
Hội thảo quốc gia lần thứ XV: Một số vấn đề chọn lọc của Công nghệ thông tin và truyền thông- Hà Nội, 03-04/12/2012

Improvements to a Protocol for the Maintenance of Common Data in Distributed

Systems

Dai Tho Nguyen

VNU University of Engineering

and Technology

Hanoi, Vietnam

nguyendaitho@vnu.edu.vn

Ho Thuan

Institute of Information

Technology, VAST

Hanoi, Vietnam

hothuan@vast.ac.vn

Thanh Le Dinh

VNU University of Engineering

and Technology

Hanoi, Vietnam

thanhld@vnu.edu.vn

Abstract—In this paper, we suggest some modifications to a

protocol proposed by Awerbuch and Schulman in [3] for the

maintenance of common data in distributed systems so that

both its time and communication complexities are

reduced. The first change that makes Awerbuch-Schulman

protocol better is to eliminate unnecessary messages used in

the original version. The second change that also improves the

protocol is to reduce the size of process messages. In addition,

we suggest a self-stabilizing version of the Awerbuch-

Schulman protocol as well.

Keywords-broadcast with partial knowledge, process,

incremental update, discrepancy, self-stabilizing.

I. INTRODUCTION

Common objects in a distributed system are subject to
occasional changes. After changes, it is necessary for each
site to update its view so that the view reflects the current
state of the common objects. This problem is known as the
maintenance of common data in distributed systems and has
been studied for decades. Among protocols for solving this
problem [1-3], the Awerbuch-Schulman protocol [3] is the
best one since it has poly-logarithmic overhead in both time
and communication complexities. Other protocols require
polynomial overhead in at least one of these measures.
Moreover, as far as we know, up to now, there is no self-
stabilizing protocol to this problem. These observations have
motivated us to do the current work.

The main reason we are interested in the Awerbuch-
Schulman protocol is that the techniques used in this paper
can be used to improve the time complexity of the
Awerbuch-Cidon-Kutten protocol for the communication-
optimal maintenance of a spanning tree as indicated by the
authors themselves [1]. The construction and maintenance of
a spanning tree play an essential role in the design of many
distributed algorithms, including broadcast, multicast, reset,
routing, termination detection, etc. Relying on the
Awerbuch-Cidon-Kutten, we have proposed an efficient and
message-optimal multicast routing protocol in mobile ad-hoc
networks [5]. We hope that our routing protocol can be
improved in terms of time complexity.

In this paper, we suggest some modifications to the
Awerbuch-Schulman protocol so that its overheads in both
time and communications are reduced. The improvements
consist of the elimination of unnecessary messages used in
the original version and the reduction of the size of process
messages. In addition, we suggest a self-stabilizing version
of the protocol as well.

We use terms already introduced in [3] when explaining
our improvements. For details of the problem definition and
Awerbuch-Schulman protocol, please refer to [3].

II. OUR IMPROVEMENTS TO THE AWERBUCH-SCHULMAN

PROTOCOL

A. Observation

The Awerbuch-Schulman protocol does reconcile time
with communication requirements. By rough estimate, i.e. in
word model, the communication complexity of the protocol
is O(n+∆), where n is the number of sites other than the
source and ∆ is the total number of incorrect bits. Each
correction message has the size of (1 + log m) bits, in which
the first bit has the value of 1 indicating that message is a
correction one, log m bits left present the height of incorrect
bit, where m is the size in bits of common data. Each process
message has 3(1+log m) bits, in which the first bit has the
value of 0 indicating that message is a process one, log m
bits present the altitude of the sender process, log m bits
present the height of the sender process, log m bits indicate
the number of incorrect bits that the sender process has
corrected, one bit indicates whether the sender process is in
open or split mode, and the last bit indicates whether the
sender process is the main process. According to Awerbuch
and Schulman’s analysis, there are exactly ∆ correction
messages and at most n+∆ process messages used in each
execution of their protocol, thus there are at most ∆*(1 + log
m) + (n+∆)*3(1 + log m) = (3n+4∆) log m + 3n + 4∆ bits
of messages used in each execution. Obviously, if n or ∆ is
quite large, the number of bits of messages is much greater
than (n+∆) log m. In fact, we can reduce the number of
messages and the number of bits of messages used in the
Awerbuch-Schulman protocol, so does the time of each
execution (still remain the O(*) complexities of the original
protocol).

Hội thảo quốc gia lần thứ XV: Một số vấn đề chọn lọc của Công nghệ thông tin và truyền thông- Hà Nội, 03-04/12/2012

Observe that, in the Awerbuch-Schulman protocol, when
a process Q enters in split mode, it generates two child
processes: the upper and the lower ones; the children “go
ahead” and do its parent’s duty of cleaning a subarray,
whereas Q “tags behind” its children and do nothing except
“relaxing”; until two child processes have terminated (at a
same site), Q finishes its “relaxing” period and works again
or terminates. By whatever Q does when its children
terminate, the “tagging behind” period of Q is waste. This is
the point we use to make our improvement in the Awerbuch
-Schulman protocol.

B. Improved Issues

The idea behind our improvement is simple. When
entering in split mode, Q generates two children then
terminates rather than tags behind its children. When two Q’s
child processes terminate, Q will be “revived” if its duty
hasn’t been completed, i.e. in cases where current site is not
an mQ-column one or Q is the main process. The
revivification of Q is taken by its upper child. When Q’s
upper child, <yQ , mQ/2, ., ., .>, reaches its destination at an
mQ/2-column, if this is an mQ-column, it knows that Q needs
to terminate, so it doesn’t revive Q (unless Q is the main
process); otherwise it knows Q needs to be revived to
continues Q’s duty, so it sends a process message <yQ , mQ, 0,
., .> to the site’s successor before its termination, thus Q is
revived. The reappearance of Q in this manner is equivalent
with Q’s returning to open mode when two its child
processes terminate as in the original version of the
Awerbuch-Schulman protocol.

The key issue is how a process knows itself that it is an
upper child process (of another process)? In process
messages, in the form of <y, h, e, b, c>, b is no longer
necessary because all processes are in open mode (rather
than entering in split mode and tagging behind its children, Q
terminates itself, then it will be revived). An easy way to
distinguish upper child processes from others is to use b: b =
1 if process is an upper child (of another process), b = 0
otherwise. However, this method leads to a recursive
problem that cannot be solved. That is, when reviving parent
process, how does a child process know that its parent is also
an upper child process (of another process), and similarly,
how does parent process know that the grandparent process
is also an upper child process (of another process), etc.

Fortunately, both these two issues can be solved smartly
and effectively. A process is identified as an upper child (of
another process) if the quotient of the altitude of the process
plus 1 with the height of the process is an even number, i.e.
(y+1)/h = 2i, i =1, 2,...

Moreover, c component in a process messages is
unnecessary since we can identify the main process as the
unique process with the altitude of m-1 and the height of
m. An upper child of the main process is a process with the
altitude of m-1 and the height of m/2, therefore, before this
process terminates, it revives the main process if its site isn’t
the last one.

Thus, a process message can be reduced in size to the
form of <y, h, e> - 2 bits smaller than process message in the
original version of the Awerbuch-Schulman protocol. The

time for a process message to move from one site to that
site’s successor is decreased by 2 time units.

The revivification of a process is accomplished as
follows. Process Q, <yQ, mQ, eQ>, before terminating at an mQ-
column that isn’t the last column, checks itself if it is an
upper child (of another process) by checking whether
(yQ+1)/mQ is an even number. If this is true, then it checks
whether its parent is the main process (yQ = m-1 and mQ =
m/2) or mQ-column site isn’t an 2*mQ-column, Q will send a
process message <yQ, 2*mQ, 0> to its site’s
successor. Process message <yQ, 2*mQ, 0> does revive Q’s
parent.

Our improved Awerbuch-Schulman protocol is described
in detail in Appendix 1.

In this protocol, the source simply generates main
process by calling Process(m-1, m, 0); other processes will
correct incorrect bit upon receiving correction message
Error(j), and will generates next process by calling
Process(y, h, e) upon receiving process message
MoveForward(y, h, e).

The execution of a process at a site is implemented by
procedure Process(y, h, e). After completing the duty of
cleaning a segment of bits in its site’s successor, if it isn’t at
an h/2-column, a process will move to its site’s successor.
Otherwise, i.e. it’s at an h-column, if the process is the main
process, it starts cleaning next m-rectangle; else if the
process is an upper child (of another process), it revives its
parent before its termination; else the process does nothing
more but terminate. If a process is at an h/2-column that isn’t
an h-column, depending on the value of e, it enters in split
mode or simply resets e to 0 and starts a new open mode.

C. Example

An execution of the improved Awerbuch-Schulman
protocol is given in Figure 1. In this example, the chain of
hosts is H0-H1-H2-H3- H4. H0 has a 4-bit data which may
change occationally. Each of H1, H2, H3, H4 maintains a copy
of the 4-bit data from H0. The execution consists of a series
of configurations. Each configuration is presented as the
status (data) of hosts and actions of processes. Four bits of
data of a host is presented in a box. The incorrect bits are
displayed in underlined and bold style. That a process
performs an action in a host is presented in the form host:
process-id<y, h, e> action. For example, H0: #main<3, 4, 2>
sends(111) means the process <3, 4, 2> is given #main as its
identifier, is running on H0, sends a message whose content
is 111 to the next host (H1).

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

1

1

0

1

0

1

0

0

1

0

1

0

0

1

1

1

H0: #main<3, 4, 0> created

Hội thảo quốc gia lần thứ XV: Một số vấn đề chọn lọc của Công nghệ thông tin và truyền thông- Hà Nội, 03-04/12/2012

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

100

1

1

0

1

0

1

0

0

1

0

1

0

0

1

1

1

H0: #main<3, 4, 1> sends(100)

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

111 1

1

0

0

0

1

0

0

1

0

1

0

0

1

1

1

H0: #main<3, 4, 2> sends(111)

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

1

1

1

H1: #main<3, 4, 2> arrives

H1: #uchild<3, 2, 0> created

H1: #lchild<1, 2, 0> created

H1: #main<3, 4, 1> terminates

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

1

1

1

H1: #uchild<3, 2, 0> waits

H2: #lchild<1, 2, 0> arrives

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

0

1

0

0

0

1

0

0

101

1

0

1

0

0

1

1

1

H2: #uchild<3, 2, 0> arrives

H2: #lchild<1, 2, 1> sends(101)

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

0

1

0

0

0

1

0

0

110

1

0

0

0

0

1

1

1

H2: #uchild<3, 2, 1> sends(110)

H3: #lchild<1, 2, 1> arrives

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

0

1

0

0

0

1

0

0

111 1

1

0

0

0

1

1

1

H2: #uchild<3, 2, 2> sends(111)

H3: #lchild<1, 2, 1> terminates

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

1

1

H3: #uchild<3, 2, 2> arrives

 H0 H1 H2 H3 H4

3

2

1

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

1

1

H3: #main<3, 4, 0> revived

H3: #uchild<3, 2, 2> terminates

Figure 1. An execution of the improved Awerbuch-Schulman

protocol.

III. CORRECTNESS AND COMPLEXITIES

As with the original Awerbuch-Schulman protocol, it’s
easy to see the correction of our improved protocol since in
each execution, each incorrect bit has exactly one correction
message, thus is reversed once, and all correct bits are
cleaned but aren’t reversed.

With our improvement, not only does the number of
process messages decrease but remaining process messages
are also smaller in size. Therefore, overheads in time and
communications are reduced.

Hội thảo quốc gia lần thứ XV: Một số vấn đề chọn lọc của Công nghệ thông tin và truyền thông- Hà Nội, 03-04/12/2012

To estimate the effectiveness of our improvement, first of
all, we have Lemma 1 about the Awerbuch-Schulman
protocol.

Lemma 1. In each execution of Awerbuch-Schulman

protocol, for each site Pi, the number of processes that run

on Pi is an odd number pi = 2ki+1, ki 0, in which

ki processes are in split mode and ki+1 processes are in

open mode.

For proof of Lemma 1, see Appendix 2.

Assertion 1. Let T be the number of process messages

used in an execution of the Awerbuch-Schulman protocol. In

the same execution, our improved protocol saves (T-n)/2

process messages.

For proof of Assertion 1, see Appendix 3.

IV. SELF-STABILIZING VERSION

A self-stabilizing system is a system that can eventually
exhibit legitimate behavior regardless of its initial state [4].
In other word, starting at an arbitrary state a self-stabilizing
system ensures that it will reach consecutive legal states.

A self-stabilizing system can tolerate any (type and
amount of) fault. Occurrence of faults brings system to
arbitrary state. But if after the burst of faults there is a long
enough period during which no fault occurs then system will
reach legal states by its self-stabilizing nature.

With our improved Awerbuch-Schulman protocol, a
configuration is legitimate if in this configuration each site
has its own data as the same as that of the source. An
execution is legitimate if every configuration in it is
legitimate.

In order to have self-stabilization property in our
improved Awerbuch-Schulman protocol, some issues need to
be solved. First, the source needs to periodically start
protocol runs, and the others involve in these runs. Second,
neighbor-knowledge assumption needs to be held. Assume
that in initial state P1’s data is totally different from P0’s
knowledge about it (each bit of P1’s data differs from the
corresponding bit of P0’s knowledge about P1’s data).
Processes on P0 will send correction messages for correct bits
of P1’s data but incorrect bits. Therefore, P1’s data will
always be different from that of the source. This problem
may occur in other sites, too. Thus, if the neighbor-
knowledge assumption isn’t held then protocols will not be
self-stabilizing. This observation suggests that to gain self-
stabilization in these protocols we must hold neighbor-
knowledge assumption. In order to do so, each site except the
source needs to send periodically its own data in a
knowledge message to previous site in order to update
previous site’s knowledge.

Our self-stabilizing improved Awerbuch-Schulman
protocol is described in detail in Appendix 4. Assume that
faults may occur in the period from 0 to T but there is a long

enough period follow T during which no fault occurs. Let CT

be the system configuration at time T. O(m) time units follow
T, all sites will complete sending knowledge message to
previous site as well as receiving another knowledge
message from next site, thus each site has its correct
knowledge about its following site. One period after that, all
sites will have its data as the same as that of the source. Time
complexity (of a convergence) of our self-stabilizing
improved Awerbuch-Schulman protocol is as the same as
that of our non-self-stabilizing one. Message complexity (of
a convergence) of our self-stabilizing improved Awerbuch-
Schulman protocol is greater than that of our non-self-
stabilizing one since at least n*m bits of knowledge
messages are used in each convergence.

V. CONCLUSION

Our improvements to the Awerbuch-Schulman protocol
saves time and messages for it and make it self-stabilizing.
Because of the importance of the maintenance of common
data in distributed systems problem, one continuously finds
effective, stable protocols to this problem. Our future work is
to find such another protocol.

REFERENCES

[1] Baruch Awerbuch, Israel Cidon, and Shay Kutten, “Optimal maintenance

of a spanning tree,” Journal of the ACM, 55(4), Sep. 2008.

[2] Baruch Awerbuch, Israel Cidon, Shay Kutten, Yishay Mansour, and David

Peleg, “Broadcast with partial knowledge,” In Proc. 10
th

 ACM Symp. on

Principles of Distributed Computing, 1991.

[3] Baruch Awerbuch, and Leonard J. Schulman, “The maintenance of

common data in a distributed system,” Journal of the ACM, 44(1): 86-103,

Jan. 1997.

[4] Edsger W. Dijkstra, “Self-stabilizing systems in spite of distributed

control,” Comm. ACM 17: 643-644, November 1974.

[5] Hai Trung Nguyen and Dai Tho Nguyen, “An efficient and message-

optimal multicast routing protocol in mobile ad-hoc networks,” In Proc. of

the Int. Conf. on Advanced Technologies for Communications, 2011.

APPENDICES

Appendix 1. Our improved Awerbuch-Schulman protocol

The source:

Process(m-1, m, 0) // Generate the main process

Other sites:

Upon receiving Error(j) message from previous site

Correct (reverse) bit with index j in my data

Upon receiving MoveForward(y, h, e) message from

previous site

If the site is not the last one then Process(y, h, e)

Procedure Process(y, h, e)

For each bit bj, y-h ≤ j ≤ y-1, in next site’s data

If bj is incorrect then

Hội thảo quốc gia lần thứ XV: Một số vấn đề chọn lọc của Công nghệ thông tin và truyền thông- Hà Nội, 03-04/12/2012

Send Error(j) message to next site

e := e + 1

If the current site is an h-column then

If I’m the main process, i.e. y = m-1 and h = m,

then

Start cleaning next m-rectangle by sending

MoveForward(m-1, m, 0) message to next site.

Else if I’m an upper child, i.e.(y+1)/h is an even

number, then

Revive parent process by sending

MoveForward(y, 2*h, 0) messages to next

site.

Else if current site is an h/2-column then

If e > h/2 then enter in split mode by sending

MoveForward(y-h/2+1, h/2, 0) then

MoveForward(y, h/2, 0) messages to next site.

Else starts a new open mode in next h-rectangle by

sending MoveForward(y, h, 0) message to next

site.

Else, move to next site by sending MoveForward(y, h,

e) to next site.

 Appendix 2. Proof of Lemma 1

In each execution of the Awerbuch-Schulman protocol,

parent processes tag behind its children, thus if p runs on Pi
then all p’s ancestors will run on Pi. Therefore, if we regard
each process that runs on Pi as a node, and each parent-and-
child relation between two processes that run on Pi as a link,
then all processes that run on Pi, along with parent-and-child
relations between them, form a binary tree Ti (each parent
process have exactly two children) with the main process at
the root of Ti.

In addition, in each execution of the Awerbuch-
Schulman protocol, if p isn’t the main process that run on Pi
then its twin sibling, q, runs on Pi , also, because two twin
processes have the same path (are given birth at the same site
and terminate at another same site). Thus, Ti is a complete

binary tree, has pi = 2ki + 1 nodes, ki 0, in which ki internal
nodes and ki+1 leaves. Note that each internal node is a
parent process, therefore, in split mode; and each leaf is a
process that hasn’t split, therefore, in open mode. □

Appendix 3. Proof of Assertion 1

From the Lemma 1, it is easy to see that the number of

split-mode process messages is (T-n)/2. These split-mode
process messages are eliminated in our improved protocol.□

Appendix 4. Our self-stabilizing improved Awerbuch-

Schulman protocol

The source:

Do periodically:

Process(m-1, m, 0) //Generate the main process

Upon receiving knowledge message from next site:

Update the view about next site’s data

Other sites:

Upon receiving Error(j) message from previous site

Correct (reverse) bit with index j in my data

Upon receiving MoveForward(y, h, e) message from

previous site

If not the last site then Process(y, h, e)

Upon receiving knowledge message from next site:

Update the view about next site’s data

Do periodically:

Send knowledge message to previous site.

Procedure Process(y, h, e)

For each bit bj, y-h ≤ j ≤ y-1, in next site’s data

If bj is incorrect then

Send Error(j) message to next site

e := e + 1

If current site is an h-column then

If I’m the main process (y = m-1 và h = m) then

Start cleaning next m-rectangle by sending

MoveForward(m-1, m, 0) message to next site.

Else if I’m an upper child ((y+1)/h is an even

number) then

Revive parent process by sending

MoveForward(y, 2*h, 0) to next site.

Else if current site is an h/2-column then

If e > h/2, enter split mode by sending

MoveForward(y-h/2+1, h/2, 0) then

MoveForward(y, h/2, 0) messages to next site.

Else starts a new open mode in next h-rectangle by

sending MoveForward(y, h, 0) message to next

site.

Else, move to next site by sending MoveForward(y, h,

e) to next site.

