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In this paper, formulation of a novel consecutive-interpolation 4-node tetrahedral finite element (CTH4)
and its applications to the analysis of heat transfer problems in three-dimension (3D) are presented. The
field variables approximation is performed on the way of taking both the nodal values and their averaged
nodal gradients into account, in terms of the consecutive-interpolation procedure (CIP). The new CTH4
element proposed inherently possesses many desirable advantages over the conventional tetrahedral ele-
ment (TH4) such as the higher accuracy, higher-order continuity, and continuous nodal gradients without
smoothing operation. Importantly, the number of degrees of freedom of the system does not change, but
still remains the nodal values as that of the TH4 element. We demonstrate the accuracy and performance
of the developed CTH4 element through a series of numerical experiments of 3D heat transfer problems,
in which comparison between the present obtained results and reference solutions derived from analyt-
ical solutions and other numerical approaches is made. We additionally propose a general formulation of
auxiliary functions in terms of the CIP method. As a result, a family of CIP-based elements in all dimen-
sions (i.e., 1D up to 3D) can now straightforwardly be estabilshed since any auxiliary functions required
by the CIP scheme are easily to be generated by using the present general formulation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer problems constitute a large class of engineering
problems, and they present nearly in every activities, for example,
the air-conditioning exploits the convection, both heat conduction
and convection can be found in cooking, and the Earth receives
heat from the Sun through thermal radiation. Due to a wide range
of applications as these heat transfer problems span many engi-
neering disciplines including aeronautical, electrical, mechanical
and civil engineering etc. [1]. Therefore, analysis of heat transfer
problems is of great importance to the scientific community. A
closed-form solution obtained by analytical approaches is cur-
rently only available for some specific problems with relatively
simple geometry and boundary conditions. When it comes to deal
with engineering problems which require modeling of more com-
plicated geometries and/or boundary conditions, numerical
approaches have shown to be more suitable.

Although the finite element method (FEM) has shown to be one
of the most popular numerical methods in use nowadays, the
method however inherently owns several shortcomings [1,2]. The
FEM shape function is C0 continuous, thus the nodal gradient fields,
e.g., the temperature gradients in case of heat transfer problems,
are discontinuous across element boundaries. The non-physical
discontinuous gradient fields are required to be treated in post-
processing.

Various alternatives have been previously proposed to investi-
gate the heat transfer problems, such as the boundary element
method (BEM) [3,4], the class of meshfree methods [5–8] and the
smoothed finite element method [2], etc. Each method has its
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own advantages and disadvantages. For example, the BEM has
shown advantages for some specific problems like crack modeling
but it is not easy to extract the data at points inside the problem
domain, and more importantly fundamental solutions for each
specific problem are often required, which is not a trivial task for
complex problems. The class of meshfree methods discretizes the
problem domain into scattered nodes and consequently elements
are no longer required, so that more flexibility is achievable when
the domain or the discretization needs to be updated, such as in
case of refinement or optimization. The smoothed finite element
method employs mathematical smoothing operator to ‘‘smoothen”
the nodal gradients.

The recent development of a consecutive-interpolation 4-node
quadrilateral element (CQ4) for the analysis of mechanical stress
of two-dimensional problems based on the consecutive-
interpolation procedure (CIP) [9] was presented in [10]. Subse-
quently, the CQ4 has been extended to study transient problems
of free and forced vibration for linear elastic and piezoelectric
structures [11], and enhanced by enrichments for dealing with
crack problems [12]. In this setting, the CQ4 element basis func-
tions are constructed through two stages. The first stage is carried
out the same interpolation functions as in the classical FEM for the
4-node quadrilateral element. The second stage is subsequently
extended to include both the nodal values and the averaged values
of gradients of the unknown function at the nodes [10,11]. The
original goal proposed for the CIP is to improve the accuracy of
the results and to smooth the stress fields in terms of FEM. In other
words, the development of the CIP is to make the trial solution and
its derivatives continuous across inter-element boundaries. The
accuracy of the computed gradients of the trial solution should
hence be improved and the smoothing techniques generally
employed during the post-processing process should be avoided
completely.

The conventional FEM approximations, which employ a linear
combination of nodal values, are enhanced by adding other terms
related to the averaged nodal gradients. As a consequence, the
resulting shape functions that possess C1 continuous across ele-
ment boundaries are obtained and thus, the nodal gradient fields
are continuous. Additional smoothness obtained by the CIP, in con-
trast to the conventional approximation, generally provides poten-
tial for higher-order accuracy because of solution regularity. In
addition, the CQ4 shape functions possess the Kronecker-d prop-
erty, allowing directly imposition of essential boundary conditions.
Furthermore, no additional degrees of freedom (DOFs) are required
to the system and no modification is made to the finite element
mesh. Hence, the unknowns remain the same as those of the
FEM, which are the nodal values, and the same mesh as in FEM
can be utilized.

From the practical applications point of view, there are only a
few problems that could be simplified to 2D models. In most of
the cases, researchers and engineers must deal with 3D problems,
and developing effective numerical methods that are able to accu-
rately simulate 3D problems is a natural demand. In the past few
decades, many attempts have been devoted to the development
of new or improved models for 3D thermal analysis. Both analyti-
cal [13,14] and numerical methods [5,15–18] are proposed, in
order to provide higher accurate results and/or save computational
time, which are well known as the two key criteria required in
most practical applications. In particular industry-related prob-
lems, investigation often focuses on techniques that extends exist-
ing models in certain aspects. Gerace et al. [19] introduced a
meshless-based procedure that allows automation from the dis-
cretization of problem domains, even with rather complicated
geometry, to the output solution. This procedure is shown to sig-
nificantly reduce the cost of computation, especially in solving
large-scale 3D problems. A quite popular and interesing applica-
tion is the simulation of welding process, which includes moving
heat source. Challenges in this application involves singularity
due to very high temperature locally concentrated at the source
and the necessity of fine mesh along the welding path. Relevant
approaches such as adaptive addition and elimination of nodes
within a meshless framework [20] and the partition of unity virtual
node based on the polygonal finite element [21] have been devel-
oped. Recently, [22] developed a model for 3D transient heat anal-
ysis of a steel billet during the reheating process in steel industries,
which enables the prediction of temperature field as well as the
growth of oxidation on the billet surface. Another FEM based
model to predict the temperature field in a power transformer
bushing during working conditions was introduced by [23], pro-
viding insight information for manufacturers to evaluate insulation
design and loss of insulation life within a power transformer.

Inspired by the advantages and potential of the consecutive-
interpolation approach reported for the 2D linear elastic problems
[9–12], in this paper we formulate for the first time a novel
enhanced nodal gradient 4-node tetrahedral finite element
(CTH4) based on the CIP for heat transfer analysis in 3D. The
approximation for this new CTH4 element is performed on the
way of taking both the nodal values and their averaged nodal gra-
dients into account. Similarly, the proposed CTH4 element owns
many advantages over the conventional tetrahedral element
(TH4) such as the higher accuracy, higher-order continuity, and
continuous nodal gradients without smoothing operation. Once
again, importantly, the number of DOFs of the system does not
change, but still remains the nodal values as that of the TH4
element.

In this paper, a general formulation that can be used for repro-
ducing any auxiliary functions in terms of the CIP method is also
proposed. Deriving this general formulation is indeed very impor-
tant and useful in the development of the approach, where the
auxiliary functions required for a class of CIP-based elements can
now straightforwardly be derived. Here, the general form of the
auxiliary functions will be derived, and some specific auxiliary
functions for several CIP-based elements will be reproduced by
using the new general formulation.

This paper is organized as follows. After the introduction, the
formulation for the three-dimensional CTH4 element, which is
based on the development of Consecutive-Interpolation procedure
for the 4-node tetrahedral element Section 2, is presented in
details. The weak form of heat transfer problems is shortly given
in Section 3. Several numerical examples are investigated and dis-
cussed in Section 4. A general formulation of the auxiliary func-
tions for the CIP approach is proposed in Section 5. Conclusions
and outlooks are drawn in Section 6.

2. Formulation of consecutive-interpolation 4-node tetrahedral
element (CTH4)

2.1. The consecutive-interpolation procedure (CIP)

Consider a general 3D body that occupies a domain X 2 R3 and
bounded by its boundary C. A function uðxÞ is approximated
through the consecutive-interpolation (CIP) scheme as [9–12]

uðxÞ � ~uðxÞ ¼
Xn
I¼1

/Iu
½I� þ /Ix�u

½I�
;x þ /Iy�u

½I�
;y þ /Iz�u

½I�
;z

� �
; ð1Þ

where n is the number of nodes and u½I� is the value of function uðxÞ
evaluated at node I by the finite element interpolation

u½I� ¼ uðxIÞ ¼
Xn
l¼1

Nlûl ¼ Nû: ð2Þ
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The values �u½I�
;x ; �u

½I�
;y , and �u½I�

;z are the averaged nodal gradient of

uðxÞ evaluated at node I. The first order derivative of u½e�
;x ðxIÞ evalu-

ated at node I within an element e can be written by finite element
interpolation as follows:

u½e�
;x ðxIÞ ¼

Xne
l¼1

Nl;xûl ¼ N;xû; ð3Þ

with ne being the number of nodes within element e. After getting

the nodal gradients u½e�
;x ðxIÞ for all the elements e 2 SI that share the

node I, the averaged value �u½I�
;x can then be calculated using weighted

averaging by

�u½I�
;x ¼

X
e2SI

we � N½I�½e�
;x

� �
û ¼ �N;xû; ð4Þ

with the weights we defined by the ratio of the volume of element e

and the total volume of the set SI . The values �u½I�
;y and �u½I�

;z are com-
puted in the same way.

In Eq. (1), the so-called auxiliary functions /;/Ix;/Iy;/Iz have to
be determined for each type of element and that must be satisfied
the following conditions [9,10]

/IðxJÞ ¼ dIJ ; /I;xðxJÞ ¼ 0; /I;yðxJÞ ¼ 0; /I;zðxJÞ ¼ 0
/IxðxJÞ ¼ 0; /Ix;xðxJÞ ¼ dIJ; /Ix;yðxJÞ ¼ 0; /Ix;zðxJÞ ¼ 0
/IyðxJÞ ¼ 0; /Iy;xðxJÞ ¼ 0; /Iy;yðxJÞ ¼ dIJ ; /Iy;zðxJÞ ¼ 0
/IzðxJÞ ¼ 0; /Iz;xðxJÞ ¼ 0; /Iz;yðxJÞ ¼ 0; /Iz;zðxJÞ ¼ dIJ

ð5Þ

where J is any one of the indices i; j; k and m of the CTH4 element
(which will subsequently be described in the following subsection),
and

dIJ ¼
1 if I ¼ J

0 it I – J

�
ð6Þ

These conditions are explained in [10]. The Eq. (1) can then be
rewritten as

uðxÞ � ~uðxÞ ¼
Xn

I¼1

RIûI; ð7Þ

where the CIP shape function RI associated with a node I is given by

RI ¼ /INI þ /IxN
½I�
;x þ /IyN

½I�
;y þ /IzN

½I�
;z : ð8Þ
Fig. 1. Sketch of the CIP approach on a
For easily understanding the CIP concept, an illustration of the
CIP scheme applied in a 2D domain is depicted in Fig. 1 [10].
Assume that the point of interest x is located inside a 4-node
quadrilateral element, where the 4 nodes are denoted as i; j; k;m
Firstly, nodal values and the nodal gradients are evaluted using
the standard finite element procedure. Then the four sets
Si; Sj; Sk; Sm containing the elements that share the node i; j; k;m,
respectively, have to be determined. Once the sets Si; Sj; Sk; Sm are
found, the weighted average of the nodal gradients can be com-
puted. It is noted from Fig. 1 that the support domain of a point
of interest x is in general larger than that in the conventional
FEM. The nodes that support the point x include all the nodes in
the element sets Si; Sj; Sk; Sm, whereas in the classical FEM, the sup-
porting nodes are simply the four nodes i; j; k;m. The application of
CIP scheme for a 3D domain is quite similar.

2.2. Formulation of novel consecutive-interpolation 4-node
tetrahedral element (CTH4)

The formulation of the new consecutive-interpolation 4-node
tetrahedral element (CTH4) is presented here in this section. To
this end, we apply the CIP scheme to a 4-node tetrahedral element.
A schematic sketch of the tetrahedral element in physical coordi-
nates and its mapping in natural coordinates is represented in
Fig. 2. Illustration of support domain of a CTH4 element is sketched
on Fig. 3 (Note: the rest of the mesh is omitted for the sake of clar-
ity). We denote four nodes by i; j; k;m, and consequently the four
shape functions associated with these nodes are given by

Li ¼ 1� n� g� f ð9Þ
Lj ¼ n ð10Þ
Lk ¼ g ð11Þ
Lm ¼ f ð12Þ

The partial derivatives can then be calculated by

@
@x
@
@y

@
@z

2
64

3
75 ¼ J�1

@
@n

@
@g
@
@f

2
664

3
775; ð13Þ

where the Jacobian matrix is computed as follows:
4-node quadrilateral element [10].



Fig. 2. Sketch of a 4-node tetrahedral element in physical space (left-hand) and in natural space (right-hand).

Fig. 3. Schematic representation of the support domain for a CTH4 element. Similar to the CQ4 element [10], the support domain of the proposed CTH4 element is in general
larger than that of the traditional TH4 because of the CIP scheme, by adding extra nodes from its neighboring elements into the interpolation procedure. Consequently, the
bandwidth of the so-called B-matrix (see Section 3) in terms of the CIP method is larger than that of the non-CIP one. In other words, the number of the suporting nodes,
generally n > 4. Curious readers can find more information regarding this issue as it is already discussed in [10–12] or [9].
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J ¼
@x
@n

@y
@n

@z
@n

@x
@g

@y
@g

@z
@g

@x
@f

@y
@f

@z
@f

2
664

3
775 ¼

@Li
@n

@Lj
@n

@Lk
@n

@Lm
@n

@Li
@g

@Lj
@g

@Lk
@g

@Lm
@g

@Li
@f

@Lj
@f

@Lk
@f

@Lm
@f

2
6664

3
7775

xi yi zi
xj yj zj
xk yk zk
xm ym zm

2
6664

3
7775; ð14Þ

The functions /i;/ix;/iy and /iz are given by

/i ¼ Li þ L2i Lj þ Lk þ Lm
� �� Li L2j þ L2k þ L2m

� �
ð15Þ

/ix ¼ � xi � xj
� �

L2i Lj þ pLiLjLk þ pLiLjLm
� �

� xi � xkð Þ L2i Lk þ pLiLkLm þ pLiLkLj
� �

;

� xi � xmð Þ L2i Lm þ pLiLmLj þ pLiLmLk
� �

ð16Þ

/iy ¼ � yi � yj
� �

L2i Lj þ pLiLjLk þ pLiLjLm
� �

� yi � ykð Þ L2i Lk þ pLiLkLm þ pLiLkLj
� �

;

� yi � ymð Þ L2i Lm þ pLiLmLj þ pLiLmLk
� �

ð17Þ
/iz ¼ � zi � zj
� �

L2i Lj þ pLiLjLk þ pLiLjLm
� �

� zi � zkð Þ L2i Lk þ pLiLkLm þ pLiLkLj
� �

;

� zi � zmð Þ L2i Lm þ pLiLmLj þ pLiLmLk
� �

ð18Þ

with p ¼ 0:5. The functions /j;/jx;/jy;/jz;/k;/kx;/ky;/kz;/m;/mx;

/my;/mz can be computed similarly by a cyclic permutation of the
indices i; j; k;m.

2.3. Modification to retain the C0-continuity

The formulation of Consecutive-interpolation scheme leads to
elements that can reproduce continuous nodal gradients. In cases
where the C0-continuity at node is necessary, such as on material
interfaces and geometrical boundaries, it is required to modify
the formulation, such that the ‘‘nodal averaged gradient” is
replaced by nodal gradient, i.e., [9,10]

�u½I�
;x ¼ u½e�

;x : ð19Þ
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T=sin(π x/L)

T=0oCT=0oC

T=0oC

L

L

Fig. 4. Example 4.1. Geometry and finite element mesh of a square plate with
Dirichlet condition.
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By this slight modification, C0-continuity can be recovered for any
given nodes. In fact, if the modification is applied to all the nodes
in the problem domain, the CIP based elements will degenerate to
the standard FEM.

3. Weak form of heat transfer problem

The governing equation of a heat transfer problem is given by

r � krTð Þ þ Q ¼ qcp
@T
@t

; ð20Þ

with the following boundary conditions

T ¼ T; on C1 : Dirichlet boundary ð21Þ
krTð Þ � n ¼ �q; on C2 : Neumann boundary ð22Þ
krTð Þ � n ¼ h Ta � Tð Þ; on C3 : convection boundary ð23Þ
krTð Þ � n ¼ er T4

a � T4
� �

; on C4 : radiation boundary: ð24Þ

In Eq. (20), k ¼ diag kxx; kyy; kzz
� �

is the tensor of thermal conductiv-
ities, T the temperature, Q the heat sink/source, q the density
and cp the specific heat capacity. In the boundary conditions
Eqs. (21)–(24), T is the prescribed temperature, �q the prescribed
heat flux, n the normal vector pointing outward of the boundary,
Ta the ambient temperature, e the emissivity and r the Stefan–
Bolzmann constant for radiation.

The weak form of heat transfer problem is obtained by multi-
plying both sides of Eq. (20) with a test function dT and integrating
over the entire domainZ
X
r � krTð ÞdTdXþ

Z
X
QdTdX ¼

Z
X
qcp

@T
@t

dTdX; ð25Þ

Integration by parts and apply the Gauss theorem, yieldZ
X
qcp

@T
@t

dTdXþ
Z
X

drTð ÞkrTdX

�
Z
C

dTð Þ krTð Þ � ndC�
Z
X
QdTdX ¼ 0;

ð26Þ

and applying the boundary conditions, the following equation is
obtainedZ

X
qcp

@T
@t

dTdXþ
Z
X

drTð ÞkrTdX�
Z
X
QdTdX

�
Z
C

�qdTdC�
Z
C
h Ta � Tð ÞdTdC�

Z
C
er T4

a � T4
� �

dTdC ¼ 0;

ð27Þ
After the temperature field is determined, the thermal energy

over the whole domain is calculated through

W ¼
Z
X
BTkBdX

� �
T̂; ð28Þ

where T̂ is the nodal temperature values and B is the matrix of the
derivatives of shape functions

B ¼

@R1
@x

@R2
@x . . .

@Rn
@x

@R1
@y

@R2
@y . . .

@Rn
@x

@R1
@z

@R2
@z . . .

@Rn
@z

8>><
>>:

9>>=
>>;

ð29Þ

Remark 1. It is worth stressing out that the effects of the
numerical integration on the accuracy of the solution in terms of
CIP have already been analyzed and presented in [10,11] for both
static and dynamic problems. Since no special methods are
required for the numerical integration of the CIP. Any quadrature
rules used for the conventional FEM can be applied the same for
the CIP. Higher number of quadrature points does not influence too
much on the accuracy of the results. Here throughout the analysis
we merely adopt 3 quadrature points for both T3/CT3 (2D
numerical examples) and 4 quadrature points for both TH4/CTH4
(3D numerical examples).
4. Numerical results and discussions

In this section, the new CTH4 element is applied to solve some
numerical examples of heat transfer problems in 3D and the
obtained results are then presented and discussed in detail. To val-
idate the accuracy of the proposed CTH4 element, the numerical
results computed are therefore compared with reference solutions
derived from, for instance, analytical solutions [24], the meshless
CS-RPIM [8], and the conventional TH4 element. The first two
numerical examples deal with heat transfer problems in 2D with
exact solutions, while the other four numerical examples devoted
to 3D heat transfer problems. Notice that the temprature field con-
sidered throughout the study is set to be either in �C or in K, which
is depended upon each example.

In this numerical results section, the following elements are
used:

� CT3: the CIP-based 3-node triangular element [9].
� TH4: the standard 4-node tetrahedral element.
� CTH4: the proposed CIP-based 4-node tetrahedral element.

4.1. A square plate with Dirichlet conditions

We start showing the accuracy and applicability of CIP based
finite elements in modeling heat transfer problems by considering
numerical examples in 2D, with which analytical solutions are
available. We first consider a steady-state heat conduction in a
square domain L� L as shown in Fig. 4. The temperature on the
top side is prescribed as T ¼ sin px

L

� �
, whereas the other sides are

kept to be constant, i.e., T ¼ 0 �C. The thermal conductivtiy is given
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Fig. 6. Example 4.1. Comparison of temperature values along the line y = L/4, y = L/2
and y = 3L/4 between the CT3 and the exact solution.

Fig. 7. Example 4.1. Heat flux ðW=m2Þ in x-direction of a square plate with Dirichlet
condition obtained by the CT3 element.
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by k = 10 W/m �C. The analytical solution for this particular prob-
lem can be found in [24] as follows:

T ¼ sinhðpy=LÞ
sinhðpÞ sin

px
L

� �
: ð30Þ

This 2D problem is solved using a structured mesh of 288 CT3
elements [9,10] as shown in Fig. 4. The temperature field is dis-
played in Fig. 5. A comparison of temperature along the horizontal
lines y ¼ 3L=4; y ¼ L=2 and y ¼ L=4 obtained by CT3 element and
analytical solution is depicted in Fig. 6. It can be observed form
the given results that the CT3 offers a very good solution as its tem-
perature values match well that of the exact values, revealing the
high accuracy of the CT3 element. Fig. 7 shows the heat flux in x-
direction, demonstrating that the gradient field obtained by CIP
approach is continuous.

We study the convergence and error properties of the continu-
ity of gradient across the element edges. The gradient field, which
is the heat flux or thermal flux in this numerical example, is taken
into account. The convergence property is carried out for both the
conventional T3 and CT3 elements. Three different meshes such as
4� 4;7� 7 and 13� 13 nodes are considered. The heat flux in x-
direction along the edge, e.g., x ¼ L=3, at all nodes, which involve
the primary discretized nodes and new middle nodes, are mea-
sured. In other words, the heat flux at the middle nodes across
the two element edges is estimated for three different given
meshes respectively, and their corresponding averaged values are
then obtained. The error norm for the numerical results of heat flux
estimated over analytical solutions is computed. Fig. 8 shows the
convergence rate of the error norm of the heat flux in x-direction
against the total number of DOFs calculated for both the T3 and
CT3 elements. It is indicated that the CT3 performs better than
the standard T3 in terms of the continuity of the gradient (heat
flux) across the element edges.

4.2. Transient heat transfer in a square domain

Next, the transient heat conduction in a square domain
pm� pm is investigated. The configuration parameters of this
square domain is taken the same as that considered in the previous
example, see Fig. 4, but zero temperature, T ¼ 0 �C, are imposed on
all the sides of the problem domain instead. The initial tempera-
ture on the whole domain is given by [25]. Notice in Fig. 4 where
L is taken to be p in this analysis.

Tðx; y;0Þ ¼ 10 sinðxÞ sinðyÞ: ð31Þ
Fig. 5. Example 4.1. Distribution of the temperature (�C) in a square plate with
Dirichlet condition obtained by the CT3 element.
The material parameters used for this particular example are
given as follows: the mass density q ¼ 1 kg=m3, the specific heat
c ¼ 1 J=kg �C, and the heat conductivity k ¼ 1 W=m �C. With the
geometry and boundary conditions as mentioned above, the tem-
perature tends to drop down from the initial value to zero. The
analytical solution of this problem is available in [25] and can be
written by

Tðx; y; tÞ ¼ 10 sinðxÞ sinðyÞe�2t : ð32Þ
The transient solution is obtained numerically for the first 3 s

(150 steps), by also using the same number of elements as that
accounted for the previous example, i.e., 288 CT3 elements. For this
example, the backward Euler time integration is used. Fig. 9 depicts
the variation of temperature with respect to time, estimated at
specific locations, e.g., point A p

4 ;
p
4

� �
and point B p

2 ;
p
2

� �
. The gained

results computed by the CT3 element match well with the analyt-
ical solution. The temperature decreases with increasing the time.

Remark 2. We notice that the consistent mass has been studied in
our recent work, see e.g., [11] for 2D structural dynamic analysis.
The nodal mass matrix is calculated exactly in the same way as
that the conventional FEM does. No special methods are required.
However, the only difference is its support domain, which is found
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Fig. 10. Example 4.3. Geometrical representation and boundary conditions of a
simple 3D heat conduction.

Fig. 11. Example 4.3. A typical finite element mesh of 1691 tetrahedral elements of
a simple 3D heat conduction.
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to be larger than that of the FEM due to the CIP (through the CIP
shape function). As usual, the nodal mass matrix for the thermal
system, explicit form can be found in [25], is calculated in such a
way.
4.3. A simple 3D heat conduction

Next numerical example deals with a simple 3D heat conduc-
tion whose geometry and boundary conditions are shown in
Fig. 10 [2]. The inward heat flux on the top surface is set to be
q ¼ 8000 W=m2. The temperature on bottom surface is prescribed
as T ¼ 293 K, while the heat conductivity is k ¼ 200 W=mK. An
unsulated boundary condition is set for other faces.

The CTH4 element is applied to solve this simple 3D heat con-
duction. A coarse unstructured mesh of 1691 tetrahedral elements
is typically shown in Fig. 11. The temperature field obtained by this
mesh using CTH4 element is depicted in Fig. 12. Fig. 13 shows the
convergence of the thermal energy with respect to the number of
degrees of freedom (DOFs). It is observed that the CTH4 element
provides an upper bound solution while a lower bound one is
obtained by the TH4 element. The thermal energy calulated by
CTH4 converges to the referene solution faster than the FEM coun-
terpart. Here, due to the unavailability of the analytical solution,
reference result is derived from numerical result using a very fine
mesh FEM with 59594 TH4 elements (12298 DOFs). The compar-
ison on the convergence rate of the proposed CTH4 element and
the standard tetrahedral element (TH4) is additionally depicted
in Fig. 14, where the relative error is determined by

� ¼ junum � uref j
juref j ; ð33Þ

in which uref the reference value and unum the computational value.
A comparison of the heat flux, i.e., the temperature gradient

field �k @T
@y is shown in Fig. 15. It is apparently the gradient field



Fig. 12. Example 4.3. Temperature distribution on x–y plane view (upper) and 3D
view (lower) obtained by the developed CTH4 element.
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Fig. 13. Example 4.3. Convergence of the thermal energy of a simple 3D heat
conduction obtained by CTH4 and TH4 elements. The reference solution is the
numerical result derived from the TH4 with a very fine mesh.
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Fig. 14. Example 4.3. Comparison of the convergence rate of thermal energy in
CTH4 and TH4 element. (N: number of DOFs, e: relative error or thermal energy).
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obtained by the developed CTH4 element is smooth, which is not
found in the results derived from the conventional TH4 element.
In fact, the smoothness of the temperature gradient field delivered
by the CTH4 is one of the main advantages of the CIP based
approaches, where the smoothing operator in post-processing
required in the classical FEM is no longer a mandatory task.

Additional comment is concerned with the work done by Li
et al. [2] using the so-called hybrid smoothed finite element
method (HS-FEM), where this example was investigated. Unlike
the HS-FEM in which a smoothened operator is applied to the gra-
dient field such that the derivative operator has to be modified, the
CIP under consideration does not require any smoothened opera-
tors. Furthermore, another difficulty of the HS-FEM is the parame-
ter a [2], which has to be determined differently for each mesh
size, and the parameter may be problem-dependent. Also, as
reported in [2], such parameter a has a significant effect on the
thermal energy. They show that the effect is reduced only when
the mesh is fine enough. There is, however, no additional parame-
ter in the CIP based elements, which could make the developed
CTH4 element dominates over the HS-FEM in this particular heat
transfer analysis. Curious readers must be noted that we are only
able to give some comments here between two approaches, and
no appropriate comparison of the outputs between the CTH4 and
the HS-FEM is made since no given results reported in [2] are suit-
able to be compared with.

4.4. Heat convection in a 3D complicated domain

Inspired by the work reported in [2] dealing with the heat trans-
fer in a 2D heat sink, here the problem is extended to 3D space by
extruding the geometry with a depth of 0.05, which is shown in
Fig. 16. The main goal of solving this example is to demonstrate
the applicability of the new CTH4 element in modeling heat trans-
fer problems in 3D complicated geometry. To this end, the conduc-
tivity for this example is set to be k ¼ 100 W=mK. The inward heat
flux is defined on the curved surface of the middle fin with a value
of q ¼ 20;000 W=m2. The Robin boundary condition is applied on
the left hand side surface (x ¼ 0) with an ambient temperature of
Ta ¼ 300 K and a convective coefficient of h ¼ 100 W=m2. The
Dirichlet boundary condition is prescribed as T ¼ 300 K on the
right hand side surface (x ¼ 0:5).

The numerical analysis is first carried out using a coarse
unstructured mesh of 3689 tetrahedral elements as shown in
Fig. 17. Fig. 18 depicts the distribution of temperature field, show-
ing that the maximum value on the Neuman boundary is found,
and the minimum one is on the Robin boundary. A comparison
of the maximum temperature obtained by the TH4 and CTH4



Fig. 15. Example 4.3. Comparison of heat flux in y-direction between TH4 (left-hand) and CTH4 element (right-hand) with the same mesh of 1691 tetrahedral elements. One
must pay attention that the developed CTH4 element (right-hand) offers smoother heat flux field than that of the conventional TH4 element (left-hand).
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Fig. 16. Example 4.4. Geometrical representation and boundary conditions of a 3D
heat sink.

Fig. 17. Example 4.4. A coarse mesh of 3689 tetrahedral elements of a 3D heat sink.

Fig. 18. Example 4.4. Temperature distribution in a 3D heat sink obtained by the
developed CTH4 element.
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Fig. 19. Example 4.4. Convergence of the maximum temperature of the CTH4 and
TH4 element with various meshes for a 3D heat sink problem. The reference
solution is the numerical result derived from the TH4 with a very fine mesh.
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elements is illustrated in Fig. 19 with various meshes, exhibiting
higher accuracy of the CTH4 solution over the conventional TH4
results. One must be noted that the results of the TH4 and CTH4
visualized in Fig. 19 are calculated using the same meshes. Due
to the lack of analytical solutions, and for the comparison purpose
we herein again derive a reference solution which is carried out
using the TH4 element but with a very fine mesh of 83925 tetrahe-
dral elements (17668 DOFs). Fig. 20 shows that the convergence
rate by the proposed CTH4 element is faster than that in the
TH4. The nodal gradient temperature is also plotted in Fig. 21,
where it is again observed that, as expected, the CTH4 result is
smoother than the FEM solution.
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Fig. 20. Example 4.4. Comparison of the convergence rate of maximum temper-
ature of a 3D heat sink problem between the CTH4 and TH4 elements.

Fig. 21. Example 4.4. Comparison of the y-component of the nodal heat flux
obtained by the TH4 element (upper) and the CTH4 element (lower). The
discontinuity of the heat flux can be found in the TH4 result, whereas smooth
result is obtained for the CTH4 element.
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Fig. 22. Example 4.5. Geometry and dimension of the square plate with a
cylindrical hole (upper), and its quarter model (lower).
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4.5. A square plate with a cylindrical hole

The next numerical example is concerned with the analysis of
transient heat transfer problem of a square plate with a cylindrical
hole at center. The plate is subjected to both Robin and Dirichlet
boundary conditions as shown in Fig. 22. Due to the geometical
symmetry, only a quarter of the plate is taken into account. The
material parameters for this example are taken as follows: the con-
ductivity kx ¼ ky ¼ kz ¼ 15 W=m �C, the convective coefficient is

h ¼ 200 W=m2 �C, the density is q ¼ 7800 kg m�3 and the specific
heat capacitance is c ¼ 125 J=kg �C. Initially, the temperature of
the entire domain is set to be T0 ¼ 50 �C. The prescribed tempera-
ture on the Dirichlet boundary is imposed by T ¼ 200 �C. For the
Robin condition, am ambient temperature is set by Ta ¼ 100 �C.
The goal of the numerical simulation is to evaluate the heat trans-
fer within a duration of 750 s, which is, as shown by the results,
long enough to get steady state solution. A finite element mesh
of 1728 tetrahedral elements is depicted in Fig. 23.

Fig. 24 sketches the steady-state distribution of temperature
obtained by the developed CTH4 element. The evolution of temper-
ature at point A (coordinate (0.1, 0.1, 0.02), see Fig. 22) in terms of
time is shown in Fig. 25. It is observed that the gained result agrees
well with the CS-RPIM solution reported in [8], though the CTH4
result tends to be higher than its CS-RPIM counterpart. The conver-
gence of the steady-state temperature at point A obtained by the
CTH4 element is depicted in Fig. 26, where the reference data is
calculated by a fine mesh FEM (110575 tetrahedral elements). Even
with a coarse mesh, the CTH4 result (138 �C) only has a small rel-
ative error, compared to the reference data (138.505 �C), i.e.,
�0.365%. The CTH4 result using the coarse mesh is also in good



Fig. 23. Example 4.5. A coarse mesh of 1728 tetrahedral elements discretized for a
quarter of the square plate with a cylindrical hole.

Fig. 24. Example 4.5. Distribution of temperature in a quarter of a square plate with
a cylindrical hole.
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Fig. 25. Example 4.5. Evolution of temperature at point A in a square plate with a
cylindrical hole.
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Fig. 26. Example 4.5. Convergence of temperature at point A in a square plate with
a cylindrical hole.
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Fig. 27. Example 4.6. Geometry and parameters information of the two-walled
structure.
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agreement with the CS-RPIM solution [8], where the temperature
at point A is found to be 137.5 �C using 354 nodes.
4.6. Heat transfer in a 3D two-walled structure

The last numerical example is devoted to a more complicated
domain with which the heat transfer through a section of two-
walled furnace is investigated. The geometry is represented in
Fig. 27 in which the inner wall is made of concrete while the outer
wall is formed by brick. The conductivity of brick and concrete is
set to be kb ¼ 0:01 W=mK and kc ¼ 0:0057 W=mK, respectively. A
Robin-type boundary condition is imposed on the inner faces of
the concrete wall to simulate how the furnace is heated from
inside, where the convective coefficient is hin ¼ 0:01 W=m2 K and
the temperature in the furnace is Tin ¼ 1273 K. The outer brick wall
is in contact with ambient air at room temperature, i.e.,
Tout ¼ 293 K. Heat is released through outer wall by convection,
with a convective coefficient of hout ¼ 0:068 W=m2 K. Here, the
nodes on the interface between the two walls are required to
recover the C0-continuity. A mesh of 10037 tetrahedral elements
is used for the analysis (see Fig. 28).

Fig. 29 visualizes the distribution of temperature in the
two-wall furnace obtained by the proposed CTH4 element, where
higher value is found inside and lower is outside. Significant
difference between the two limits is observed due to the low



Fig. 28. Example 4.6. A finite element mesh of 10037 CTH4 elements of a two-
walled structure.

Fig. 29. Example 4.6. Temperature distribution in the two-walled structure
obtained by the developed CTH4 element.

Fig. 30. Example 4.6. Comparison of the heat flux magnitude within the two-walled
structure between TH4 and CTH4 elements.
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conductivity of the brick layer, which acts as heat insulation. The
magnitude of the heat flux is shown in Fig. 30, demonstrating
clearly the discontuity on material interface by the conventional
TH4, while it is continuous elsewhere for the CTH4 element. On
the other hand, Fig. 30 also reveals one important feature that
the heat flux in the whole domain obtained by TH4 elements are
unsmoothed, and as expected, smoothed heat flux for the CTH4
result is found.

5. Auxiliary functions for CIP based elements: a general
formulation

In this section, the derivation of a general formulation for the
auxiliary functions /i;/ix;/iy;/iz is presented, which can be used
for reproducing any auxiliary functions for any types of elements
in terms of the CIP method. Given a specific finite element, e.g., a
2-node line element, a 3-node triangular element, a 4-node quadri-
lateral element, a 4-node tetrahedral element, we denote the fol-
lowing terms

R1 ¼
Xn

i¼1

Li; ð34Þ

R2 ¼
Xn

i¼1

L2i ; ð35Þ
where n is the number of nodes within the element of interest and
Li is the Lagrangian shape function associated with the ith node of
the element. The general formulation of the auxiliary functions
can be written as follows:

/i ¼ Li þ L2i R1 � Lið Þ � Li R2 � L2i
� �

; ð36Þ

/ix ¼
Xn

j¼1;j–i

xj � xi
� �

L2i Lj þ
1
2
LiLj R1 � Li � Lj

� �� �
: ð37Þ

In Eq. (37), xi and xj denote the x-coordinate of node i and node j,
respectively. The functions /iy;/iz can be obtained by replacing the
x-coordinate with the y-coordinate and z-coordinate, respectively.

Next, we apply the general formulation in Eqs. (36) and (37) to
reproduce the auxiliary functions for some specific elements.

For a 2-node line element, denoting the nodes as node I and
node J, the auxiliary functions can be derived from the general
formulation by

/I ¼ LI þ L2I LJ � LIL
2
J ; ð38Þ

/Ix ¼ xJ � xI
� �

L2I LJ
� �

; ð39Þ
/J ¼ LJ þ L2J LI � LJL

2
I ; ð40Þ

/Jx ¼ xI � xJ
� �

L2J LI
� �

; ð41Þ

For a 3-node triangular element, we denote the three nodes as
I; J and M. By using the general formulation, the auxiliary functions
associated with node I presented by [9] can be reproduced exactly.

/I ¼ LI þ L2I ðLJ þ LMÞ � LI L2J þ L2M
� �

; ð42Þ
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/Ix ¼ xJ � xI
� �

L2I LJ þ
1
2
LILJLM

� �
þ xM � xIð Þ L2I LM þ 1

2
LILMLJ

� �
ð43Þ

/Iy ¼ yJ � yI
� �

L2I LJ þ
1
2
LILJLM

� �
þ yM � yIð Þ L2I LM þ 1

2
LILMLJ

� �

ð44Þ
Similarly, the auxiliary functions of the CIP based 4-node

quadrilateral element, CQ4 element, [10] and the 4-node tetrahe-
dral element (Eqs. (15)–(18)) can be reproduced using the general
formulation proposed in Eqs. (36) and (37).

In general and in a similar manner, one can derive the auxiliary
functions for any other relevant elements in the framework of the
CIP method without any difficulties.

Since deriving the auxiliary functions is the key task in the
application of the CIP scheme to existing finite element codes,
the general formulation presented here is essential and important
to the development of the proposed CIP approach. Though the
above derivation has been obtained to be suitable for various ele-
ment types used in 1D, 2D and 3D domains, the examination and
discussion here are just some of our preliminary results, therefore
a detailed and comprehensive study pertaining to this general for-
mulation on other finite elements has to be addressed. This issue
however has been scheduled for our future works.

6. Conclusions and outlook

The present work contributed to the development of alternative
numerical method for heat transfer problems in 3D. The formula-
tion of consecutive-interpolation finite element method has been
for the first time extended to 3D space, leading to the introduction
of the so-called consecutive-interpolation 4-node tetrahedral element
(CTH4). In other words, a new CTH4 element in terms of CIP
method has been derived. The accuracy and performance of the
proposed CTh4 element is validated through a series of numerical
examples with complex configurations, for the analysis of steady-
state and transient heat transfer problems. In detail, the present
numerical results are compared with reference solutions derived
from analytical, standard finite elements, and meshless method
[8]. A very good agreement among the proposed CTH4 element
and other approaches is found. Some major advantages of the
developed CTH4 element over the standard tetrahedral (TH4) ele-
ment can be highlighted:

� Higher accuracy: given the same mesh, the CIP based elements
(e.g., CTH4) results on both temperature and thermal energy
(involved the calculation of temperature gradient) are shown
to be higher accurate than that of the FEM (e.g., TH4).

� Higher convergence rate: CIP based elements converge to the
exact solutions (i.e., analytical solution or numerical results
using a fine mesh) faster than the conventional FEM.

� The nodal gradient field obtained by the CTH4 element is
always smooth, while it is non-physically discontinuous is
found in the conventional TH4. This smoothness is obtained
by the introduction of terms related to the averaged nodal gra-
dient into the approximation scheme, a silent feature of the pre-
sent approach.

� Despite the introduction of averaged nodal gradient, the DOFs
in the CTH4 still remains as the nodal temperature. Thus, the
problem size does not change, leading to a conventional
implementation of the present element in any existing FEM
codes.

� The CTH4 shape functions possess the Kronecker-delta prop-
erty, owning to the same behavior of the standard TH4 shape
functions. Therefore, treating the essential boundary conditions
is made in the same way that the FEM does. This is different
from meshfree methods [26,27,5] as special treatment tech-
niques for the essentional boundary conditions are required.

� When it is needed, the C0 continuity at node can be easily recov-
ered by a simple modification.

A useful general formulation for the auxiliary functions used in
CIP scheme has been derived, which is shown to be able to repro-
duce exactly the auxiliary functions used for 1D element (a 2-node
line element), 2D elements (a 3-node triangular element and a 4-
node quadrilateral element) and a 3D four-node tetrahedral ele-
ment. This provision is as preliminary results of the general formu-
lation of auxiliary functions. It serves to assist the further
development of CIP based elements. The developed CTH4 element
is general and has no limitations, so in future works, it can be
applied to solve other complex problems in the framework of heat
transfer analysis.

Based on the results obtained and presented in Section 4, CTH4
can be considered as potential candidate or an alternative
approach to the conventional FEM in solving 3D heat transfer prob-
lems. The proposed approach can be extended to model other com-
plex problems. In terms of implementation, it is straightforward to
integrate the CIP scheme into any existing FEM code. Furthermore,
the numerical integration based on the Cartesian transformation
method (CQT) [27] or adaptive mapping meshfree techniques
[28] may be integrated into the present formulation, which is
aimed to further enhance the performance of the proposed
method, especially 3D problems.
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