this decision is feasible or not by applying
three required steps as follows. Initially, the path is analyzed
to generate corresponding path constraints by symbolic ex-
ecution. Subsequently, the path constraints are transformed
into SMT-LIB expression. Finally, SMT solver Z3 solves this
SMT-LIB expression to generate test cases. If the SMT-Lib
expression has solution, we continue traversing the children
of the decision. If it does not, the traverse process from this
decision is terminates because all test paths includes this path
are always infeasible. After getting all feasible test paths, the
test paths satisfying the given coverage criterion are chosen
as minimum as possible. With test paths have one loop or
two-nested loop, the reliability of each loop is checked by
performing the testing loop independently to each other.

The best advantages of the proposed method are high cover-
age and lower cost in comparison with the dynamic direction.
The total time to discover all feasible test paths is improved
by using SMT solver Z3. The effectiveness of Z3 is shown
clearly in experimental results. Because of specifying the
feasible test paths, it is easy to choose minimum feasible test
paths to satisfy the coverage criterion. Our method is applied
not only for C function but also for others programming
languages. Moreover, test cases can be discovered by using any
SMT solvers, which accept SMT-LIB format. Besides these
advantages, the proposed method still has some limitations.
The implemented tool has been tested with small and medium
size C functions with primitive types. In addition, our method
cannot deal with pointers, structures, string, etc.

Currently, we are applying this tool for more complex func-
tions to demonstrate the effectiveness of the proposed method.
At the same time, we are going to improve the implemented
tool supports for other variable types: pointers, structures,

string, etc. by combining with the dynamic direction. Besides,
we continue finding out solutions to generate expected output
automatically. Moreover, we are extending this method to
treat with program level rather than function level. A version
for generating test cases for Java programming language is
developing.

By analyzing the structure of path constraints, its type can
be QF LRA, QF LIA, etc. The ranks of the well-known SMT-
Solvers for each type are updated annually . It means that,
depending on the type of path constraints we can choose a
suitable SMT-Solver to generate test cases with the lowest cost.
Therefore, the problem of choosing suitable SMT solvers is
another issue and need to be conducted additional researches.
In this research, we completely choose another SMT solver,
which is accepted SMT-LIB format, in order to obtain test
cases. In this research, we completely choose another SMT
solver, which is accepted SMT-LIB format, in order to generate
test cases. The problem of choosing a suitable SMT solver is
another issue and need to be conducted additional researches.

Moreover, some information about how variables are de-
fined and used can be discovered without generating Data Flow
Graph by parsing the CFG. In future, our tool generates test
cases for not only satisfying three commonly coverage criteria,
but also checking the reliability of using variables.

ACKNOWLEDGMENTS

This work is supported by the project no. QG.16.31 granted
by Vietnam National University, Hanoi (VNU).

REFERENCES

[1] Nicky Williams, Bruno Marre, Patricia Mouy, Muriel. Roger,
PathCrawler: automatic generation of path tests by combining static and
dynamic analysis, in: EDCC-5, 2005

[2] R. A. DeMillo, A. J. Offutt: Constraint-based automatic test data
generation, in: IEEE Transactions on Software Engineering, 17(9), pp.
900-910, 1991

[3] Sangeeta Tanwer, Dr. Dharmender Kumar, Automatic testcase Gener-
ation of C Program Using CFG, in: IJCSI International Journal of
Computer Science Issues, Vol. 7, Issue 4, No 8, July 2010

[4] Zheng Wang, Test Data Generation for Derived Types in C Program,
in: Third IEEE International Symposium on Theoretical Aspects of
Software Engineering, 2009

[5] Arthur H. Watson, Thomas J. McCabe, Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric, in: NIST Spe-
cial Publication 500-235

[6] J. C. King, Symbolic execution and program testing, in: Commun. ACM,
vol. 19, no. 7, 1976, pp. 385-394

[7] M.Prasanna, S.N. Sivanandam, R.Venkatesan, R.Sundarrajan, A survey
on automatic test case generation, in: Academic Open Internet Journal,
Vol. 5, 2005

[8] Robert Gold, Control flow graph and code coverage, in: Int. J. Appl.
Math. Comput. Sci., Vol. 20, No. 4, 2010, pp. 739-749

[9] Leonardo de Moura, Nikolaj Bjrner, Z3: An Efficient SMT Solver, in:
Proceeding TACAS’08/ETAPS’08 Proceedings of the Theory and prac-
tice of software, 14th international conference on Tools and algorithms
for the construction and analysis of systems, pp. 337-340

[10] Sai Zhang, David Saff, Yingyi Bu, Michael D. Ernst, Combined Static
and Dynamic Automated Test Generation, in: ISSTA’11, pp. 353-363

[11] https://z3.codeplex.com/releases
[12] http://coltech.vnu.edu.vn/˜hungpn/CFT4CUnit/
[13] http://ultimate.informatik.uni-freiburg.de/smtinterpol/
[14] http://mathsat.fbk.eu/
[15] http://cvc4.cs.nyu.edu/web/
[16] http://yices.csl.sri.com/


