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Abstract—In this paper, we propose a novel Payload-

based One-class Classifier for Anomaly Detection called 

POCAD, which combines a generalized 2v-gram feature 

extractor and a one-class SVM classifier to effectively 

detect network intrusion attacks. We extensively 

evaluate POCAD with real-world datasets of HTTP-

based attacks. Our experiment results show that POCAD 

can quickly detect malicious payload and achieves a high 

detection rate as well as a low false positive rate. The 

experiment results also show that POCAD outperforms 

state of the art payload-based detection schemes such as 

McPAD [8] and PAYL [5].  

I. INTRODUCTION 

Intrusion Detection Systems (IDS) are powerful 

tools for the defense-in depth of computer networks. 

One of the leading approaches is anomaly detection, 

based on specification of normal or benign activities. 

This approach usually suffers from high false positive 

rate issues, but it is able to detect zero-day attacks. As 

it is very hard and expensive to achieve a labeled 

dataset for real network activities containing both 

normal and attack traffic, unsupervised or unlabeled 

learning approaches for network anomaly detection 

have been recently suggested. One-class classification 

algorithms pursue the concept of machine learning in 

absence of counter examples, and have been shown to 

be promising for network anomaly detection. 

A. Payload-based Anomaly Detection 

Many works have been carried out on unlabeled 

anomaly detection and focused on high speed 

classification using simple payload statistics [1, 5] (a 

payload is the actual data of a network packet). For 

instance, PAYL [5] extracts 256 features from the 

payload, each of which represents the occurrence 

frequency in the payload of one of 256 possible byte 

values. Although PAYL is based on simple statistics 

extracted from the payload, it has been shown to be 

quite effective [5]. Nonetheless, PAYL may suffer 

from a relatively high false positive rate [8]. A more 

generic n-grams version of PAYL has been proposed 

by the same authors [4]. A sliding window with length 

n is used to extract the occurrence frequency in the 

payload of all the possible n-grams. In this way, the 

payload is represented by a pattern vector in a 256n-

dimensional feature space. The obtained model is 

more precise than the simple byte frequency model. 

However, with the exponentially rising number of 

extracted features, the higher n, the more difficult it 

may be to construct an accurate model due to the curse 

of dimensionality and computational complexity. 

Perdisci et al. proposed McPAD, a multiple classifier 

system for anomaly detection with a 2v-gram feature 

extraction scheme that counts the appearance 

frequency of any two byte values in all pairs of bytes 

that are v bytes apart in the packet payload [8]. This 

approach limits the number of dimensions to 2562 and 

captures part of the structural information in the 

payload. However, it fails to capture the structural 

patterns within the v bytes of each pair separated by v 

bytes. 

B. Our contribution 

We propose a new Payload-based One-class 

Classifier for Anomaly Detection called POCAD that 

combines an improved version of the 2v-gram scheme 

and a one-class SVM classifier to achieve high 

detection rate and low false positive rate at the same 

time. Instead of counting only the pairs of byte values 

that are v bytes apart in the payload like McPAD, 

POCAD takes into account all pairs of byte values 

separated by less than or equal to v bytes. Specifically, 

for each pair of byte values, POCAD first counts the 

appearance frequency of this pair separated by exactly 

k bytes for each k from 0 to v. Then, the counts are 

added up to give the feature value of the two byte 

values. Doing this, POCAD successfully captures the 

correlation and associations of close byte values in the 

packet payload. We use these features to train a one-
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class SVM classifier and conduct extensive 

performance evaluations. We evaluate POCAD with 

different HTTP-based attacks, including Shell-code, 

CLET, Polymorphic Blending, etc. Our evaluation 

results show that POCAD not only quickly detects 

these attacks but also achieves a high detection rate 

and a low false positive rate. In summary, we make the 

following contributions: 

 We propose POCAD, a novel payload-based 

anomaly detection scheme, which extracts 

correlated features from nearby bytes in the 

packet payload and constructs a one-class 

SVM classifier. 

 We extensively evaluate POCAD with real-

world datasets of different types of HTTP-

based attacks. Our evaluation shows that 

POCAD outperforms state of the art schemes 

including McPAD [8] and PAYL [5], and 

achieves a very high detection rate at an 

extremely low false positive rate. 

This paper is organized as follows. We discuss the 

background in Section II. Section III presents the 

details of the POCAD payload-based anomaly 

detection scheme and Section IV presents our 

evaluation results. Finally, we conclude the paper in 

Section V. 

II. BACKGROUND 

A. One-Class Classification 

One-class classification techniques are 

specifically useful in case of two-class learning 

problems whereby one of the classes, referred to as the 

target class, is well-sampled, whereas the other one, 

referred to as the outlier class, is severely under-

sampled. The small number of instances from the 

outlier class may be explained by the fact that it is too 

difficult or overpriced to acquire a significant number 

of training patterns of that class [1]. This is especially 

true in the network anomaly detection context since an 

extremely small number of network incidents is 

anomalous or malicious, meanwhile the rest of 

network activities is benign. So, one-class classifiers 

fit network anomaly detection naturally. One-class 

SVM has been shown to achieve very competitive 

performance in text classification problems [2, 7]. The 

payload anomaly detection problem using n-gram 

frequencies as features is analogous to text 

classification since both use the bag-of-words model 

in which a simple unweighted raw frequency vector 

representation is used [3]. Therefore, we choose to 

make use of a one-class SVM classifier in POCAD.  In 

what follows, we use a feature vector xi = [xi
1
, xi

2
, …, 

xi
l
] to represent the payload πi in a l-dimensional 

feature space F. In Section III, we explain how xi is 

extracted. 

III. POCAD: A MULTIPLE 2V-GRAM ONE-CLASS 

CLASSIFIER 

A. Feature extraction 

The PAYL’s detection model relies on the 

counting of the number of appearances of n-grams 

(i.e., sequences of n successive bytes) in the payload 

[5]. The appearance frequencies of the n-grams are 

measured using a sliding window of length n. This 

window slides over the payload with one-byte steps 

and counts the appearance frequency for all 256n 

possible n-grams. As a result, the payload is 

represented by a vector in the 256n-dimensional 

feature space. There are two issues with this approach. 

On the one hand, if n is small (n = 1 or n = 2), little 

structural information is captured by this feature 

vector. So, the vector might not be useful in the 

detection of malicious patterns. On the other hand, for 

a larger n (n > 2), the number of dimensions increases 

exponentially and thus leads to the curse of 

dimensionality [4]. 

To solve the above problem, McPAD uses an 

ensemble of classifiers, each classifier corresponds to 

a 2v-gram scheme that counts the appearance 

frequency of any two byte values in all pairs of bytes 

that are v bytes apart in the payload [8]. Note that, we 

have 2562 combinations of two byte values in total. 

This approach limits the number of dimensions to 2562 

and captures part of the structural information in the 

payload. However, each classifier is not expressive 

enough to capture the structural patterns within the v 

bytes of a 2v-gram. In other words, it only captures the 

information at the jth byte and the (j+v)th byte but does 

not make use of bytes in the range [j+1, j+v-1]. This 

information might be important since patterns in 

practice may not always be at fixed places, and thus 

the distance between them might not be always a 

constant. For example, in a packet payload of an 

exploit, hackers may not always keep the command 

sequence of OPEN, NOOP, JUMP in all bytecode 

deliveries of the same sample. Instead, they may 

change this sequence and make a new command 

sequence of OPEN, JUMP, NOOP in some (and 

random) deliveries. The two executable programs run 

exactly the same once loaded, since NOOP command 

is ignored in program execution, but their actual 

bytecode contents are not the same.. This will break 

detectors that use a fixed 2v-gram feature extraction 

scheme, like McPAD. Although McPAD combine 

many classifiers, but as each one is not good enough, 



 
 

its overall efficiency is limited. To overcome the 

problem, for any two byte values, POCAD captures all 

structural information in the range [j, j+v] as follows. 

It first counts the appearance frequency of these two 

byte values that are k bytes apart for each k from 0 to 

v. Then, POCAD adds these frequencies up and use 

the addition sum as the appearance frequency of the 

given two byte values. As a result, POCAD still has 

2562 features but the feature values are more 

expressive than McPAD.  

The main idea of POCAD is that two bytes not too 

far apart from each other in the payload may have 

some correlation or association. Each appearance of 

these two bytes together can be an additional evidence 

of the desired patterns we are looking for to detect 

abnormal contents, so it’s important to count all of 

them. For example, assuming v = 5, we have six 

feature vectors extracted by six 2k-gram feature 

extractors with k varying from 0 to 5 (20-gram, 21-

gram, 22-gram, 23-gram, 24-gram, and 25-gram). By 

making the sum of these six vectors we have a new 

vector representing the number of appearances of each 

of the possible pairs of byte values that are distanced 

from each other by at most 5 bytes instead of exactly 

0, 1, 2, 3, 4 or 5 bytes. For example, if one element X 

have 3 possible values A, B, and C, and we have a 

payload AABCCABAA, then the appearance frequency 

vector of 20-grams is as below:  

AA BB CC AB BA BC CB AC CA 

2 0 1 2 1 1 0 0 1 

(The appearance frequency of pair AA is 2) 

The appearance frequency vector of 21-grams:  

AA BB CC AB BA BC CB AC CA 

1 0 0 1 1 1 1 1 1 

The sum of two appearance frequency vectors:  

AA BB CC AB BA BC CB AC CA 

3 0 1 3 2 2 1 1 2 

Note that, we assume that each element has 3 possible 

values instead of 256 because a table of 256 columns 

is too big to be listed. 

B. Payload classification 

After obtaining the sum of appearance frequency 

vectors for all 2562 features, we use a clustering 

algorithm to reduce dimensions as presented in [8]. 

Then, we construct a model of normal traffic by 

training a one-class SVM classifier using the same 

method as [8]. Fig. 1 represent our training phase. The 

one-class SVM classifier uses a predefined threshold 
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𝜏  to determine if an abnormal payload is found, that is 

if P(normal | p) ≤  𝜏 . The threshold 𝜏 is used to 

control the tradeoff between the true and false positive 

rates of the trained model. Obviously, if 𝜏 is large, then 

we can detect most attacks but also have many false 

alarms. In contrast, a small value of 𝜏 leads to most 

normal packets being treated truly as normal, but the 

system can allow an attacker to go through with a high 

probability. 

 

Fig. 1. Training phase 

During the testing and production phases, with 

each payload p introduced as input, we compute the 

representation vector of p, using the same feature 

extraction and dimensionality reduction steps as in the 

training phase. Then, we classify this representation 

using the trained one-class SVM. Fig.2 shows the 

testing phase of POCAD. 

 

Fig. 2. Testing phase 

IV. EVALUATION 

A. POCAD implementation 

We extend the McPAD open-source program1 to 

implement POCAD. Specifically, we developed a new 

module for extraction of more generalized 2v-gram 

features and extend the original packet classification 

module to implement our proposed packet 

classification technique. In our experiments, we vary 

the values of the threshold 𝜏  to thoroughly evaluate 

the performance of POCAD. The number of 

dimensions is reduced from 2562 to 160 in the 

clustering algorithm, which is also the number of 

dimensions used for McPAD [8]. We let v = 1 in the 

feature extraction process, that is, 20-grams and 21-

grams are combined together for the calculation of 

feature vectors. With McPAD, we limit the number of 



 
 

classifiers in ensemble to 10, and use the maximum 

combination rule, which has been shown to produce 

the best performance for McPAD. The performances 

of POCAD are compared with PAYL and McPAD 

over different realistic datasets and types of real-world 

attacks. 

B. Validation Metrics 

We use two metrics in performance evaluation, 

including the Receiver Operating Characteristic 

(ROC) curve and the Area Under the Curve (AUC). 

The ROC curve provides a method to visually show 

the trade-off between the false positive rate and the 

true positive rate for different values of the detection 

threshold 𝜏 [3]. The AUC shows the classification 

productivity of the classifier in the entire range of the 

false positive rate. More precisely, a higher AUC 

implies a better performance of detecting attacks from 

normal packets. However, an IDS with a false positive 

rate of higher than 10% might be not be usable in 

practice. So, we focus on the AUC in the range of [0, 

0.1] since it is a meaningful performance indicator in 

practice.  

C. Datasets 

We use two datasets in our experiments. We first 

use HTTP requests extracted from the first week of 

DARPA’99 dataset2, and call it DARPA dataset. 

Similar to previous works PAYL [5] and McPAD [8], 

DARPA is used to train our model and evaluate the 

false positive rate. Second, we take HTTP-based 

attacks from McPAD site1 and call this dataset 

ATTACKS, which consists of following data subsets: 

 Generic Attacks: this subset consists of 66 HTTP 

attacks3. Among these, 11 are categorized as 

shell-code attacks that carry executable code in 

the payload. The remaining attack categories 

include Failure to handle exceptional conditions, 

File disclosure, Information leak, Input 

validation error, Poor memory management, 

Poor resource management, Signed 

interpretation of unsigned value, URL decoding 

error.  

 Shell-code Attacks: this subset contains the 11 

shell-code attacks from the Generic Attacks data 

subset above. 

 CLET Attacks: this subset contains 96 

polymorphic attacks generated using the 

polymorphic engine CLET [1]. 

 Polymorphic Blending Attacks (PBAs): this 

subset is created based on the well-known Code-
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l. 

Red worm. PBAs attacks mimic the normal 

traffic with the same distribution of n-grams as 

normal packets. By doing this, they try to evade 

detection by payload-based anomaly IDS using 

n-gram analysis. 

D. Experiment results 

In this section, we first present the performance 

results of POCAD. We then compare its performance 

with those of PAYL [5] and McPAD [8] on various 

types of attacks. 

1) Validation of POCAD 

TABLE I.  AUC OBTAINED BY POCAD 

Type of Attack AUC 

Generic Attacks 0.91425 

Shell-code 0.99912 

CLET 0.99831 

Table I shows that POCAD achieves AUC values 

very close to 1 for different types of attacks. This 

indicates that POCAD can be used in practice. Among 

these types of attacks, Generic attacks have the lowest 

AUC since Generic attacks include attacks such that 

Information leak and File disclosure, which usually do 

not contain executable code. Instead, they contain 

irregularities in the packet payload used to exploit 

target systems. However, their payloads are very 

similar to normal packet payloads in byte distribution 

and structure, and thus make it difficult for POCAD to 

detect. Meanwhile, packets with Shell-code attacks 

and CLET attacks contain executable code in their 

payloads, and thus are detected by POCAD with a 

higher precision. 

2) Comparing POCAD with PAYL and McPAD 

In this section, we compare the performance of 

POCAD with those of PAYL [5] and McPAD [8]. 

Specifically, we use 4 types of attacks: Generic, Shell-

code, CLET, and PBAs. 

Figures 1, 2, and 3 show that for Generic, Shell-

code, and CLET attacks, the true positive rate (or 

detection rate) of PAYL rapidly decreases for a false 

positive rate of less than 5*10-3. Meanwhile, McPAD 

and POCAD can detect these attacks with a higher 

precision while only incurring a very low false 

positive rate of much smaller than 10-3. More 

importantly, POCAD outperforms McPAD in all these 

three types of attacks. For example, Figure 1 shows 

that for the false positive rate of 10-5, the detection rate 



 
 

of McPAD is about 62% while that of POCAD is about 

61%. Besides, for the false positive rate of 1%, 

POCAD has a true positive rate of 95%, while that of 

McPAD is only 89%. With Shell-code attacks and 

CLET attacks, POCAD also achieves a slightly better 

performance than McPAD. 

 

Fig. 3. Generic Attacks 

 

Fig. 4 Shell-code Attacks 

 

Fig. 5. CLET Attacks 

Figures 4, 5, and 6 show the detection results on 

PBAs of PAYL, POCAD, and McPAD, respectively. 

For these experiments, we create PBAs that mimic the 

statistical distribution of n-grams with n = 1, 2, 4, 12, 

and 2v-grams with v = 1..10 spreading over either 5 or 

10 overall attack packets as in [8]. Essentially, for a 

higher number of overall attack packets, PBAs mimic 

the distribution of normal traffic better, and thus they 

are more difficult to be detected. Figure 4 shows that 

PAYL achieves 0 detection rate for the false positive 

rate of roughly 10-3. Meanwhile, Figures 5 and 6 show 

that POCAD and McPAD achieve a medium detection 

rates for 5-packet-length attacks. However, when 

attacks are spread over a larger number of packets (i.e., 

10 packets), all three schemes fail for a very low false 

positive (i.e., 10-5). 

 

Fig. 7. ROC curves of POCAD for PBAs 

Table II compare the average processing time per 

payload of  PAYL, McPAD, and POCAD. While 

POCAD and PAYL are comparable, McPAD is 

significantly slower. This is because PAYL and 
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Fig. 6. ROC curves of PAYL for PBAs 



 
 

POCAD use only one classifier but McPAD uses ten 

classifiers and thus it takes much longer to run.  

 

Fig. 8. ROC curves of McPAD for PBAs 

TABLE II.  AVERAGE PROCESSING TIME PER PAYLOAD 

Detector AVG processing time (ms) 

PAYL 0.039 

McPAD 13.39 

POCAD 0.041 

E. Discussion 

Our experiment results show that POCAD is 

capable of detecting a variety of attacks even 

at very low false positive rates. Moreover, it can detect 

PBAs, a very challenging type of attacks. POCAD 

outperforms both PAYL and McPAD on all types of 

attacks, and achieves a significantly faster average 

detection time.  

In [6], Axelsson showed that in order to have a 

good Bayesian detection rate we need to maintain a 

relatively high detection rate and meanwhile reduce 

the false positive rate to around 10-5. As we show in 

Figures 2, 3, and 4, POCAD achieves this goal for 

different types of attacks. For example, it has a 

detection rate of around 98% for Shell-code attacks at 

a false positive rate of 10-5. That means 

P(Alarm|Intrusion) = 0.98 and P(Alarm|Not 

Intrusion) = 10-5. As in [6], we assume the 

probability P(Intrusion) = 2·10-5. Then, POCAD 

has the Bayesian detection rate 

P(Intrusion|Alarm) = 0.98·2·10-5/[0.98·2·10-5  + 

10-5·(1-2·10-5)] = 0.66. Meanwhile, similar analysis of 

McPAD gives P(Intrusion|Alarm) = 0.65. For 

PAYL, the detection rate is zero at the false positive 

rate of 10-5, and therefore the Bayesian detection rate 

is zero. All this confirms that POCAD outperforms 

both PAYL and McPAD in terms of effectiveness.  

 

V. CONCLUSION 

We design and implement POCAD, a novel 

payload-based anomaly detection scheme using an 

improved 2v-gram feature extractor and a one-class 

SVM classifier to effectively detect network intrusion 

attacks. POCAD captures the correlation of nearby 

bytes in the packet payload and thus provides a 

promising method for payload-based anomaly 

detection. Our extensive performance evaluation of 

POCAD shows that it can quickly detect different 

types of HTTP-based attacks and consistently 

achieves a high detection rate as well as a very low 

false positive rate. POCAD also outperforms state of 

the art payload-based detection schemes such as 

McPAD [8] and PAYL [5]. We thus believe POCAD 

can be useful for payload-based intrusion detection in 

practice. Moving forward, we plan to study the 

optimal number of features to be extracted in the 

clustering step of Section II.B, and investigate the 

optimal value of v in the construction of generalized 

2v-gram features. 
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