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Abstract. The assume-guarantee verification has been recognized as
a promising method for solving the state space explosion in modular
model checking of component-based software. However, the counterex-
ample analysis technique used in this method has huge complexity and
the computational cost for generating assumptions is very high. As a
result, the method is difficult to be applied in practice. Therefore, this
paper presents two improvements of the assume-guarantee verification
method in order to solve the above problems. The first one is a coun-
terexample analysis method that is simple to implement but effective
enough to prevent the verification process from infinite loops when con-
sidering the last action of counterexample as suffix in implementation.
This is done by finding a suffix that can make the observation table not
closed when being added to the suffix set of the table and use that suffix
for the learning process. The second one is a reduction of the number of
membership queries to be asked to teacher when learning assumptions.
This results in a significantly faster speed in generating assumption than
that of the original algorithm. An implemented tool and experimental
results are also described to show the effectiveness of the improvements.

1 Introduction

Software quality nowadays plays an important role in our society because soft-
ware has helped us to improve all matters of our life such as our homes, schools,
jobs, etc. With almost all of software in practice, testing has been considered as a
major solution for guaranteeing software quality. However, testing is not enough
for high quality software that requires no error such as plane, train controller
systems, etc. With such systems, we will need formal methods to ensure the
correctness of systems in both of design and implementation phases. Therefore,
many researches have been carried out to improve software quality while keep-
ing software development fast and effective. Two well known approaches that
address this problem are theorem proving and model checking [4]. In regards
to model checking, assume-guarantee verification has been used as one of the
most important method to verify component-based software (CBS) with model



checking. This is because it helps us to do verification in a full automatic man-
ner. Moreover, the method is not only suitable for CBS but also for solving the
state space explosion problem in model checking. It does this by allowing us to
verify a target system composed from components by model checking each of
them separately.

In assume-guarantee verification, the major problem is how to generate as-
sumptions that satisfy the rules of assume-guarantee. The problem can be solved
by using the proposed framework in [5]. The idea of the framework is to generate
an assumption A as a contextual assumption about system environment using
the L∗ algorithm [1,12]. In this framework, the learning process is performed by
the interaction between L∗ (from now on called learner) and teacher. During
the learning process, the teacher must be able to answer correctly two kinds
of queries from learner to learn the unknown regular language of A, denoted
by L(A). The first one is membership query which is to ask whether a trace
σ belongs to L(A). The second one is equivalence query which is to ask if the
language of a conjecture C (denoted by L(C)) is equivalent to L(A). If L(C) is
equivalent to L(A), then C is the needed assumption and teacher answers yes to
learner. If L(C) is not equivalent to L(A) but the system does not really violate
the given property, teacher will return a counterexample cex that witnesses the
difference between L(C) and L(A). Otherwise, teacher will return no and cex,
where cex is corresponding to the actual violation. For the purpose of gener-
ating conjectures, learner maintains an observation table in form of (S,E, T )
and updates it frequently by using membership queries. Whenever this table is
closed, learner will create a conjecture from the table and submit it to teacher

as an equivalence query. When teacher returns cex, learner analyzes it to find
out a suffix that should be added to E for generating a better conjecture. The
algorithm proposed in [5], instead of providing a detailed method to retrieve the
suffix to be added to E, refers to the method proposed in [12] for retrieving that
suffix. However, the method proposed in [12] has huge complexity. Implementing
this method will not always suitable for large scale systems in practice. On the
other hand, if we simply add the last action of cex to E as suffix, it will lead
to a case where the learning process comes into an infinite loop. Therefore, the
process fail to generate assumption even though the system does not violate the
given property. Moreover, although the assume-guarantee verification method
have been well known for a long time, its application in practice is very limited
due to the high computational cost in generating assumptions. This is due to
the reason that there are many duplicate membership queries which have been
asked to teacher. Therefore, the method needs improvements so that it can run
correctly with lower cost to generate assumptions.

This paper proposes two improvements of the assumption generation method.
The first one is an algorithm that simplifies the counterexample analysis process
so that it can run without infinite loop in most of the cases in a reasonable
time cost. The key idea of this algorithm is to try to add each of the suffixes
with the length from one to the length of cex to E. After that, the table is
updated to see if the updated one is closed. If a suffix can make the observation



table not closed, we can add it to the suffix list E. The table is then used to
generate a new conjecture to submit to teacher as an equivalence query. The
learning process continues until teacher answers yes or no with cex. The second
one is an algorithm to reduce the number of membership queries when updating
observation tables. The key idea of the algorithm is that we should only ask
membership query for a specific trace σ only once and store the result in a
dictionary for later using in the learning process. As a result, the number of
membership queries to be submitted to teacher will be minimal. This results in
the reduction of the computational cost for generating assumptions.

The rest of this paper is organized as follows. At first, we review the orig-
inal assumption generation method in Section 2. An improved counterexample
analysis algorithm will be presented in Section 3. This section will also describe
the algorithm to reduce the number of membership queries when learning as-
sumptions. A support tool and experimental results will be shown in Section 4.
Section 5 presents an overview about the researches that are related to the topic.
Finally, we conclude the paper in Section 6.

2 The Original Assumption Learning Algorithm

2.1 Generating Assumption using L
∗ Algorithm

Given a system M that consists of two components M1 and M2 and a property
p. The original assumption learning algorithm proposed in [5] generates a con-
textual assumption using the L∗ algorithm [1]. The details of this algorithm are

Algorithm 1: Learning Assumptions for Compositional Verification

1 begin

2 Let S = E = {λ}
3 while true do

4 Update T using membership queries
5 while (S,E, T ) is not closed do

6 Add sa to S to make (S,E, T ) closed where s ∈ S and a ∈ Σ

7 Update T using membership queries

8 end

9 Construct candidate DFA M from (S,E, T )
10 Make the conjecture C from M

11 Ask equivalence query for the conjecture C

12 if C is correct then

13 return C

14 else

15 Add e ∈ Σ∗ that witnesses the counterexample to E

16 end

17 end

18 end



shown in Algorithm 1. In order to learn assumption A, Algorithm 1 maintains
an observation table (S,E, T ). The algorithm starts by initializing S and E with
λ (i.e., an empty string) (line 2). After that, the algorithm updates the observa-
tion table (S,E, T ) by using membership queries (line 4). While (S,E, T ) is not
closed, the algorithm continues adding sa to S and updating the observation ta-
ble to make it closed (from line 5 to line 8). When the observation table is closed,
the algorithm creates a conjecture C from (S,E, T ) and asks equivalence query
to teacher (from line 9 to line 11). If C is the needed assumption, the algorithm
stops and returns C (line 13). Otherwise, it analyzes the returned counterexam-
ple cex to add the suffix e that witnesses the counterexample to E (line 15) and
continues the learning process again from line 4.

2.2 Updating Observation Table

While Algorithm 1 is learning assumption, a very important step is to update
the observation table. The details of this step are presented in Algorithm 2. For

Algorithm 2: Updating Observation Table

input : An observation table (S,E, T )
output: The updated observation table (S,E,T )

1 begin

2 forall the s ∈ S or sa ∈ S do

3 forall the e ∈ E do

4 t ← ask membership query for s.e or sa.e

5 Update the corresponding T in (S,E, T ) with t

6 end

7 end

8 return (S,E, T )

9 end

every s ∈ S or sa ∈ S.Σ (line 2), the algorithm concatenates this with each
of e in E (line 3). Then, it asks teacher a membership query for s.e or sa.e

(line 4) (where “.” is the concatenation operator). After that, it updates the
corresponding T in (S,E, T ) with the result of this membership query (line 5).
When finishing this process, it returns the updated observation table (S,E, T )
(line 8).

3 Two Improvements for the Assumption Generation

Method

From our observation, we have seen that if we simply apply Algorithm 2 to
update observation tables, there will be a lot of duplicated membership queries.



This will dramatically affect the assumption generation process when dealing
with large scale systems. Following sub-sections propose algorithms to choose
suffix from counterexample and to reduce the number of membership queries to
be asked to teacher.

3.1 An Improvement on Counterexample Analysis

Although the idea of trying all of the possible suffixes with the length increased
one by one from the counterexample is not new and can be found in other works
such as in [9], no one has ever applied the idea in assume-guarantee reasoning.
When applying the idea in assume-guarantee reasoning, we have an effective
method to analyze the counterexample as shown in Algorithm 3. When teacher

Algorithm 3: Choosing suffix from counterexample

input : The current observation table (S,E, T ), the counterexample cex

output: yes+ e or no

1 begin

2 foreach counter = 1 to cex’s length do

3 OT ← the cloned table of (S,E, T )
4 e← suffix with length is counter
5 Try to add e to OT ′s E

6 Update OT with membership queries
7 if OT is not closed then

8 return yes+ e

9 end

10 end

11 return no

12 end

processes an equivalence query with a conjecture argument C, if C is not the
satisfied assumption, but M does not violate the property p, teacher will return
a counterexample cex. Algorithm 3 analyzes cex to choose an appropriate suffix
to add to E. The idea of this algorithm is to try to add each of the suffix which
has length from one to cex’s length to E to find out which suffix will make the
observation table not closed. For this purpose, the algorithm uses a loop for all
of the possible suffixes of cex from line 2 to line 10. For each of the suffix e,
the algorithm clones the observation table (S,E, T ) and stores in OT (line 3).
This is because processing with OT will not affect the current (S,E, T ). After
that, the algorithm adds e to E of OT , updates OT , and checks if OT is closed
(from line 5 to line 7). If the updated OT is not closed, then adding e to E

of (S,E, T ) will make (S,E, T ) not closed. In order to make it closed, an sa

will need to be added to S. This will make the next conjecture C′ different
from the previous conjecture C. As a result, Algorithm 1 can continue learning



assumption. Therefore, Algorithm 3 returns yes and e as the needed suffix for
adding to the input observation table (line 8). If there is no e that can make
the observation table not closed, then the algorithm returns no. This means that
Algorithm 1 will come into an infinite loop. We will need to find another solution
so that the algorithm can continue running correctly. This kind of solution will
be one of our future work and not be mentioned in this paper.

3.2 Reducing the Number of Membership Queries

Although the method shown in Algorithm 3 can prevent Algorithm 1 from run-
ning infinitely in some special cases, it costs us more time to do that than
Algorithm 1. We propose an algorithm to improve the performance of the whole
learning process by reducing the number of membership queries. Although this
improvement seems to be trivial and obvious when implementing the assume-
guarantee reasoning, but with the large number of membership queries can be
reduced and in the context of software evolution where the software needs to be
rechecked whenever there is any changes, the improvement can play an impor-
tant role in reducing the cost of software verification in practice. Details of the

Algorithm 4: Improved Observation Table Update

input : An observation table (S,E, T ), the Membership queries result
dictionary dict

output: The updated observation table (S,E,T )

1 begin

2 forall the s ∈ S or sa ∈ S do

3 forall the e ∈ E do

4 str ← s.e or str← sa.e

5 if dict contains str then

6 t ← get value of str from dict

7 Update the corresponding T in (S,E, T ) with t

8 else

9 t ← ask membership query for str
10 Store 〈str, t〉 to dict

11 Update the corresponding T in (S,E, T ) with t

12 end

13 end

14 end

15 end

algorithm is shown in Algorithm 4. For this purpose, we use a dictionary dict to
store list of query results in form of couple 〈str, t〉, where str is the trace that
is passed to teacher as a membership query and t is the corresponding result.
For each str to be passed to teacher as a membership query, if it exists in dict,
then its value will be used to update the observation table (line 5 to line 7)



without asking a new membership query result to teacher. Otherwise, it will
ask a new membership query to teacher, store the result to dict, and update the
observation table (line 8 to line 11). dict will be used throughout the assumption
learning process to improve the learning performance.

4 Experiments

We have implemented the two improvements in Algorithm 3 and Algorithm 4
into an application called IAGTool1 in order to compare assumption generation
performance of the original in [5] and improved algorithms. The algorithm is
developed using Microsoft Visual Studio 2015 Community [10]. The test is car-
ried on a machine with the following system information: Processor: Intel(R)
Core(TM) i5-3230M; CPU: @2.60GHz, 2601 Mhz, 2 Core(s), 4 Logical Proces-
sor(s); OS Name: Microsoft Windows 10 Home; IDE: Visual Studio Community
2015. The experimental results are shown in Table 1. In this table, there are
three kinds of results of the original learning algorithm without Algorithm 3
(denoted by Original), original learning algorithm with Algorithm 3 (denoted
by Original+), and improved learning algorithm with Algorithm 3 and 4 (de-
noted by Improved) to compare for each of test cases (with safety property p).
The number of membership queries shown in column “Queries Number”. That
allow us to calculate how many queries are saved using the improved algorithm.
The “Time (ms)” columns show us how much time the improved algorithm and
the original one take to generate assumptions. “-” values indicate cases where
the learning algorithm failed to generate required assumptions. Among the test
cases shown in Table 1, “TestCase1” is the example presented in [5]. From the
experimental results shown in Table 1, we have the following observations:

Table 1. Experimental results

No. M1 M2 p
Original Original+ Improved

Queries
Number

Time
(ms)

Queries
Number

Time
(ms)

Queries
Number

Time
(ms)

TestCase1 3 3 2 52 4 52 3 17 1

TestCase2 42 5 3 - - 875 10278 161 4032

TestCase3 23 11 6 - - 465 8889 82 3380

TestCase4 78 22 7 78 13495 78 7361 29 3981

TestCase5 30 12 3 - - 2440 11064 339 3982

TestCase6 65 32 3 - - 1421 651131 229 276253

– The Original algorithm can only generate assumptions for TestCase1 and
TestCase4. In most of other test cases, the algorithm failed to generate as-
sumption correctly due to the infinite loop during the learning process. In

1 http://www.coltech.vnu.edu.vn/∼hungpn/IAGTool/



the meantime, when using the improved counterexample analysis algorithm,
both of the Original+ and Improved algorithms successfully pass the loop
and are able to generate the required assumptions for these test cases.

– The number of membership queries is dramatically reduced by using Algo-
rithm 4. There is no test case where the number of membership queries in
Original+ is the same or less than that of the Improved algorithms because
even with the smallest test case (TestCase1), the learning process needs two
closed observation tables during assumption generation. Therefore, several
membership queries have been saved thanks to Algorithm 4.

– The Improved algorithm runs much faster than the Original+ algorithm.
This is because Algorithm 4 implemented in Improved algorithm has saved
several membership queries during the learning process. As a result, gen-
erating assumptions of the Improved algorithm has faster speed than the
original algorithm in [5].

– When running with such small test cases as shown in Table 1, the Improved

algorithm runs much faster than the Original+ one. Therefore, in practice,
it could improve the assumption generation speed dramatically.

– In order to implement Algorithm 4, we need to create a dictionary to store
membership query results. That costs us some more memory. However, with
the current hardware technology, this will be a cost-effective method to im-
prove the whole speed of verification process.

5 Related Works

There are a lot of researches related to optimizing the L∗ based assume-guarantee
verification. Consider only the most current works, we can refer to [2,3,6–8,11].

Chaki and Strichman proposed three optimizations in [2] to the L∗ based
automated Assume-Guarantee reasoning algorithm for the compositional veri-
fication of concurrent systems. The paper suggested an optimization that uses
some informations that are already available to teacher in order to avoid many
unnecessary membership and candidate queries. Sharing concern about improv-
ing the assumption generation speed, our researches proposed two improvements
on this. The first one is to improve suffix choosing process that will prevent
the original assumption generation method from coming into an infinite loop if
choosing the last action cex as suffix. The second one is to reduce the number
of membership queries by another kind of observation that traces submitted to
teacher for membership queries are duplicate many times.

In a series of papers of [7,8,11], Hung et al. proposed a method for generating
minimal assumptions, improving, and optimizing that method to generate those
assumptions for compositional verification. However, that is for the result of
the verification, not improve the method to generate the assumption itself. This
paper shares the interest of improving the compositional verification, but we
focus on improving the method itself so that it has faster speed than the original
one.

In 2010, Chen et al. proposed a pure method for learning assumption through
implicit learning in [3]. This has a great result on having faster speed than the



original assumption generation method. Nevertheless, it focuses on a brand new
approach that uses a specification method with Boolean functions. We share the
interest about compositional verification, but we focus on the original assumption
generation method to improve it in order to prevent it from running infinitely if
choosing the last action cex as suffix and to have the faster speed.

In [6], Gupta et al. proposed a method to compute an exact minimal automa-
ton to act as an intermediate assertion in assume-guarantee reasoning, using a
sampling approach and a Boolean satisfiability solver. This is an approach which
is suitable to compute minimal separating assumption for assume-guarantee rea-
soning for hardware verification. Our approach focuses on the original assump-
tion generation method to improve it by reducing the number of membership
queries and improving the counterexample analyzing algorithm to choose cor-
rect suffix that prevent the algorithm from running infinitely if choosing the last
action cex as suffix.

In [9], Maler and Pnueli have mentioned the idea of analyzing the counterex-
ample when learning infinitary Regular Sets. We share the idea of analyzing
counterexample when implementing the L∗ algorithm, but we apply it for the
context of assume-guarantee reasoning. With this small finding, our proposed
algorithm makes it easier for the implementation of software verification. Al-
though it seems to be small change, but it can prevent the original algorithm
from running infinitely if choosing the last action cex as suffix.

6 Conclusion

In order for the assume-guarantee paradigm to be used effectively in practice
with large-scale systems, its assumption generation time must be improved as
much as possible. We have presented a method to do this by preventing learner

from asking membership queries for traces that are already been asked. This
is done by creating a dictionary to store membership queries results and use
it whenever learner wants to ask membership queries. Learner can only ask
membership query for a trace that has never been asked. We have also applied
the idea for choosing suffixes from counterexamples in [9] in the implementation
of assume-guarantee reasoning so that the learning process will not run endlessly
if we simply consider the last action of cex as suffix. This is done by trying to add
suffixes with length from one to the length of cex to E of the observation table.
If a suffix can make the observation not closed, that is the one to be added to
E. The experimental results included in this paper also show that the proposed
method have improved the assumption generation time significantly and there
is no infinite loop when learning assumptions for the presented test cases.

Although the presented methods have a very positive effect on the assumption
learning process, there are a lot of things need to be done. The first one is already
described in Section 3.1. The solution in Algorithm 1 will also not be able to
run correctly when Algorithm 3 returns no. We will need another research to
analyze such cases to find out a solution so that we can generate the required
assumption if it exists. The second one is that we are analyzing if there is any



case where the learning process faces infinite loop. The third one is that the
proposed framework in [5] is not for evolving systems. What needs to be done in
order to generate the best assumption for evolving systems. Additionally, we are
also in process of applying the proposed algorithms to larger systems in practice
in order to verify their correctness and usefulness when doing verification.
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