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Abstract—Antennas without phase center (AWPC) are applied
to resolve the less-sensors-than-sources problem in direction-of-
arrival (DOA) estimation using subspace methods, typically, the
well-known multiple signal classification (MUSIC) algorithm.
This paper focuses on optimization of some design parameters
of such antennas, including the rotation angle, the rotation
step number and distances of two dipole couples, in order to
improve the ambiguity and accuracy of all estimators which use
AWPC structure. These optimization problems are formulated
and solved by using Cramer-Rao bound (CRB) and ambiguity
checking criteria. Specially, the parameters were optimized to
avoid issues related to the ambiguity for half space localization
problem while minimizing the CRB for improving the DOA
estimation accuracy.

Keywords– Direction of Arrival (DOA), Antenna without
Phase Center (AWPC), Multiple Signal Classification (MUSIC),
Cramer-Rao Bound (CRB).

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a well established
topic in array signal processing in which directions of emitting
sources are estimated from signals collected at a set of sensors
[1][2]. Many interesting problems arise within this framework,
including the one related to antenna design and optimization
considered in this paper.

A class of antennas “without Phase Center” have been
proposed in [3] for DOA estimation in one incident source
case. A phase center of an antenna is the center of a sphere,
which considers with the surface of constant phase within a
sector of one beam of directional pattern. AWPC structures
do not have such phase centers. The MUSIC estimator using
AWPC with linear phase pattern was proposed in [4] while
extension of the estimator to non-linear phase pattern one as a
sensor in uniform circular array (UCA) was proposed in [5].
Unlike normal antenna arrays, such as uniform linear array,
UCA, wherein the steering vector is dependent on the spatial
locations of the array sensors, in DOA estimation system
using AWPC the steering vector is built based on the radiation
pattern caused by the electrical rotation of the antenna in steps.

The locations of the sensors in antenna array design in
general or in AWPC design in particular are important for
DOA estimation because they affect the ambiguity and the
estimation accuracy. This paper concentrates on optimization
of AWPC sensor locations.

Ambiguity occurs when two or more steering vectors cor-
responding to widely separated directions are similar [6]. In

AWPC structure, this depends on antenna rotation parameters,
which are related to the rotation angle and the rotation
step number, and radiation pattern, which is related to the
distances of two couples dipoles in AWPC. In this paper, we
first optimizes the antenna rotation parameters based on the
Cramer-Rao bound (CRB) criterion. CRB is a well-known
bound which expresses the minimum achievable variance
on estimating parameters of any unbiased estimator [7]. In
array processing, it depends on the observations (the number
of snapshots) and the measurements (Signal-to-Noise ratio
(SNR)), the positions of sources, the locations of sensors, but
does not depend on a given estimation algorithm [8]. Next,
given the optimized antenna rotation parameters, we introduce
the CRB and the ambiguity-checking function for all small
and moderate-size AWPC structures to find optimal distances
of two couples of dipoles. The optimization problem is too
complex to find closed-form solution. Therefore, we opt to
carry out an exhaustive numerical 2D search. We can afford
this exhaustive search since optimization is achieved once for
all.

The paper is organized as follows. Section II presents the
AWPC structure and the data model. Section III introduces the
CRB and the ambiguity-checking function. Section IV shows
the optimization solutions for antenna rotation parameters
and antenna configuration. Section V provides a numerical
example that demonstrates the efficientiveness of the optimized
AWPC. Section VI concludes the paper.

II. ANTENNA WITHOUT PHASE CENTER AND DATA
MODEL FOR DOA ESTIMATION

A. DOA Estimation using the Antenna without Phase Center

The AWPC is illustrated in Fig. 1. The distance between
dipoles I-1 and I-2 of the first couple I is called d1, and that for
the second couple is d2. The dipole couples are perpendicular
to each other, i.e, d1⊥d2. The relative phases of I-1, II-2
and I-2 with respect to that of II-1 are 90◦, 180◦ and 270◦,
respectively. Under the above conditions for locations of the
dipoles and the feeding points, the amplitude pattern, G(θ),
and the phase pattern, Φ(θ), of the AWPC are given by [3]
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Fig. 1. Structure of the Antenna without Phase Center.

(a)

(b)

Fig. 2. AWPC radiation pattern for (d1, d2) = (0.6, 0.7)λ: (a) Amplitude
pattern and (b) Phase pattern.

G(θ) =

√
sin2

(
kd1

2
cos θ

)
+ sin2

(
kd2

2
sin θ

)
, (1)

Φ(θ) = ∠

(
sin

(
kd1

2
cos θ

)
, sin

(
kd2

2
sin θ

))
, (2)

where θ is the direction of propagation, k is the wave number
of the carrier, and ∠ denotes the phase of a complex number.
The radiation pattern is rotated by constants of the phases of
the signals at all the feeding points. As an illustration, Fig. 2
shows the radiation pattern for (d1, d2) = (0.6, 0.7)λ, where
λ is the wavelength.

B. Data model and Analysis

Assume that elevation angle is equal to 90◦, consider D
uncorrelated, narrowband, zero-mean Gaussian sources, im-
pinging on the antenna: s1(t), s2(t), . . . , sD(t). The antenna
is rotated in M steps in the clockwise direction. At step
m (m = 0, . . . ,M − 1), the received signal is modeled as

xm(t) =
D∑
i=1

si(t)G(θi +m∆θ)ejΦ(θi+m∆θ) + nm(t), (3)

where θi is the incident angle of the i-th source, ∆θ is the
antenna rotation angle, and nm(t) is the spatially zero-mean
white Gaussian noise with variance of σ2 and is statistically
independent of the sources. In matrix form, the data model
becomes

x(t) = A(θ)s(t) + n(t), (4)

where s(t) = [s1(t), s2(t), . . . , sD(t)]T is the vector of the
sources, n(t) = [n1(t), n2(t), . . . , nM (t)]T is the noise vector,
x(t) = [x1(t), x2(t), . . . , xM (t)]T is the received vector, and
A(θ) is the steering matrix defined by

A(θ) = [a(θ1),a(θ2), . . . ,a(θD)], (5)

In (5), a(θi) is the steering vector associated with the i-th
source.

a(θi) =


G(θi)e

jΦ(θi)

G(θi + ∆θ)ejΦ(θi+∆θ)

...
G(θi + (M − 1)∆θ)ejΦ(θi+(M−1)∆θ)

 , (6)

The spatial covariance matrix of the output vector is ex-
pressed as

Rx = E{x(t)xH(t)}
= ARsA

H + σ2I,
(7)

where E{·} denoted statistical expectation, Rs is the source
covariance matrix.

III. CRB AND AMBIGUITY-CHECKING FUNCTION

This section provides definitions and analysis of the CRB
and the ambiguity-checking function, to be used in Section IV.
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A. CRB

1) Single-Source CRB: Assume that p is a parameter vector
of an unbiased estimator, according to [10] the mean-
square error (MSE) is given by

MSE(p̂i) = E{(p̂i − pi)2} ≥ CRB(pi), (8)

where pi and p̂i denote the i-th element of p and its
estimate p̂i , repsectively, and

CRB(pi) = [J−1]ii, (9)

where J is the Fisher information matrix.
In the single-source case, assuming Gaussian source
signal with given Ns independent samples of a zero
mean Gaussian process x whose statistics depend on
the parameter vector p = θ, CRB are given by:

CRB(θ) = J−1, (10)

where

J = Ns · trace
{
R−1

x

∂Rx

∂θ
R−1

x

∂Rx

∂θ

}
=

2 SNR2

(1 + SNR |a|2)2
[2(<(aH ȧθ))

2

+ (1 + SNR |a|2)(|a|2|ȧ|2 − |aH ȧθ|2)],

(11)

where ȧθ = ∂a
∂θ .

For simplicity, from now, CRB is computed with Ns = 1
only because the results for Ns > 1 can be obtained by
dividing the CRB values by Ns.

2) Averaged CRB (ACRB): This definition has been used in
[8] to compare the performances of antenna arrays with
the same aperture and applied for one emitting source
case.

ACRB =
1

2π

∫ π

−π
J−1dθ, (12)

where J is given by equation (11).

B. Ambiguity-Checking Function (ACF)

In subspace-based direction finding methods, estimated
DOAs are obtained from the steering vectors. Therefore,
large estimation errors occur when widely separated angles
correspond to co-linear steering vectors.

To check this error, we use the following criterion:

ACF(θ1, θ2) = 1− |aH(θ1)a(θ2)|2

‖a(θ1)‖2‖a(θ2)‖2
, (13)

which represents a similarity measure of two steering vectors
at directions θ1 and θ2 [9]. When the steering vectors are co-
linear, ACF is equal to zero.

Also, if a(θ1) is orthogonal to a(θ2), that means
|aH(θ1)a(θ2)| = 0, ACF reaches its maximum value of 1.

The two previous criteria (CRB and ACF) are used next as
target function in the optimization problems of the antenna
design parameters.

Fig. 3. AC-ACRB versus the number of antenna rotation steps M

IV. OPTIMIZATION OF THE AWPC DESIGN PARAMETERS

The performance of a DOA estimator depends highly on the
form of the steering vector. In our case, there are three factors
impacting our steering vector: antenna rotation angle ∆θ,
number of antenna rotation steps M and antenna configuration
(d1, d2). Therefore, the optimization of these parameters is
the purpose of this section. Direct and full optimization is too
complex and not always possible without specific constraints.
For these reasons, we proposed a simplified approach that
leads to quasi-optimal, or at least good, design solutions by
using: (i) numerical optimization instead analytical one, and
(ii) separate optimization for different design parameters.

A. Optimization of the antenna rotation parameters: rotation
angle ∆θ and rotation step number M

In this case, we assume that only one emitting source is
impinging on the antenna. To optimize ∆θ, we introduce
the following performance measurement, called the antenna
configuration and averaged CRB (AC-ACRB)

AC-ACRB =
1

K

∑
(d1,d2)

ACRB, (14)

where K is the number of couples of (d1, d2). With some
random given ∆θ values, we plot AC-ACRB versus the
number of antenna rotation steps M in Fig. 3. It is observed
that:

• The MSE of DOA estimation decreases as M increases,
and all curves converge to the same MSE level when
M increases. When M > 15, the decreasing of the MSE
becomes negligible. We suggest choosing Mopt around 15
for a good-enough trade-off between the computational
cost and the estimation accuracy.

• The choice ∆θ = 360/M leads to the lowest averaged
MSE. So, we can assert that this is the optimal value of
the antenna rotation angle that we are interested in; that
is, ∆θ = 2π/M .
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Fig. 4. min-ACF versus d1, d2 normalized to λ

Fig. 5. Single-source Averaged CRB versus d1, d2 normalized to λ

B. Optimization of the antenna configuration (d1, d2)

The optimization of antenna configuration (d1, d2) is ob-
tained by decreasing ambiguity error and increasing estimation
accuracy. The optimal values selected above are used in the
optimization of (d1, d2).

1) Decreasing ambiguity error:
In this part, we use (13) to check the ambiguity for both
following cases.
By observing that{

G(θ + π) = G(θ)

Φ(θ + π) = Φ(θ) + π,
(15)

due to the natural symmetry of the antenna, we have
a π-ambiguity error for all (d1, d2). Hence, the AWPC
structure does allow only half space localization.
Also, if d1 = d2 we have another antenna symmetry

axis and in that case{
G(θ + π/2) = G(θ)

Φ(θ + π/2) = Φ(θ)− π/2,
(16)

which leads to a π/2-ambiguity error.
The latter can be observed visually in Fig. 4, represent-
ing the minimum value of ACF versus (d1, d2) for the
angle pairs (θ1 ∈ (π/2,−π/2, θ2 = θ1 + π/2). As we
can see, this value is equal to zero if d1 = d2, and not if
otherwise. We also observe that if |d1−d2| > 0.5λ then
the minimum value of ACF is greater than 0.6. We can
assert that the antenna has no ambiguity problem for the
half space localization if we choose |d1 − d2| > 0.5λ.

2) Increasing estimation accuracy:
The averaged CRB for single-source case versus
(d1, d2), shown in Fig. 5, is used to study the DOA
estimation accuracy for a given antenna configuration.
We observe that the smaller the values of (d1, d2) are
the higher the CRB.
We also observe that the optimal value of the single-
source CRB under the constraints |d1 − d2| > 0.5λ and
0 ≤ d1, d2 ≤ 10λ is obtained for (d1, d2) = (9.4, 10)λ.
However, the optimal choice for (d1, d2) in practice
would depend on the “authorized” maximal size of the
antenna for the considered application.

V. NUMERICAL SIMULATIONS

In this section, we provide a numerical example that demon-
strate efficientiveness of the optimized AWPC with M = 17,
∆θ = 2π/M and (d1, d2) = (5.2, 2.3)λ, correspond to
ACF = 1 and ACRB ≈ 1.9 ∗ 10−5. The results are shown
in Fig. 6. The dashed lines present origin DOAs while the
solid lines present estimate DOA spectrum. Here, we show
the spectrum of the MUSIC estimator for two different antena
configurations (d1 = d2) and (|d1 − d2| > 0.5λ), the MUSIC
algorithm is described in Table I in details. Six sources are
presented at azimuth (-60◦, -40◦, -20◦, 20◦, 40◦, 60◦) and
SNRs of 25dB. The MUSIC estimator was applied to 1000
random data snapshots.

The first subfigure shows MUSIC spatial spectrum for the
AWPC with d1 = d2 = 2.3λ. This configuration has steering
vectors that are colinear at (θ1, θ2 = θ1±π/2) (π/2-ambiguity
error) and (θ1, θ2 = θ1±π) (π-ambiguity error) and therefore,
beside six origin peaks at (-60◦, -40◦, -20◦, 20◦, 40◦, 60◦),
twenty four ghost peaks appear at (30◦, 50◦, 70◦, 110◦, 130◦,
150◦), (-150◦, -130◦, -110◦,-70◦, -50◦, -30◦), (120◦, 140◦,
160◦, -20◦, -40◦, -60◦), and (20◦, 40◦, 60◦, -160◦, -140◦, -
120◦), correspond to (θ1, θ2 = θ1 +π/2), (θ1, θ2 = θ1−π/2),
(θ1, θ2 = θ1 + π), and (θ1, θ2 = θ1 − π).

The second subfigure shows MUSIC spatial spectrum for
the AWPC with d1 = 5.2λ, d2 = 2.3λ. This configuration has
steering vectors that are colinear only at (θ1, θ2 = θ1±π) (π-
ambiguity error) and therefore, in [−π2 ,

π
2 ] space, the estimate

DOAs are the same as the origin DOAs at (-60◦, -40◦, -20◦,
20◦, 40◦, 60◦).
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TABLE I
MUSIC ALGORITHM

Compute Spatial Sample Covariance Matrix
R̂ = 1

K

∑K
i=1 x(t)xH(t),

where t = 1, . . . ,K and K is called the number of snapshots.

Eigendecomposition of R̂

R̂ = ÛΛ̂ÛH ,

where Û is eigenvectors and Λ̂ = diag{λ1, λ2, . . . , λM}
is a diagonal matrix of real eigenvalues ordered such as

{λ1 ≥ λ2 ≥ . . . ≥ λM > 0}, in which
{λ1 ≥ λ2 ≥ . . . ≥ λD > σ2} and
{λD+1 = . . . = λM = σ2}.

Determine D incident sources and noise eigenvectors Ûn

Assumed that R̂ is full rank,
based on M −D eigenvalues are equal to σ2 in Λ̂,

determine D incident sources and noise eigenvectors Ûn

(corresponding to M −D eigenvalues are equal to σ2).

Plot Spatial Spectrum of MUSIC

PM (θ) =
aH (θ)a(θ)

aH (θ)ÛH
n Ûna(θ)

,

In shorts, the optimized AWPC with M = 17, ∆θ = 2π/M
and (d1, d2) = (5.2, 2.3)λ has no-ambiguity and high accuracy
for a half space localization, as shown in Fig. 6b.

VI. CONCLUSIONS

In this paper we have considered the problem of general
AWPC design-parameter optimization for DOA estimation
using arbitrary estimator. The design parameters (antenna
rotation angle, atenna rotation step number and the antenna
dipoles distances) were optimized in such a way that we
avoid ambiguity issues for a half space localization problem
while minimizing the CRB for improving the DOA estimation
accuracy. This work can be extended to the multiple-sensor
case as well as consider other desired properties like isotropy
or antenna resolution.

ACKNOWLEDGMENT

This work is supported by Vietnam National University
Hanoi under the TRIG.B project and VNU University of
Engineering and Technology under the CN (2012) project.

REFERENCES

[1] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” in Proc. RADC Spectral Estimation Workshop, Rome, NY, 1979,
pp. 243-258.

[2] Engin Tuncer and Benjamin FriedLander, Classical and Modern
Direction-of-Arrival Estimation, Academic Press, 2009.

[3] Phan Anh, Antennas without Phase Centers and their Applications in
Radio Engineering, Series: Monograph, No.23, Wroclaw, Poland, 1986,
ISSN 0324-9328.

[4] Phan Anh and Q. Tran Cao, “DOA Determination by Using An Antenna
System Without Phase Center and MUSIC Algorithm,” IEEE Antenna and
Propagation Society International Symposium, Washington DC, USA,
pp.134-137, July, 2005.

[5] T.T.T Quynh, P.P Hung, P.T Hong, T.M Tuan and P. Anh, “Direction-
of-Arrival Estimation using Special Phase Pattern Antenna Elements in
Uniform Circular Array,” in Proc. of the International Conference on
Computational Intelligence and Vehicular System (CIVS), 2010, pp.138-
141.

(a)

(b)

Fig. 6. MUSIC spectrum of the Antenna without Phase Center: (a) AWPC
(d1 = d2), (b) AWPC (|d1 − d2| > 0.5λ).

[6] H. Cramer, Mathematical Methods of Statistics, New York: Prince Uni-
versity, Press, 1946.

[7] Harry L. Van Trees, Optimum Array Processing- Part IV of Detection,
Estimation, and Modulation Theory, John Wiley & Sons, 2002.

[8] Houcem Gazzah and Karim Abed-Meraim, “Optimum Ambiguity-Free
Directional and Omnidirectional Planar Antenna Arrays for DOA Esti-
mation,” IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3942-3953,
Oct. 2009.

[9] Motti Gavish and Anthony J.Weiss, “Array Geometry for Ambiguity
Resolution in Direction Finding,” IEEE Trans. Antenna Propagat., vol.
44, no.6, pp.889-895, Jun. 1996.

[10] Benjamin Friedlander and Anthony J. Weiss, “Performance of Direction-
Finding Systems with Sensor Gain and Phase Uncertainties,” Circuits
Systems Signal Process., vol. 12, No.1, pp.3-35, 1993.

425


