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Abstract—Tensors, as a natural extension of matrices, and
their decompositions provide important tools in many disciplines
such as psychometrics, signal processing, data communication,
computer vision, and machine learning. The main objective of
this paper is to briefly review several recent state-of-the-art
approaches for large-scale tensor data which is a crucial part
of big data. Moreover, we also introduce our own contributions
on this topic.
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I. INTRODUCTION

Large volumes of data are being generated at any given time,

especially from transactional databases, multimedia content,

social media, and applications of sensors in the Internet of

Things. When the size of datasets is beyond the ability of

typical database software tools to capture, store, manage, and

analyze, we face the phenomenon of big data for which new

and smarter data analytic tools are required. Big data provides

opportunities for new form of data analytics, resulting in

substantial productivity.

For datasets collected in a multi-dimensional form, they can

be naturally represented by multi-way arrays, which are called

tensors1. If we consider a vector as a first-order tensor, a

matrix as a second-order tensor, we will work with higher-

order tensors (of order larger than two) for multiway arrays.

In other words, while a matrix is indexed with two indices,

a higher-order tensor is a data structure with more than

two indices. For example, a three-way tensor can be used

to easily store the time-frequency representation of an EEG

dataset. The first way is for the “spatial” dimension, storing

the locations of the electrodes (a.k.a., channels) that measure

the electricity of the brain. The two other dimensions are the

time and the frequency which store the time-varying frequency

contents of the EEG signal. These tensor decompositions,

which reveal different structures/components hidden in the

underlying tensors, thereby provide efficient tools to analyze,

compress and understand data.

This research is funded by Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 102.02-2015.32.

1More precisely, tensors are introduced in linear algebra as multilinear
forms which are naturally represented, for a given basis of the considered
Euclidean space, by multi-way array.
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Fig. 1. Taxonomy of large-scale tensor problem.

Two widely-used tensor decompositions are: (i) parallel

factor analysis (PARAFAC) [1], also known as canonical

decompostion (CANDECOMP) [2] used for latent parameter

estimation, and (ii) Tucker decomposition [3] often used for

compression and subspace estimation. While matrix decompo-

sitions, such as singular value decomposition (SVD) and non-

negative matrix decomposition, are used as powerful tools to

analyze two dimensional data, tensor decompositions are more

versatile because they enjoy the following main advantages for

multi-dimensional data:

1) Tensors are a natural generalization of matrices;

2) The PARAFAC decomposition possesses the uniqueness

property under mild conditions [4]. Note that additional

constraints, such as non-negativity and sparseness, im-

posed on the tensor model, when possible, can improve

the uniqueness property and/or interpretation [5];

3) The Tucker decomposition takes into account the multi-

way structure of data and captures multiple interactions

instead of pairwise interactions, which will be destroyed

if applying matrix decomposition to collapse some of the

modes of data [6];

4) Tensor decompositions outperform matrix decomposi-

tions in some practical applications as shown in [7].

Tensor decomposition is encountered in diverse applica-

tions, such as: psychometrics, chemistry, signal processing,

linear and multilinear algebra, data communication, data min-

ing, computer vision, machine learning, to name a few. Thus,

a comprehensive survey that covers all those disciplines is

difficult. We list here several important surveys arranged in

chronological order: basics of tensor decomposition and its
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applications [4], unsupervised multiway data analysis [8],

multi-linear subspace learning for tensor data [9], tensor

factorization and decomposition in data mining [10], low-rank

tensor approximation [11] and tensor decomposition for signal

processing [7], [12]. This list is by no means exhaustive and

for more details, we refer to them and the references therein.

Our short survey, complementary to the mentioned surveys,

focuses on the problem of large-scale tensors and the potential

approaches to solve it. In this paper, moreover, we also intro-

duce our own contributions on this topic. Due to limited space,

we only consider the two most popular tensor decomposition

models– PARAFAC and Tucker–, and disregard other impor-

tant models such as block tensor decomposition [13]–[15],

tensor networks including tensor trains [16] and hierarchical

Tucker [17], coupled matrix/tensor-tensor decomposition [18],

[19].

Notations: We follow the notations used in [4]. Calligraphic

letters are used for tensors (A,B, . . . ). Matrices, vectors, and

scalars are denoted by boldface uppercase, boldface lowercase,

and lowercase respectively; for example A, a, and a. Element

pi, j, kq of a tensor A P R
IˆJˆK is symbolized as aijk,

element pi, jq of a matrix A P R
IˆJ as aij , and i-th entry of a

vector a P R
I as ai. Moreover, A b B defines the Kronecker

product of A and B, A d B the Khatri-Rao (column-wise

Kronecker) product and A ˚ B the Hadamard product which

is the element-wise matrix product, a ˝b the outer product of

a and b.

II. FROM MATRIX DECOMPOSITION TO TENSOR

DECOMPOSITION

Before starting with basic operators and models of tensor

decomposition, we provide “the bridge” between matrix and

tensor decompositions through a comparison of their unique-

ness. In its general form, matrix decomposition can be written

as

X “ PQT , (1)

which is non-unique. It means that there always exists a non-

singular matrix S such that

X “ PQT “ pPS´1qpSQT q “ P̂Q̂T (2)

where P̂ “ PS´1 and Q̂ “ QST . To be unique, additional

constraints must be imposed. Among various constraints, the

most popular ones are orthogonality, sparseness and non-

negativity. For example, SVD of X is given by

P “ UE and Q “ V, (3)

where U and V are orthogonal and E is a diagonal matrix

with non-negative real singular values. By convention, singular

values are arranged in descending order. As a result, the

uniqueness of SVD, up to a sign, is due to the orthogonal

constraint on U and V, and the ordered diagonal matrix E.

Let us consider, for example, the PARAFAC tensor de-

composition. The PARAFAC model in matrix form (unfolded

tensor) can be represented as (see next section for more details)

X “ ApC d BqT . (4)

If we decompose X by SVD, we will obtain

P “ AŜ´1, (5)

Q “ pC d BqŜT , (6)

where Ŝ is a non-singular matrix. However, different from

the matrix case, we know that Q has a Khatri-Rao product

structure. Without any additional constraints, by “restoring”

the Khatri-Rao structure of Q, we can recover matrix B and

C, then A uniquely (up to scale and permutation). Thus, the

PARAFAC model can be seen as matrix decomposition of the

unfolded tensor with the Khatri-Rao product structure being

imposed on matrix Q. The point here is that, using tensor de-

composition, if possible, often provides rich structures which

can be efficiently exploited to improve the performance and

convergence rate of certain algorithms.

III. BASIC TENSOR OPERATIONS AND ¡ODELS

In this section, we present basic tensor operators which are

often used in developing algorithms for tensor decomposition.

We also present intuitive ideas behind PARAFAC and Tucker

models and their uniqueness properties. This section is a

summary of rich literature which can be found in the above-

listed surveys. For simplicity, we will present most results in

the case of 3-way tensors.

A. Basic tensor operations

1) Tensor unfolding: Tensor unfolding, also known as ma-

tricization and flattening, is an operation which reorders a ten-

sor into a matrix. Using tensor unfolding allows exploitation of

well-defined properties developed in linear algebra for vectors

and matrices and provides a convenient way to process tensors.

We note that tensor operators can be implemented without

tensor unfolding.

Mode-n unfoldings of a tensor X P R
IˆJˆK are defined

as

Xp1q : rXp1qsi,j`pk´1qJ “ xijk,

Xp2q : rXp2qsj,i`pk´1qI “ xijk,

Xp3q : rXp3qsk,i`pj´1qI “ xijk.

There are different ways to choose ordering of columns. In the

literature, the following three ways are considered: forward

cyclic [20], backward cyclic [21] and ascending order [4].

The mode-n-unfolding here corresponds to the ascending case.

Using different tensor unfoldings leads to slightly different

formula of tensor models. However, it does not affect the

final results (i.e., recovered factors) as long as it is chosen

consistently.

2) Tensor multiplication: Entries of mode-1 product of a

tensor X P R
IˆJˆK and a matrix A P R

NˆI , denoted by

pX ˆn Aq, is given by

pX ˆ1 Aqnjk “
I

ÿ

i“1

xijkani.
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More generally, entries of mode-n product of a tensor X P
R

I1¨¨¨ˆInˆ¨¨¨ˆIN and a matrix A P R
JˆIn , denoted by pX ˆn

Aq, is defined as

pX ˆn Aqi1¨¨¨in´1jin`1¨¨¨iN “
In
ÿ

in“1

xi1¨¨¨iNajin .

Let Y “ X ˆn A. We can write an equivalent expression in

unfolded tensor form as follows:

Ypnq “ AXpnq.

We also have the following properties:

X ˆn A ˆm B “ X ˆm B ˆn A, (7)

X ˆn A ˆn B “ X ˆn pBAq. (8)

The inner product of two same-size tensors X , Y P
R

IˆJˆK is defined as

xX ,Yy “
I

ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

xijkyijk.

As a consequence, we have xX ,X y “ }X }2.

3) Useful matrix properties: Several useful matrix proper-

ties are summarized here

pA b BqpC b Dq “ pACq b pBDq

pA d BqT pA d Bq “ pATAq ˚ pBTBq

vecpABCT q “ pC b Aq vecpBq,

pA b Bq# “ ppATAq ˚ pBTBqq#pA b BqT

pA b B b CqpD d E d Fq “ pADq d pBEq d pCFq

where vecp¨q performs vectorization of a matrix or a tensor that

stacks the columns of the matrix or the tensor into a vector.

That is, given B P R
IˆJ , vecpBq “ rbT

1 , ¨ ¨ ¨ ,bT
J sT . The

superscript p¨q# is the pseudo-inverse operator. Dimensions

of each matrix are assumed to match.

B. PARAFAC model

The intuitive idea behind PARAFAC can be captured

through Figure 2. While SVD for matrices can be written as

sum of R rank one matrices (Figure 2 (a)), the PARAFAC

decomposition of X P R
IˆJˆK can be defined as

X “ vA,B,Cw ”
R

ÿ

r“1

ar ˝ br ˝ cr, (9)

or equivalently

xijk “
R

ÿ

r“1

airbjrckr, (10)

which is the sum of R rank-one tensors (Figure 2 (b)), with

R being the tensor rank. The set of vectors, taru, tbru, tcru
can be grouped into the so-called loading matrices A “
ra1 . . .aRs P R

IˆR, B “ rb1 . . .bRs P R
JˆR, and C “

rc1 . . . cRs P R
KˆR.

X ✏ a1

b1

� ... � aR

bR

(a) SVD of a matrix as sum of R rank-1 matrices.

X

✏

a1

b1

c1

� ... �

aR

bR

cR

(b) PARAFAC of a tensor as sum of R rank-1 tensors.

Fig. 2. PARAFAC can be seen as a generalization of SVD.

Equation (9) can also be formulated in matrix and vector

form using mode-n unfolding as

Xp1q “ ApC d BqT (11)

Xp2q “ BpC d AqT (12)

Xp3q “ CpB d AqT (13)

x “ pC d B d Aq1 (14)

where x “ vecpXp1qq and 1 P R
Rˆ1 whose all entries are one.

It is straightforward to see from Figure 2(b) and Equation (9)

that the sum is unchangeable if we reorder and re-scale rank-

one tensors (hence, order of vectors in loading matrices). Thus,

we have

X “ vA,B,Cw “ vAΠΛ1,BΠΛ2,CΠΛ3w, (15)

where Π is a permutation matrix and Λi, i “ 1, ¨ ¨ ¨ , 3,

are scale diagonal matrices satisfying Λ1Λ2Λ3 “ I. The

PARAFAC decomposition is generically unique (up to scales

and permutation) if the following condition is satisfied [22]:

2RpR ´ 1q ď IpI ´ 1qKpK ´ 1q, R ď J.

This condition is developed based on Kruskal’s result [23].

C. Tucker model

We note that PARAFAC can also be illustrated as Figure 3

(a) with an identity tensor2 I. If we relax this constraint (i.e.,

I now can be sparse or dense tensor), we form the Tucker

decomposition of Y P R
IˆJˆK which can be written as

follows:

Y “ vG;A,B,Cw ”
P
ÿ

p“1

Q
ÿ

q“1

R
ÿ

r“1

gpqrap ˝ bq ˝ cr, (16)

where A “ ra1 . . .aP s P R
IˆP , B “ rb1 . . .bQs P R

JˆQ

and C “ rc1 . . . cRs P R
KˆR are the factor matrices and

2An identity tensor is a cubical tensor with ones along the superdiagonal.
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(a) Representation of PARAFAC using loading matrices and identity core.

X
✏

GA B

C

(b) Tucker model with a non-identity core tensor G.

Fig. 3. PARAFAC can be seen as a special case of Tucker.

G P R
PˆQˆR is called the core tensor. In general, the factor

matrices of the Tucker model are not necessarily orthogonal.

However, in practice, a column-wise orthogonal constraint is,

in most cases, imposed.

A special case of orthogonal Tucker decomposition is

Higher-Order SVD (HOSVD) [21] where the core tensor

has the all-orthogonal property besides orthogonal factors.

All-orthogonal property means that by considering a 3-way

core tensor, the matrices, extracted by fixing one index and

releasing two the others, are mutually orthogonal.

Matrix and vector forms of (16) can be presented as

Yp1q “ AGp1qpC b BqT (17)

Yp2q “ BGp2qpC b AqT (18)

Yp3q “ CGp3qpB b AqT (19)

y “ pC b B b Aqg, (20)

where y “ vecpYq and g “ vecpGq.

In contrast to the PARAFAC model, the Tucker model is

non-unique since

Y “ vG;A,B,Cw “ vG ˆ1 P ˆ2 Q ˆ3 R;AP
´1

,BQ
´1

,CR
´1w.
(21)

Uniqueness can be achieved only if specific constraints are

added, for example both sparsity and non-negativity con-

straints.

IV. BATCH SETTING

In batch setting, we categorize the existing algorithms based

on their tensor decomposition approaches. For each one, we

first describe the main idea which is shared by all algorithms

and then present specific solutions and their differences.

A. Divide-and-Conquer approach

The main idea of this approach (Figure 4) is to divide

a big data tensor into a number of smaller data tensors;

then run specific tensor decomposition algorithms on those

small tensors (possibly in a parallel scheme) before joining

“local” results into “global” one. The difference resides in

the way each algorithm handle the data (i.e., decentralized or

distributed) and on the optimization techniques in use.

X X

...
...

I

A

B

C

Fig. 4. Divide-and-Conquer approach for large-scale tensors (An example of
the PARAFAC model.)

1) PARAFAC model: In [24], the authors proposed to use

this approach combined with a fast Alternating Least-Squares

(ALS) algorithm. To speed up the joining procedure, they also

proposed a multi-stage reconstruction step where local factors

are merged from results of neighbouring sub-tensors. The

algorithm works under the assumption that the decomposition

of each sub-tensor is strictly unique.

In [25], we also used a decentralized approach but the way

the structure of PARAFAC is used is different from [24]. In

fact, our algorithm is an extension in spirit of the Generalized

Minimum Noise Subspace (GMNS) method [26], [27] which

permits the application of (stable) SVD at small-scale to sub-

space estimation. Our algorithm also use the same uniqueness

condition assumption as in [24].

To relax the uniqueness condition on sub-tensors, in [28],

[29], the authors developed a distributed ALS algorithm. The

main idea is to permit collaboration across the three modes of

the tensor.

2) Tucker model: A distributed memory Tucker decom-

position for data compression was proposed in [30]. While

each block data is fixed in each processor, factor matrices are

exchanged between processor grid. Parallel implementation

of Higher Order Orthogonal Iteration (HOOI) [31] using

Sequentially-Truncated HOSVD [32] as an initialization, was

taken into account. Those algorithms can also be implemented

efficiently by using level-3 Basic Linear Algebra Subprograms

(BLAS) routines3.

B. Compression/compressive sensing/random sampling based

approaches

The spirit of these approaches is to process a reduced-size

or a sparse representation that essentially keeps the same or

approximately the same information as the original form. An

illustration of this approach is given in Figure 5.

In tensor decomposition, the compression approach-based

algorithms always use the Tucker decomposition or HOSVD

to compress data. Then, depending on applications, a desired

decomposition (e.g., PARAFAC) is applied on the core tensor

3Level-3 BLAS aims to implement matrix-matrix operations and supports
block-partitioned algorithms
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Fig. 5. Compression/compressive sensing/random sampling approaches for
large-scale tensors (PARAFAC model).

to extract loading factors. To recover the factors of the original

form, the extracted factors are simply multiplied with the

corresponding factors of Tucker decomposition. As a con-

sequence, it allows to avoid running desired decomposition

on large dimensional tensors (i.e., avoid running iterative

algorithm4 in large-scale data). Since both Tucker and HOSVD

algorithms require SVD or EVD computation of large dimen-

sional matrices, this approach would be appropriate only for

small or moderate size tensor decomposition. For more details,

we refer the reader to [33].

The random sampling (RS) approach represents data in

smaller size or sparse form while approximately preserving

essential information (see [34] for an introduction and review).

Depending on data form (e.g., matrix or tensor) and algo-

rithms, there are different kinds of sampling strategies such as

element-wise, row/column, slide and block. Moreover, those

strategies can be chosen following several specific probability

distributions (e.g., uniform, non-uniform, data-dependent).

For the Tucker model, in [35], along each mode, a column

sampling strategy, which can be one-pass or multiple-pass, is

first applied to the unfolded tensor. Then the factor matrices

are computed as principal singular vectors of the sampled

matrix. A similar method but using element-wise sampling is

developed in [36]. We note that element-wise sampling yields

sparse representation instead of reduced-size form.

For the PARAFAC model, the Parcube algorithm [37] uses

data-dependent-based sampling to determine the important

part of the tensor (i.e., marginal sum of the tensor for each

mode), runs PARAFAC for each sampled tensor and then

merges results. This algorithm only works for sparse tensors

and offers no identifiablity guarantee.

In [38], authors further developed the compression approach

by assuming that the big tensor has an underlying low-rank

structure (i.e., the PARAFAC model) and the factor matrices

are sparse. While the low-rank structure allows the design of

a special compression matrix which has a Kronecker product

structure, the sparse factors help to guarantee identifiability

(i.e., uniqueness of the recovered factors from results of the

compressed tensor). Here, the Kronecker product structure of

4Most PARAFAC decomposition algorithms are iterative.

the compression matrix keeps the compressed tensor having a

low-rank as the original one. Thus, authors claimed that this

approach can be considered as a generalization of compressive

sensing (CS) idea for the multilinear case. A combination of

this approach and divide-and-conquer strategy can be found

in [39].

C. Alternating least-square/Optimization approach

For tensor decomposition, alternating least-squares (ALS)is

considered the workhorse algorithm for a long time. The idea

of the alternating approach is simple; at each step, we optimize

a factor while keeping the others fixed. At the beginning, there

were several efforts to accelerate convergence and overcome

degeneracy5 using a line-search approach [40]. The direct

implementation of ALS is difficult to handle for large-scale

data because (i) the size of intermediate computation results

between the unfolded tensor and all-but-one factors is much

larger than that of the interested loading matrices (ii) multiple

accesses of original tensor data in different orders are neces-

sary. Several techniques to tackle those problems have been

addressed in [41] and [42].

The general optimization approach casts the tensor de-

composition problem into a nonlinear equation problem and

then solves it using standard optimization tools, such as

gradient-based methods. In some difficult situations such as

degeneracy or over-factoring case6, gradient-based algorithms

can outperform ALS in terms of accuracy and performance.

Within this class, various algorithms have been developed,

including the non-linear conjugate gradient [43], also see [44]

for the case of missing data, [45] for the case of sparse and

nonnegative PARAFAC and Tucker, the fast damped Gauss-

Newton (dGN) algorithms [46] and the Alternating Direction

Method of Multipliers (ADMM) [47].

V. ADAPTIVE SETTING

In adaptive setting. also known as online or incremental

setting, we classify the existing algorithms with respect to the

characteristic of streaming data: full observation (i.e., without

missing data) and partial observation (i.e., with missing data).

An illustration of the adaptive tensor setting is given in

Figure 6.

X pt ´ 1q
Ð ¨ ¨ ¨

Fig. 6. Adaptive tensor setting: at time instant t, tensor X ptq captures a new
data slice.

5Degeneracy refers to a problem when collinearity of two or more compo-
nents in the factor matrices exists.

6Over-factoring means that the chosen tensor rank is larger than the true
one.
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A. Full observation

An adaptive PARAFAC model for third-order tensors hav-

ing one dimension growing with time has been introduced

in [48]. Two algorithms using recursive least-squares tracking

(PARAFAC-RLST) and simultaneous diagonalization tracking

(PARAFAC-SDT) have been proposed. While the former

uses first-order methods (i.e., using gradients) to optimize an

exponentially-weighted least-squares cost function, the latter

exploits an SVD tracking algorithm combined with a recursive

simultaneous diagonalization step. The computational com-

plexity of both algorithms is quadratic in the tensor rank.

To deal with computational complexity of [48], we have pro-

posed a linear complexity adaptive PARAFAC algorithm [49]

which generalizes the Orthonormal Projection Approximation

Subspace Tracking (OPAST) approach [50]. This algorithm,

named 3DOPAST, uses a special interpretation of the Khatri-

Rao product as collinear vectors inside each column. Its

performance is equal or even superior to PARAFAC-RLST and

PARAFAC-SDT while keeping the computational complexity

linear with respect to the tensor rank. An improved ver-

sion of 3DOPAST, named Second-Order Optimization based

Adaptive PARAFAC Decomposition (SOAP), using a second-

order stochastic gradient as well as preserving the Khatri-Rao

product structure is also proposed in [51]. Moreover, we also

adapt SOAP to handle the adaptive non-negative PARAFAC

model. It is shown that SOAP is stable for very long time run.

For more details, we invite the reader to our papers [49], [51].

Adaptive Tucker decomposition has several different names

in the literature, for examples, dynamic tensor analysis [52],

incremental tensor subspace learning [53], tensor subspace

tracking [54]. Streaming tensor analysis was proposed in [52].

In this work, the eigensubspace is updated via tracking a

projection matrix for all modes. Dynamic tensor analysis,

which is a more general model for streaming tensor analysis,

allows a changeable amount of data to come at each time

instant. The main idea of the proposed algorithm for this

kind of models is to track the covariance matrix and the

eigensubspace of unfolded tensors for each mode. With the

same spirit, the incremental tensor subspace learning applies

an incremental SVD algorithm [55] to three unfolded tensors.

In tensor subspace tracking, based on Kronecker-structured

projection, the tensor subspace is tracked by using the matrix-

based subspace tracking PAST algorithm [56].

B. Partial observation

In another recent work [57], authors have proposed an adap-

tive PARAFAC for incomplete streaming data. They proposed

to use a first-order method to minimize an exponentially-

weighted least-squares cost function with regularization terms.

Second-order methods have been considered independently

in [58] as well as in our work [59].

VI. CONCLUSION

This paper provides a brief overview of decomposition

methods for large-dimensional tensors. Three classes of ap-

proaches are highlighted that handle the large-scale problem

by reducing the data size (i.e., compression, compressive

sensing, random sampling), by using parallel computing (i.e.,

divide-and-conquer) or by alternating optimization (e.g., by

reducing the size of the parameters with respect to which

the optimization is achieved). In the case of streaming data,

our fast adaptive algorithms were presented including the

3DOPAST and SOAP methods that have the advantage of

linear complexity.
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