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Abstract—Mechanical properties of tissues in terms of elasticity
and viscosity provide us useful information which may be used
in detecting tumors. These parameters can be estimated from
the measurement of particle velocities of shear wave propagation
which is generated by a vibrating needle at a certain frequency.
For the heterogeneous medium, the finite difference time domain
(FDTD) is an effective method to present the shear wave
propagation. The elasticity and viscosity are then estimated using
the algebraic Helmholtz inversion (AHI) algorithm. However,
there is a lack of deep investigation of estimation by combining
FDTD method and AHI algorithm. Thus, this paper presents a
complete system which includes the principle of excitation and
measurement, the FDTD to model the shear wave propagation,
the AHI algorithm to estimate the elasticity and viscosity, and the
investigation on frequency-dependent the elasticity and viscosity.
Also, we suggest that the excitation frequency of 200 Hz will
offer the best estimation of the elasticity and viscosity.

I. INTRODUCTION

Mechanical properties of tissues in terms of elasticity and

viscosity provide us useful information which may be used in

medical diagnosis, especially in detecting tumors [1]. Among

various elasticity imaging modalities, ultrasonic shear wave

elasticity imaging (SWEI), introduced in 1998 by Sarvazyan

et al. [2], is used for estimating the complex shear modulus

(CSM) of biphasic hydro polymers including soft biologi-

cal tissues. As a consequence, SWEI can be coupled with

traditional (e.g., structural) ultrasound imaging to provide

additional information in the diagnosis. In a recent survey on

different state-of-art techniques of ultrasound elastography [3],

Gennission et al. have confirmed that SWEI has significant ad-

vantages over the other techniques in terms of reproducibility,

quantification, elasticity contrast, and automatic shear wave

generation. These advantages lead to new applications of

SWEI, not only for diagnosis but also for treatment [4], [5], [6]

and [7].
With respect to CSM estimation, various methods have

been developed as briefly surveyed next. In 2004, by using

the fact that propagation speed of shear waves is related to

the frequency of vibration, the elasticity and viscosity of

the medium Chen et al. proposed a method to estimate the

shear elasticity and viscosity of a homogeneous medium by

measuring the shear wave speed dispersion and, in turns, the

CSM [8]. In 2007, Zheng et al. applied a linear Kalman filter

for the reconstruction of the harmonic motion of particle

velocities at distinct spatial locations [9]. Their approach is

to model displacement at the spatial points of interest as

a sinusoidal function of time. From estimated quantities,

absolute phase at a distinct spatial location can be found.

By repeating the same procedure for another location a

phase difference is found. Shear wave speed and shear wave

dispersion curves are estimated over a frequency bandwidth

and material properties are obtained. In 2008, Liu and Ebbini

proposed a second-order dynamical model to reconstruct the

CSM for thin tissue constructs [10]. Their approach was to

displace a tissue construct at the distinct spatial location by

using acoustic radiation force. They track tissue displacement

and use an EKF approach to reconstruct material properties

at the given location. The EKF approach is necessary since

the dynamical model used is a non-linear function of the

underlying material parameters. Because they use acoustic

radiation force to generate shear waves, so a drawback of this

method is difficult to determine the force magnitude which

needs to be known for the calculations. In 2010, Orescanin et
al. have conducted an experiment whereby they modeled the

nonlinear relationship between wave dynamics and material

parameters. They represented the CSM parameters of the

present by a nonlinear function of the CSM parameters in the

past. So, they applied the Maximum Likelihood Ensemble

Filter (MLEF), which is a stochastic filter capable of handling

nonlinear dynamical models and nonlinear observation

operators, to estimate the CSM of a homogeneous medium

based on the Kelvin–Voigt model [11]. For the problem of

tumor detection, in 2013, this MLEF approach was extended

to a one–dimensional (1D) heterogeneous medium by Tran et
al. [12] and a two–dimensional (2D) heterogeneous medium

by Hao et al. [13]. However, the limitation of works in [11],

[12], and [13] is that authors use the wave equation for

shear wave propagation. It works well with homogeneous

medium but not in heterogeneous one. For the heterogeneous

medium, the finite difference time domain (FDTD) is an

effective method to present the shear wave propagation. The

elasticity and viscosity are then estimated using the algebraic
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Fig. 1. Generation and measurement shear wave.

Helmholtz inversion (AHI) algorithm. However, there is a

lack of deep investigation of estimation by combining FDTD

method and AHI algorithm. Thus, this paper presents a

complete system which includes the principle of excitation

and measurement, the FDTD to model the shear wave

propagation, the AHI algorithm to estimate the elasticity and

viscosity, and the investigation on frequency-dependent the

elasticity and viscosity. Also, we suggest that the excitation

frequency of 200 Hz will offer the best estimation of the

elasticity and viscosity.

II. METHOD

A. Shear wave propagation

Shear wave is generated and measured as illustrating to

Figure 1. A mechanical actuator was adapted to hold a

stainless-steel needle. The needle is 1.5 mm in diameter and

13 cm long. It is controlled to generate a vibration along the

z-axis at a frequency in the range of 50 Hz to 450 Hz (in this

research, the chosen frequency is 200 Hz). Consequently, the

shear wave is propagated in the perpendicular plane (i.e. x-

and y-axes). After that, a Doppler ultrasound system was used

to measure the particle velocity [11].

In some studies ( [11], [12] and [13]), the authors used wave

equation (1) to represent the shear wave propagation in tissues.

In which, the particle velocity v(r, t) of shear wave at a point

is a spatial-temporal function of the radial distance r and time

t, and is given by

v(r, t) =
1√

r − r0
Ae−α(r−r0) cos[ωt− ks(r − r0)− φ], (1)

where A is the amplitude of source excitation, r0 is the needle

position, and φ is the initial temporal phase, α and ks are

attenuation coefficient and wave number at surveyed point.

However, this approach shows that the particle velocity at each

point in space is independent with each other, it only depends

on parameters of medium. This is not accurate, because, in

fact, the particle velocity at a point in space depends on one
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Fig. 2. The arrangement of stress tensor σ and velocity vector vz nodes
in space and time. The stress tensor nodes are shown as triangles and the
velocity vector nodes as circles.

of its pre–point on the direction of propagation, especially in

a heterogeneous medium.

In this paper, we applied the FDTD model for the shear

wave propagation in tissues. Under the assumption of cylindri-

cal shear wave propagation along the radial axis and ignoring

absorption of medium, the particle velocity vector vz on a

direction of the wave propagation x in cartesian coordinate

relates to the stress tensor σzx following Eqs. (2) and (3) [14]).

ρ∂tvz = ∂xσzx, (2)

∂tσzx = (μ+ η∂t) ∂xvz, (3)

where ∂t represents a partial derivative operator ∂/∂t applied

to values to the right of the symbol, ∂x represents a partial

derivative operator ∂/∂x applied to values to the right of the

symbol, ρ is mass density of medium (tissues), μ and η are

the elasticity and viscosity of medium.

According to the Kelvin–Voigt model, the CSM G (x, ω) is

defined as

G (x, ω) = μ (x)− iωη (x) , (4)

where ω is the angle frequency of the vibration. Thus the

CSM estimation means estimating the elasticity μ and the

viscosity η.

The next step is to replace the derivatives in (2) and (3)

with finite differences. To do this, space and time need to be

discretized. The following notation will be used to indicate the

location where the fields are sampled in space and time

vz (x, t) = vz (iΔx, nΔt) = vnz |i , (5)

σzx (x, t) = σzx (iΔx, nΔt) = σn
zx |i , (6)

where Δx is the spatial offset between sample points and Δt
is the temporal offset. The index i corresponds to the spatial

step, while the index n corresponds to the temporal step.

Figure 2 shows sample points, also known as nodes, in

spatial dimension and time dimension. Base on the FDTD
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approach, we expressed (2) and (3) in discrete form as follows:

vn+1
z |i = vnz |i + Δt

ρΔx

(
σ
n+ 1

2
zx

∣∣∣i+ 1
2
− σ
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2

zx
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)
, (7)

σ
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2
zx

∣∣∣i+ 1
2
= σ

n− 1
2

zx
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2
+ μΔt

Δx

(
vn+1
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z |i
)

+ η
Δx

(
vn+1
z |i+1 − vn+1

z |i
)

− η
Δx (vnz |i+1 − vnz |i ) ,

(8)

To show the difference between the propagation model (1)

and FDTD model, we built an unique simulation scenario and

applied these both methods to compute the particle velocity

at each spatial locations. The simulation scenario consists of

two cases: i) a 1D homogeneous medium which consist of 200
points with the same CSM; ii) a 1D heterogeneous medium

which consist of 200 points, the CSM value is changed

gradually from the 55th point to the 79th point. Figure 3

shows the particle velocity in spatial locations in both mediums

when using wave equation (1), while Figure 4 shows one using

the FDTD model. For a 1D heterogeneous medium, Figure 3

shows that at the 55th point, the CSM value is changed

suddenly. The particle velocities in Fig. 3 are clearly different.

Thus, it would be easy to estimate CSM. However, the particle

velocity (dotted curve) shown in Fig. 3 does not reflect the real

particle velocity in heterogeneous medium. The dotted curve

in Figure 4 presents real the particle velocity in heterogeneous

medium which is changed more smoothly. However, accurate

estimation of the CSM would be a challenge.
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Fig. 3. The particle velocity in space, using wave equation (1).

B. Direct inversion to estimate the CSM

In this section, we applied the AHI algorithm [15] to

estimate the CSM from the spatial patterns of simulated shear

waves. In a small range, we assumed that the viscoelastic

properties of the medium are isotropic and there is negligible

compression applied to the medium by the source, then the

particle velocity vector vz can be described by the Navier

0 20 40 60 80 100 120 140 160 180 200
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Spatial location

V
el

oc
ity

 [m
 s−

1 ]

Homogeneous medium
Heterogeneous medium

Fig. 4. The particle velocity in space, using FDTD model.

wave equation in a homogeneous solid, which is obtained by

combining equations in (2) and (3),

ρ
∂2vz
∂t2

= G′ (x, t)∇2vz, (9)

where G′ (x, t) is the CSM in time domain, ∇2vz is Laplace

operator of vz and defined as ∇2vz = ∂2vz/∂x
2.

Applying the AHI algorithm to solve (9), then Eq. (9)

becomes the Helmholtz equation(
G (x, ω)

ρ
∇2 + ω2

)
Vz (x, ω) |ω=ω0 = 0, (10)

where G (x, ω) is the CSM in frequency domain and defined

in (4), Vz (x, ω) is the temporal Fourier transform of the

particle velocity vz (x, t), Vz (x, ω) = Ft {vz (x, t)}, ω0 is

only the value at the determined frequency of the vibration.

From (10), we can see that the CSM can be estimated directly

as
μ (x) = �

{−ρω2
0Vz(x,ω0)

∇2Vz(x,ω0)

}
,

η (x) = �
{

−ρω0Vz(x,ω0)
∇2Vz(x,ω0)

}
.

(11)

We propose a procedure to verify the quality of CSM

estimation by changing the excitation frequency. The

procedure is summarized as following:

1) Initiation, i = 1
2) Select the excitation frequency ω0=150,

3) Vibrate the needle to generate shear waves,

4) Measure the particle velocity using a Doppler ultrasound

system,

5) Estimate CSM in 120 spatial locations using Equ.(10),

6) Assign i=i+1, ω0= ω0 + 50,

7) Return to step 3 if i < 4; stop if i > 4.

III. RESULTS AND DISCUSSIONS

To test the proposed method, we built a simulation scenario

as follows: The 1D heterogeneous medium is 20 mm in size;
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the elasticity and viscosity of medium are respectively 650 Pa
and 0.1 Pa.s from 0 to 5.5 mm, 900 Pa and 0.35 Pa.s from

8 to 20 mm, and from 5.5 to 8 mm the elasticity grows

from 650 to 900 Pa, the viscosity grows 0.1 to 3.5 Pa.s;

the frequency of the vibration is 200 Hz; the amplitude of the

vibration is 2 mm.

We applied FDTD model to simulate the shear ware propaga-

tion in tissues. In there, we divided the medium into 200 points

(Δx = 0.1 mm), at each point we took 2000 samples with

Δt = 0.01 ms. Figure 5 shows the particle velocity in term

of time at the 2nd point. It presents a sinusoidal function of

time. Figure 6 indicates the particle velocity in space. It shows

the particle velocity attenuated strongly from 120th point, so

we only implemented the CSM estimation from 1st point to

120th point.
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Fig. 5. The particle velocity in time at the 2nd point.
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Fig. 6. The particle velocity in space.

We implemented estimating the CSM with some frequencies

of the vibration 150 Hz, 200 Hz and 250 Hz, after, we

showed all of the received results on a chart. Figures 7 and 8

indicate The estimated elasticity and viscosity, respectively,

with different frequencies of the vibration. The results show

that the quality of the CSM estimation is best at frequency

200 Hz. Results shows that the estimated elasticity follows

closely the ideal elasticity, especially in range, from 1st point

to 55th point. This is explained that the Navier wave equation

(9) is applied very well in a homogeneous medium. For a

heterogeneous medium, the CSM estimation obtain more error.
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Fig. 7. The estimated elasticity, with different frequencies of the vibration.
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Fig. 8. The estimated viscosity, with different frequencies of the vibration.

We used the maximum error to evaluate the quality of

the CSM estimation on ranges of medium. The results are

illustrated in Table I.

TABLE I
MAXIMUM ERROR OF THE CSM ESTIMATION

Points
Maximum error

for elasticity [Pa]
Maximum error

for viscosity [Pa.s]
1–55 ± 9.2 ± 0.038
56–79 ± 136.3 ± 0.02

80–120 ± 86 ± 0.08

IV. CONCLUSION

This paper presents a complete system which includes the

principle of excitation and measurement, the FDTD to model

2016 International Conference on Advanced Technologies for Communications (ATC)

305



the shear wave propagation, the AHI algorithm to estimate the

elasticity and viscosity, and the investigation on frequency-

dependent the elasticity and viscosity. Our method only re-

quires a single vibration frequency to accurately estimate the

elasticity and viscosity. In this experiment, we tested with

some vibration frequencies (150 Hz, 200 Hz and 250 Hz)

and suggested that the excitation frequency of 200 Hz will

offer the best estimation of the elasticity and viscosity. CSM

is estimated at each spatial location, then expanding to a series

of spatial locations on a ray (i.e 1-D reconstruction). In future

work, we will apply the Bayesian-approach-based Maximum

Likelihood Ensemble Filter (MLEF) to CSM estimation where

FDTD is exploited to build the system model. It would perform

well in both homogeneous tissue-like materials and materials

with inclusions. This will facilitate clinical diagnoses such as

cancer detection.
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