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Based on the classical shell theory taking into account geometrical nonlinearity, initial geometrical
imperfection and Pasternak type elastic foundation, the nonlinear axisymmetric response of shallow
spherical FGM shells under mechanical, thermal loads and different boundary conditions is considered in
this paper. Using the BubnoveGalerkin method and stress function, obtained results show effects of
elastic foundations, external pressure, temperature, material and geometrical properties on the nonlinear
buckling and postbuckling of the shells. The snap-through behaviors of the FGM spherical shallow shells
on elastic foundations also are analyzed carefully in this paper. Some results were compared with the
ones of other authors.

� 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

The spherical shells play an important role in the engineering
application. For example, they have been used to make several
items found on the aircrafts, the spaceship as well as the ship-
building industry and the civil engineering. Hence, the problems
associated with the behavior of the spherical FGM shells buckling
and postbuckling have received much interest in the recent
years.

Functionally Graded Materials (FGMs), which are consisting of
metal and ceramic constituents, is one class of these structures.
Due to intelligent characteristics such as high stiffness, excellent
thermal resistance capacity, FGMs are now chosen to use as
structural constituents exposed to severe temperature conditions
such as aircraft, aerospace structures, nuclear plants and other
engineering applications. Unfortunately, there is a subtle under-
standing of the spherical FGM shell due to the difficulties in a
calculation. Indeed, there are not many studies on this problem.
Tillman (1970) investigated the buckling behavior of shallow
spherical caps under a uniform pressure load. Nath and Alwar
(1978) analyzed non-linear static and dynamic response of
spherical shells. Buckling and postbuckling behavior of laminated
shallow spherical shells subjected to external pressure been
analyzed by Muc (1992) and Xu (1991). Alwar and Narasimhan
(1992) used method of global interior collocation to study
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axisymmetric nonlinear behavior of laminated orthotropic
annular spherical shells. Ganapathi (2007) studied dynamic sta-
bility characteristics of functionally graded materials shallow
spherical shells using the first order shear deformation theory and
finite element method. On the nonlinear axisymmetric dynamic
buckling behavior of clamped functionally graded spherical caps
been analyzed by Prakash et al. (2007). Bich (2009) has been
credited for the first calculation of the nonlinear buckling of FGM
shallow spherical shells. In his investigation, he has used analyt-
ical approach taken into account the geometrical nonlinearity.
Recently, Bich and Hoa (2010, 2011, 2012) has developed the
nonlinear static and dynamic for FGM shallow spherical shells
subjected to the mechanical and thermal loads.

The structures widely used in aircraft, reusable space trans-
portation vehicles and civil engineering are usually supported by
an elastic foundation. Therefore, it is necessary to include effects
of elastic foundation for a better understanding of the buckling
behavior and loading carrying capacity of plates and shells.
Librescu and his co-workers have investigated the postbuckling
behavior of flat and curved laminated composite shells resting on
Winkler elastic foundations (Librescu and Lin, 1997; Lin and
Librescu, 1998). Huang et al. (2008) proposed solutions for func-
tionally graded thick plates resting on WinklerePasternak elastic
foundations. Shen (2009) and Shen et al. (2010) investigated the
postbuckling behavior of FGM cylindrical shells subjected to axial
compressive loads and internal pressure and surrounded by an
elastic medium of the Pasternak type. Duc extend his in-
vestigations for nonlinear dynamic response of imperfect eccen-
trically stiffened FGM double curved shallow shells on elastic
foundation (Duc, 2013). In spite of practical importance and
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increasing use of FGM structures, investigations on the effects of
elastic media on the response of FGM plates and shells are
comparatively scarce. To best of authors’ knowledge, there is no
analytical investigation on the nonlinear stability of FGM shallow
spherical shells on elastic foundation.

In this paper, we have made a further investigation of FGM
spherical shell for which Dumir (1985) have studied the nonlinear
axisymmetric response of orthotropic thin spherical caps on elastic
foundation. Nie (2001) proposed the asymptotic iteration method
to treat nonlinear buckling of externally pressurized isotropic
shallow spherical shells with various boundary conditions incor-
porating the effects of imperfection, edge elastic restraint and
elastic foundation.

In the paper, we consider the nonlinear axisymmetric buck-
ling and postbuckling of the shallow spherical FGM shells on
elastic foundation using classical shell theory (CST) taking into
account geometrical nonlinearity and initial geometrical imper-
fection. The properties of materials are graded in thickness di-
rection according to a power law function of thickness
coordinate. Two cases of thermal loads are considered: uniform
temperature rise and through the thickness temperature
gradient. Using the BubnoveGalerkin method and stress func-
tion, obtained results show effects of external pressure, tem-
perature, material and geometrical properties, imperfection and
elastic foundation on the nonlinear response of clamped shallow
spherical shells.
2. Theoretical formulations

2.1. Functionally graded shallow spherical shells on elastic
foundation

We consider a FGM shallow spherical shell resting on elastic
foundations with radius of curvature R, base radius r0 and thickness
h in coordinate system (4, q, z), �h/2 � z � h/2 as shown in Fig. 1.

The effective properties of FGM shallow spherical shell such as
modulus of elasticity E, the coefficient of thermal expansion a, the
coefficient of thermal conduction K, and the Poisson ratio v is
assumed constant can be defined as (Bich and Tung, 2011; Duc,
2013)

½EðzÞ;aðzÞ;KðzÞ� ¼ ½Em;am;Km� þ ½Ecm;acm;Kcm�
�
2zþ h
2h

�N

;

nðzÞ ¼ n ¼ const (1)

where N � 0 is volume fraction index and Ecm ¼ Ec � Em,
acm ¼ ac � am, Kcm ¼ Kc � Km. The subscripts m and c stand for the
metal and ceramic constituents, respectively.
Fig. 1. FGM shallow spherical shell on elastic foundation.
It is evident that E ¼ Ec, a ¼ ac, K ¼ Kc at z ¼ h/2 (surface is
ceramic-rich) and E ¼ Em, a ¼ am, K ¼ Km at z ¼ �h/2 (surface is
metal-rich).

Note that the case when the Poisson ratio is varied smoothly
along the thickness n ¼ n(z) has considered by Huang and Han
(2008, 2010), Duc and Quan (2012, 2013), Cong (2011), Duc
(2013). The obtained results show that effects of Poisson’s ratio
n is very small. Therefore, for simplicity, as well as many other
authors, in this paper we assumed n ¼ const.

The above elastic foundations are simply described by a load
which can be written in the following form (Shen et al., 2010; Duc,
2013; Duc and Quan, 2013):

qe ¼ k1w� k2Dw (2)

where Dw ¼ w,rr þ 1/rw,r þ 1/r2w,qq, w is the deflection of the
shallow spherical shell, k1 is Winkler foundation modulus and k2 is
the shear layer foundation stiffness of Pasternak model.

2.2. Governing equations

The theory of the classical thin shells has been applied
to investigate the non-linear stability of the shallow spherical
FGM. For simplicity, we have introduced the variable r ¼ Rsin4
which is indeed a radius of the circle. For a shallow
spherical case, we can use an approximation cos4 ¼ 1 and
Rd4 ¼ dr.

The deformation factors of a spherical shell at a distance z with
respect to the central surface can be determined as the follows:

εr ¼ ε
0
r þ zcr ; εq ¼ ε

0
q þ zcq;grq ¼ g0rq þ 2zcrq (3)

where ε
0
r and ε

0
q
are the normal strains, g0rq is the shear strain at the

middle surface of the spherical shell and cr, cq are curvatures, crq is
a twist.

Using CST, we have (Bich and Tung, 2011; Bich et al., 2012;
Brush, 1975):

ε
0
r ¼ u;r �w

R
þ 1
2
w2

;r; ε
0
q ¼ v;q þ u

r
�w

R
þ 1
2r2

w2
;q;g

0
rq

¼ r
�v
r

�
;r
þ uq

r
þ 1

r
w;rw;q (4)

cr ¼ �w;rr;cq ¼ �w;qq

r2
�w;r

r
;crq ¼ �1

r
w;rq þ

w;q

r2
(5)

For a spherical shell, Hooke’s law which describes the rela-
tionship between the stress and strain in the presence of temper-
ature, is written as:

ðsr; sqÞ ¼ E
1�v2

½ðεr; εqÞ þ vðεq; εrÞ � ð1þ vÞaDTð1;1Þ�
srq ¼ E

2ð1þvÞgrq
(6)

where DT is augmenter of temperature between the surfaces of the
shell.

The internal force as well as the moment inside the spherical
shell FGM can be determined as:

ðNi;MiÞ ¼
Zh=2

�h=2

sið1; zÞdz; i ¼ r; q; rq (7)

We substitute (1) and (3) into (6), then insert the derived result
to (7), we finally come up with the internal force and the moment’s
constituents as the follows:
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½Nr;Mr� ¼ ½E1;E2�
1�v2

�
ε
0
r þ nε0q

�
þ ½E2;E3�

1�v2
ðcr þ vcqÞ � ½Fa;Fb�

1�v
½Nq;Mq� ¼ ½E1;E2�
1�v2

�
ε
0
q þ nε0r

�
þ ½E2;E3�

1�v2
ðcq þ vcrÞ � ½Fa;Fb�

1�v

½Nrq;Mrq� ¼ ½E1;E2�
2ð1þvÞg

0
rq þ

½E2 ;E3�
1þv

crq

(8a)

ðFa;FbÞ ¼
Zh=2

�h=2

ð1; zÞEðzÞaðzÞDTðzÞdz (8b)

the explicit analytical expressions of Ei(i ¼ 1e3) are calculated and
given in the Appendix A.

The equilibrium equations of a perfect spherical shell under
external pressure q and resting on elastic foundations are given by
Bich and Tung (2011), Bich et al. (2012) and Brush (1975):

ðrNrÞ;r þ Nrq;q � Nq ¼ 0

ðrNrqÞ;r þ Nq;q þ Nrq ¼ 0

1
r

�
ðrMrÞ;rr þ 2

�
Mrq;rq þ

1
r
Mrq;q

�
þ 1

r
Mq;qq �Mq;r

�

þ1
R
ðNr þ NqÞ þ

1
r

�
rNrw;r þ Nrqw;q

�
;r
þ 1

r

�
Nrqw;r þ 1

r
Nqw;q

�
;q

þq� k1wþ k2Dw ¼ 0 (9)

The first two equations in the set of equilibrium equation (9)
have been satisfied simultaneously if we introduce the stress
function f(r, q) under the following conditions:

Nr ¼ 1
r
f;r þ 1

r2
f;qq;Nq ¼ f;rr;Nrq ¼ �

�
fq
r

�
;r

(10)

Insert Eqs. (5), (8a) and (10) into the third equation in (9), we
have:

DD2w�1
R
Df �

�
1
r
f;r þ 1

r2
f;qq

�
w;rr þ2

r

�
fqr
r
� fq
r2

�
w;qr �

w;rf;rr
r

þ
�
f;q
r2

� f;qr
r

�
2
r2

w;q�
1
r2

w;qqf;rr �qþ k1w� k2Dw ¼ 0

(11)where

D ¼ E1E3 � E22
E1
�
1� v2

	;DðÞ ¼ ðÞ;rr þ
1
r
ðÞ;r þ

1
r2

ðÞ;qq (12)

Eq. (11) is the equilibrium equation of a spherical shell derived
from two functions which are the bending function w and stress
function f. In order to derive the function which combines these
two functions, we can apply the following compatibility equation:

1
r2
ε
0
r;qq �

1
r
ε
0
r;r þ

1
r2

�
r2ε0q;r

�
;r
� 1
r2

�
rg0rq

�
;rq

¼ �Dw
R

þ c2rq � crcq

(13)

From Eqs. (5) and (8a), we can calculate ε0q ; ε
0
r ;g

0
rq as the follows:

ε
0
q ¼ Nq�vNr

E1
þ E2

E1

�
w;qq

r2 þ w;r
r

�
þ Fa

ε
0
r ¼ Nr�vNq

E1
þ E2w;rr

E1
þ Fa

g0rq ¼ Nrq
2ð1þvÞ

E1
� 2E2

E1

�
� 1

r w;rq þ w;q

r2

� (14)

Setting Eqs. (14) and (10) into Eq. (13) gives the compatibility
equation of a perfect FGM shallow spherical shell as (Bich and Tung,
2011):
1
D2f ¼ �Dwþ

�
1
w;rq�

1
2wq

�2

�w;rr

�
1
2w;qqþ

1
w;r

�
(15)
E1 R r r r r

Eqs. (11) and (15) are nonlinear equilibrium and compati-
bility equations in terms of variables w and f and used to
investigate the buckling and postbuckling of FGM shallow
spherical shell resting on elastic foundations with asymmetric
deformation.

In particular, we apply Eqs. (11) and (15) for the axially sym-
metric shallow spherical shell (Bich and Tung, 2011; Huang, 1964),
we get the equilibrium and compatibility equations written as:

DD2
s w� 1

R
Dsf � 1

r
f;rw;rr �w;rf;rr

r
� qþ k1w� k2Dsw ¼ 0 (16)

1
E1

D2
s f ¼ �Dsw

R
� 1

r
w;rrw;r (17)

For a perfect case of the axially symmetric shallow spherical
shell, where Ds() ¼ ()00 þ ()0/r and prime indicates differentiation
with respect to r, i.e. ()0 ¼ d()/dr.

For an imperfect FGM spherical shell, Eqs. (16) and (17) are
modified into forms as

DD2
s w� 1

R
Dsf � 1

r
f;r
�
w;rr þw*

;rr

�
� f;rr

r

�
w;r þw*

;r

�
� q

þ k1w� k2Dsw ¼ 0
(18)

1
E1

D2
s f ¼ �Dsw

R
� 1

r
w;rrw;r � 1

r
w;rw*

;rr �
1
r
w;rrw*

;r (19)

in which w*(r) is a known function representing initial small
imperfection of the shell.

Eqs. (18) and (19) are nonlinear governing equations in terms of
variables w and f and used to investigate the buckling and post-
buckling of an imperfect FGM spherical shell resting on elastic
foundations and subjected to mechanical, thermal and thermo-
mechanical loads.

3. Nonlinear stability analysis

In this paper, two cases of boundary conditions will be consid-
ered (Uemura, 1971; Li et al., 2003):

Case (1). The edges are clamped and freely movable (FM) in the
meridional direction. The associated boundary conditions are

r ¼ 0;w ¼ W;w0 ¼ 0
r ¼ r0;w ¼ w0 ¼ 0;Nr ¼ 0 (20)
Case (2). The edges are clamped and immovable (IM). For this
case, the boundary conditions are

r ¼ 0;w ¼ W;w0 ¼ 0
r ¼ r0;w ¼ w0 ¼ 0;Nr ¼ Nr0

(21)

where W is the largest bending and Nr0 is the normal force on the
edge.

The approximation root has been chosen to satisfy the boundary
conditions (20) and (21):

w ¼ W

�
r20 � r2

	2
r40

(22)
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w* ¼ mh

�
r20 � r2

	2
(23)
r40

Where the imperfect function of the spherical shell has been
assumed to have the same form as the bending function in which m

contributes to the imperfection (i.e. �1 � m � 1) (Bich and Tung,
2011; Huang, 1964).

Replacing the Eqs. (22) and (23) into (19) and we then integrate
the final equation, we have

f 0 ¼ �E1W
r40R

 
r5

6
� r20r

3

2

!
� E1WðW þ 2mhÞ

r80

 
r7

6
� 2r20r

5

3
þ r40r

3

!

þ C1r
4

ð2 ln r � 1Þ þ C2r
2

þ C3
r

(24)

where C1, C2, C3 are the integral constants. Since the deformation
as well as the internal force at the top of the spherical shell are
limited, r ¼ 0, the constants C1 andC3 are zero. The boundary
condition Nr(r ¼ a) ¼ Nr0, gives us the constant C2. The stress
function f has been determined as the follows:

f 0 ¼ �E1W
r40R

 
r5

6
� r20r

3

2

!
� E1WðW þ 2mhÞ

r80

 
r7

6
� 2r20r

5

3
þ r40r

3

!

� E1W
3R

r þ E1WðW þ 2mhÞ
2r20

r þ Nr0r

(25)

In case of Nr0 ¼ 0 for the mobile edge of the spherical shell.
Substituting Eqs. (22), (23) and (25) into Eq. (18) and applying

BubnoveGalerkin method for the resulting equation yield

q ¼
 
64D
r40

þ 3E1
7R2

!
W � 976E1

693r20R
WðW þ mhÞ

� 409E1
693Rr20

WðW þ 2mhÞ þ 848E1
429r40

ðW þ mhÞWðW þ 2mhÞ

þ 40
7r20

Nr0ðW þ mhÞ � 2Nr0

R
þ k1

16
21

W þ 40
7r20

k2W

(26)

Eq. (26) is governing equations used to investigate the nonlinear
static axisymmetric buckling of clamped FGM shallow spherical
shells on elastic foundations under uniform external pressure and
thermal loads.
3.1. Nonlinear mechanical stability analysis

The shell is assumed to be subjected to external pressure q
uniformly distributed on the outer surface of the shell with FM
edge (Case (1)). In this case Nr0 ¼ 0 and Eq. (26) gives

q ¼ b11W � b12W
�
W þ m

	� b13W
�
W þ 2m

	þ b14W
�
W þ m

	
� �W þ 2m

	
(27)

The explicit analytical expressions of b1i ði ¼ 1� 4Þ are calcu-
lated and given in the Appendix A.

If FGM spherical shell does not rest on elastic foundations
(K1 ¼ K2 ¼ 0), we received:
q ¼
 
64D þ 3E1

!
W � E1 W

�
1385W þ 1794m

	

R40R

4
h 7R2h 693R20R

3
h

þ 848E1
429R40R

4
h

�
W þ m

	
W
�
W þ 2m

	
(28)

The equation (28) is obtained by Bich and Tung (2011).
For a perfect spherical shell, i.e. m¼ 0, it is deduced from Eq. (27)

that

q ¼
 
64D
R40R

4
h

þ 3E1
7R2h

þ K1
16D

21R40R
4
h

þ 40D
7R40R

4
h

K2

!
W � 1385E1

693R20R
3
h

W
2

þ 848E1
429R40R

4
h

W
3

(29)
For a perfect spherical shells, extremum points of curves qðWÞ

are obtained from condition:

dq

dW
¼ A� 2BW þ CW

2 ¼ 0 (30)

which yields

Wl;u ¼ B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � AC

p

C
(31)

provided B2 � AC > 0 (32)

It is easy to examine that if condition (32) is satisfied qðWÞ curve
of the perfect shell reaches minimum at Wl and maximum at Wu

with respective load values are ql and qu. Here qu, ql represent
respectively upper and lower limit buckling loads of perfect FGM
spherical shell under uniform external pressure. The shell will
exhibit a snap-through behavior whose intensity is measured by
difference between upper and lower buckling loads
Dq ¼ qu � ql ¼ 4(B2�AC)3/2/3C2. The explicit analytical expressions
of A, B, C and qu, ql are calculated and given in the Appendix A.

3.2. Nonlinear thermomechanical stability analysis

We consider a clamped FGM spherical shell under external
pressure q and thermal load. The condition expressing the
immovability on the boundary edge (IM) (Case 2), i.e. u ¼ 0 on
r ¼ r0, is fulfilled on the average sense as

Zp
0

Zr0
0

vu
vr
rdrdq ¼ 0 (33)

From Eqs. (4), (8a) and (10) and we have taken into account the
axial symmetry as well as the imperfection. It is easy to show that:

vu
vr

¼ 1
E1

�
f 0

r
� vf 00

�
þ E2
E1

w00 � 1
2
ðw0Þ2 �w0w*0 þw

R
þ Fa

E1
(34)

Substitute the Eqs. (22), (23) and (25) into (34), then we insert
the final result to (33), we get:

Nr0 ¼ � Fa

1� v
þ
"
ð5v� 7ÞE1
36ð1� vÞR� 2E2

ð1� vÞr20

#
W

þ ð35� 13vÞE1
72ð1� vÞr20

WðW þ 2mhÞ (35)

The Eq. (35) is the normal force on the immobile edge.
Specific expressions of parameter Fa in two cases of thermal

loading will be determined.
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3.2.1. Uniform temperature rise
The FGM spherical shell is exposed to temperature environ-

ments uniformly raised from stress free initial state Ti to final value
Tf and temperature increment DT ¼ Tf � Ti is considered to be in-
dependent from thickness variable.

The thermal parameter Fa can be determined from (8b). Sub-
sequently, employing this expression Fa in Eq. (35) and then sub-
stitution of the result into Eq. (26) lead to

q ¼ b21W þ b22W
�
W þ 2m

	þ b23
�
W þ m

	
W
�
W þ 2m

	
þ b24W

�
W þ m

	� 40PDT
7ð1� vÞR20R2h

W þ PDT
1� v

 
2
Rh

� 40
7R20R

2
h

m

!

(36)
The explicit analytical expressions of b2i ði ¼ 1e4Þ and P are

calculated and given in the Appendix A.
If the FGM spherical shell does not rest on elastic foundations,

the equation (36) coincides with the governing equation given by
Bich and Tung (2011).
3.2.2. Through the thickness temperature gradient
The metal-rich surface temperature Tm is maintained at stress

free initial value while ceramic-rich surface temperature Tc is
elevated and nonlinear steady temperature conduction is governed
by one-dimensional Fourier equation (Bich and Tung, 2011):

d
dz

�
KðzÞdT

dz

�
þ 2KðzÞ

z
dT
dz

¼ 0; Tðz ¼ R� h=2Þ ¼ Tm; Tðz

¼ hþ R=2Þ ¼ Tc
(37)

In which, Tc and Tm are the ceramic surface temperature and
metallic surface temperature, respectively. In Eq. (37), z is the dis-
tance from a point on the spherical shell surface to the spherical
center. We should note that this point is separated from the central
shell surface by a distance e z, which means that z ¼ Rþ z and R�
h=2 � z � Rþ h=2.

In order to solve Eq. (37), we can represent the root as the fol-
lows (Bich and Tung, 2011):

TðzÞ ¼ Tm þ DT

ZRþh=2

R�h=2

dz

z2KðzÞ

Zz dz

z2KðzÞ

R�h=2

(38)

where, DT ¼ Tc � Tm is the temperature gradient between the
ceramic surface and metallic surface of the spherical shell. For
simplicity, we just consider the linear distribution of the constitu-
ents in the spherical shell materials, i.e. N ¼ 1 and:

KðzÞ ¼ Km þ Kcm

�
2ðz� RÞ þ h

2h

�
(39)

Introduction of Eq. (39) into Eq. (38) gives temperature distri-
bution across the shell thickness as

TðzÞ ¼ Tm þ DT
I

(
4Kcm

ðKc þ Km � 2KcmRhÞ2h

�
ln

ðKc þ KmÞhþ 2Kcmz
2hKm

� ln
2ðRþ zÞ
2R� h

�
þ 2ð2zþ hÞ
ðKc þ Km � 2KcmRhÞðRþ zÞð2R� hÞ

)

(40)

where z has been replaced by z þ R after integration.
We assume that the metallic surface temperature is kept
constantly as the initial one. And, we substitute Eq. (40) to Eq. (8b)
we get Fa ¼ DThL/I.

The explicit analytical expressions of L, I are calculated and given
in the Appendix A.

The solution is similar to the case written in (3.2.1), we then
have found the form for the qðWÞ of the spherical shell FGM in
terms of the thickness Eq. (36), under the externally homogeneous
pressure and the thermal conductance. Here, we replace P by L/I
and DT ¼ Tc � Tm.

4. Numerical results and discussion

For an illustration, we consider the spherical shell FGM with
such the constituents as aluminum (metal) and alumina (ceramic)
with the well-known properties which has been used in Bich and
Tung (2011), Duc and Cong (2013):

Em ¼ 70 GPa;am ¼ 23� 10�6 �
C�1;Km ¼ 204 W=mK

Ec ¼ 380 GPa;ac ¼ 7:4� 10�6 �
C�1;Kc ¼ 10:4 W=mK

and, the Poisson’s coefficient v ¼ 0.3.
Effects of the elastic foundations on the nonlinear response of

FGM shallow spherical shells are shown in Table 1 and Fig. 2.
Obviously, elastic foundations played positive role on nonlinear
static response of the FGM spherical shell: the large K1 and K2 co-
efficients are, the larger loading capacity of the shells is. It is clear
that the elastic foundations can enhance the mechanical loading
capacity for the FGM spherical shells, and the effect of Pasternak
foundation K2 on critical uniform external pressure is larger than
the Winkler foundationK1. For the FGM spherical shell without
elastic foundations, in this case, the obtained results is identical to
the result of Bich and Tung (2011).

Fig. 3 shows effects of curvature radius-to-thickness ratio R/h on
the nonlinear response of FGM shallow spherical shells subjected to
external pressure. This figure shows that the effect of R/h ratio
(¼70, 80 and 90) on the critical buckling pressure of shells is very
strong, and the load bearing capability of the spherical shell is
enhanced as R/h ratio decreases.

Fig. 4 illustrates the effects of radius of base-to-curvature radius
ratio r0/R (¼0.4, 0.5 and 0.6) on the nonlinear response of FGM
spherical shells under uniform external pressure. This figure shows
that change of r0/R ratio is very sensitivewith nonlinear response of
the FGM spherical shells. In this figure, it is obviously to show that
an effect of the ratio r0/R on a nonlinear static response of the shell
is very unstable in postbuckling period.

Fig. 5 shows the effects of volume fraction index N on the
nonlinear axisymmetric static response of FGM spherical shells. As
can be seen, the load-average deflection curves become lower
when N increases. However, the increase in the extremum-type
buckling load and postbuckling load carrying capacity of the shell
when N reduces is presented by a bigger difference between upper
and lower buckling loads. This conclusion also is reported by Bich
and Tung (2011), Bich et al. (2012). Fig. 5 shows us that the elastic
foundation enhances the loading ability of the spherical shell as the
follows: the force acting on the spherical shell with the elastic
foundationmust be larger than the one acting on the FGM spherical
shell with the inelastic foundation. Moreover, the additional elastic
foundation reduces the snap-through significantly.

Fig. 6 analyzes the affects of in-plane restraint conditions and
elastic foundations on the nonlinear response of clamped FGM
shallow spherical shells with freely movable (FM) edges under
uniform external pressure. In comparison with the FM case, the
spherical shells with immovable clamped edges (IM) on elastic
foundations have a comparatively higher capability of carrying



Table 1
Effect of elastic foundation on the nonlinear response of FGM shallow spherical shells (R/h ¼ 80, r0/R ¼ 0.3, N ¼ 1) with movable edges (FM).

W/h 0.5 1 4 5

m ¼ 0 m ¼ 0.1 m ¼ 0 m ¼ 0.1 m ¼ 0 m ¼ 0.1 m ¼ 0 m ¼ 0.1

(K1 ¼ 0, K2 ¼ 0)a (0.0069) (0.0064) (0.0100) (0.0092) (0.0033) (0.0048) (0.0157) (0.0195)
K1 ¼ 100, K2 ¼ 0 0.0089 0.0084 0.0140 0.0131 0.0192 0.0207 0.0356 0.0394
K1 ¼ 100, K2 ¼ 10 0.0104 0.0099 0.0170 0.0161 0.0312 0.0327 0.0505 0.0544
K1 ¼ 50, K2 ¼ 20 0.0109 0.0104 0.0180 0.0171 0.0352 0.0367 0.0555 0.0594

a The obtained results ( with K1 ¼ K2 ¼ 0 in brackets) are the same with Bich and Tung’s one (2011, without elastic foundations).

Fig. 2. Effects of the elastic foundations on the nonlinear response of FGM shallow
spherical shells. Fig. 4. Effects of r0/R on the stability of spherical shell FGM on the elastic foundation

under an external pressure.
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external pressure loads in a postbuckling period. However, the
snap-through behavior of the FGM spherical shells with IM is very
unstable. Strikingly, Fig. 6 shows that the useful effects of the elastic
foundation (curves b) is more obvious than the inelastic one (curves
a). Also, in the presence of the elastic foundation (K1¼100, K2¼ 20)
the snap-through behavior of the FGM spherical shells is much
more stable.
Fig. 3. Effects of R/h on the stability of the spherical shell FGM on the elastic foun-
dation under an external pressure.
Table 2 and Fig. 7 present the effects of temperature and elastic
foundations on the nonlinear response of FGM shallow spherical
shells with clamped immovable edges (IM) under uniform external
pressure. As shown in Fig. 7, the temperature makes the spherical
shell to be deflected outward prior to mechanical loads acting on it.
Under mechanical loads, outward deflection of the shell is reduced,
and external pressure exceeds bifurcation point of load, an inward
Fig. 5. Effects of index N on the nonlinear response of FGM shallow spherical shells on
elastic foundations.



Fig. 6. Effects of in-plane restraint conditions and elastic foundations. Fig. 7. Effects of uniform temperature rise and elastic foundations on the nonlinear
response of FGM shallow spherical shells (IM).

Fig. 8. Interactive effects of imperfection and temperature field on the nonlinear
response of FGM shallow spherical shells (IM).

N.D. Duc et al. / European Journal of Mechanics A/Solids 45 (2014) 80e8986
deflection occurs. In this context, Fig. 7 also shows the bad effect of
temperature on the nonlinear response of the FGM spherical shells.
Indeed, the mechanical loading ability of the system has been
reduced in the presence of temperature. In the absence of the
elastic foundation (curve 5), there is a perfect agreement between
our calculation and the well-known result reported by Bich and
Tung (2011).

Fig. 8 depicts the interactive effect of FGM spherical shells on of
temperature and imperfection on the thermomechanical response.
This figure shows that the prefect spherical shells without tem-
perature exhibit a more benign snap-through response and are
more stable postbuckling behavior. This finding seems to be con-
tradicting the regular behavior of the FGM plates in which the
imperfect plates have loading capacity better than perfect one in
postbuckling periods (Duc and Tung, 2011; Duc and Cong, 2013).

Interestingly, the effects of an elastic foundations has been
presented in Fig. 9a and b. In these figures, we focus on the effects
of imperfection on the nonlinear response of FGM shallow spher-
ical shells (all FM edges) under uniform external pressure without
elastic foundations (Fig. 9a) and resting on elastic foundations
(Fig. 9b). This figures show that the effects of initial imperfection on
the nonlinear response of the FGM spherical shells is significant.
Obviously, an imperfection seems not very pronounced in post-
buckling periods for the shell without elastic foundations. This
result is consistent with those found by Bich and Tung (2011). The
snap-through phenomenon in the absence of the elastic foundation
is very strong. However, Fig. 9b shows the useful effects on the FGM
spherical shells in the presence of the elastic foundation as the
follows: the loading ability increases whereas the snap-through
phenomenon has been reduced.

Fig. 10 investigates the effects of the pre-existent external
pressure and the elastic foundation on the thermal loading ability
Table 2
Effect of temperature rise on the nonlinear response of FGM shallow spherical shells (R/

W/h 0.5 1

m ¼ 0 m ¼ 0.1 m ¼ 0 m ¼
DT ¼ 0 0.0181 0.0169 0.0275 0.02
DT ¼ 200 �C 0.0354 0.0333 0.0405 0.03
DT ¼ 300 �C 0.0441 0.0415 0.0470 0.04
DT ¼ 500 �C 0.0613 0.0579 0.0600 0.05
of the IM spherical shells in the presence of temperature. The
spherical shells behave and there is no snap-through phenomenon
in the outward spherical shells as soon as the temperature change
happens. Moreover, the effects of the imperfection is infinitesimal.
Under the similar conditions, i.e. the same bending, the effects of
the elastic foundation is very strong, i.e. the loading ability is much
better, in other words, the buckling loads are much larger.
h ¼ 80, r0/R ¼ 0.3, N ¼ 1, K1 ¼ 100, K2 ¼ 20) with immovable edges (IM).

4 5

0.1 m ¼ 0 m ¼ 0.1 m ¼ 0 m ¼ 0.1

55 0.0562 0.0616 0.1224 0.1348
76 0.0435 0.0481 0.1012 0.1127
37 0.0372 0.0413 0.0906 0.1017
59 0.0245 0.0278 0.0694 0.0796



Fig. 9. a. Effects of imperfection on the nonlinear response of FGM shallow spherical shells without elastic foundations (FM). b. Effects of imperfection on the nonlinear response of
FGM shallow spherical shells resting on elastic foundations (FM).

Fig. 10. Effects of pre-existent external pressure and elastic foundations on the ther-
mal nonlinear response of FGM shallow spherical shells (IM).

Fig. 11. Effects of the r0/R ratio on the upper (qu) and lower (ql) buckling loads of FGM
shallow spherical shells.

Table 3
Effects of ratio r0/R and elastic foundations on range of upper and lower loads (Dq)
for the perfect FGM spherical shell (R/h ¼ 80, N ¼ 1, m ¼ 0).

Case Range Dq r0/R ¼ 0.3 r0/R ¼ 0.4 r0/R ¼ 0.5

K1 ¼ 0
K2 ¼ 0

K1 ¼ 100
K2 ¼ 5

K1 ¼ 0
K2 ¼ 0

K1 ¼ 100
K2 ¼ 5

K1 ¼ 0
K2 ¼ 0

K1 ¼ 100
K2 ¼ 5

FM Dq ¼ qu � ql (GPa) 0.008 0.001 0.0245 0.0187 0.0432 0.0392
IM Dq ¼ qu � ql (GPa) 0.0143 0.0072 0.0306 0.0260 0.0492 0.0462
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Fig.11 presents the effects of the ratio r0/R on the upper and lower
buckling loads for the perfect FGM spherical shells in both cases FM
and IM. As can be observed, in small range of r0/R, i.e. for very shallow
shells, the upper and lower loads are almost identical and nonlinear
responseof the shell ispredicted tobeverymild.However,whenratio
r0/R is higher, i.e. for deeper shells, intensity of snap-through (the
difference between upper and lower loads) to be bigger.

Table 3 shows effects of ratio r0/R and elastic foundations on
range of upper and lower loads (Dq ¼ qu � ql) for the perfect FGM
spherical shell (R/h ¼ 80, N ¼ 1, m ¼ 0).

Table 3 shows us that the presence of an elastic foundation leads
to a decrease of the intensity in both IM and FM cases. Whereas, the
ratio r0/R increases with the intensity of snap-through.

Moreover, the intensity of snap-through in case of IM has been
illustrated in Table 4. It is easy to show that the intensity of snap-
through rises along with the increase of temperature.

Fig. 12 considers effects of temperature gradient on the
nonlinear response of clamped immovable FGM shallow spherical
shells (IM) under external pressure without elastic foundation e

curves (a) and the FGM shell resting on elastic foundationse curves
(b). It seems that bifurcation point are lower and the intensity of
snap-through is weaker under temperature gradient in comparison
with their uniform temperature rise (Fig. 7). This conclusion also is
reported in Bich and Tung (2011). Interestingly, we should note that
all curves of loads-deflections of the FGM spherical shell intersect
at one point with different values of temperature change DT. The
understanding of this feature calls for a further investigation.
5. Conclusion

This paper considers the nonlinear axisymmetric response of
FGM shallow spherical shells under uniform external pressure and
temperature on elastic foundation using analytical approach. Two
types of thermal condition are considered: The first type is
assumed that the temperature is uniformly raised. The second type
is that one value of the temperature is imposed on the upper



Table 4
Effects of temperature on range of upper and lower loads (Dq) for the perfect FGM spherical shell (R/h ¼ 80, r0/R ¼ 0.3, N ¼ 1, m ¼ 0, K1 ¼ 0, K2 ¼ 0).

DT ¼ 0 �C DT ¼ 100 �C DT ¼ 200 �C DT ¼ 300 �C DT ¼ 500 �C

IM Dq ¼ qu � ql (GPa) 0.0143 0.0235 0.0342 0.0460 0.0730

Fig. 12. Effects of the thermal conductance on the stable behavior of the spherical shell
FGM under an external pressure (IM).
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surface and the other value on the lower surface. The properties of
materials are graded in thickness direction according to a power
law function of thickness coordinate. Using classical shell theory,
BubnoveGalerkin method and stress function, obtained results
show effects of external pressure, temperature, material and
geometrical properties, imperfection, boundary conditions and
particularly, the effects of elastic foundation on the nonlinear
response of FGM shallow spherical shells. The snap-through be-
haviors of the FGM spherical shallow shells on the elastic founda-
tions also are discussed carefully in this paper. Some results were
compared with the ones of the other authors.
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Appendix A
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j ¼ ln
2Rh þ 1
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