
An efficient and message-optimal multicast routing

protocol in mobile ad-hoc networks

Hai Trung Nguyen

University of Engineering and Technology

Vietnam National University

Hanoi, Vietnam

nguyen.hai@vnu.edu.vn

Tho Dai Nguyen

University of Engineering and Technology

Vietnam National University

Hanoi, Vietnam

nguyendaitho@vnu.edu.vn

Abstract— This paper presents a novel protocol for multicasting

in mobile ad-hoc networks named Spanning Tree for

Multicasting (STM), which establishes and maintains the

spanning tree for each multicast group using optimal control

packets, without requiring any underlying unicast routing

protocol or any pre-configured state of group. Based on the

original idea of optimal maintenance of a spanning tree (OMST),

we improve this algorithm considerably and propose our

multicast protocol, as well as implement it as an extension of

simulator NS-2. We compare STM with MAODV and PUMA

using NS-2 through various scenarios, the results show that STM

attains top packet delivery ratio, while keeping less overhead

than others. As far as we know, our implementation is the very

first implementation inspired by OMST in practice.

Keywords: Ad hoc netwok, routing, multicasting, multicast tree,

spanning tree.

I. INTRODUCTION

Multicast communication is now widely used in distributed
applications for efficiently delivering data from one source to
all members of multicast group. In ad-hoc networks,
communication between nodes has been established using
multiple hops via relay nodes. Especially in mobile ad-hoc
network (MANET), there are some special characteristics that
may impact on the performance of communication [7]. In
mobile environment, nodes move freely and unpredictably, so
network topology changes frequently. Mobile nodes also have
very limited battery power and network bandwidth. As a result,
it is important to have a multicast protocol that can achieve
high packet delivery ratio with overhead as low as possible.

Recent multicast protocols have been proposed for mobile
ad-hoc networks [2][3][4][5][7][8] which shown the significant
improvement to achieve a better packet delivery ratio, as well
as less overhead. In the scope of our discussion, we classify
modern approaches to design multicast protocol taken to date
into tree-based and mesh-based. A tree-based multicast
protocol establishes and maintains a shared tree between all
group members, in which there is only one route between each
pair of nodes. One state of the art protocol which is
representative for tree-based solution is MAODV [2]. In
contrast, a mesh-based multicast protocol maintains a mesh in
which there is maybe more than one route between two remote
nodes. Recent example of mesh-based protocol is PUMA,
which outperformed than the former well-known protocol

ODMRP [4], as shown in [3]. PUMA also has tree-based
version named ROMANT which has slightly less performance
than PUMA, according to [3][16].

We focus on tree-based solution that can avoid packet
redundant, especially related to minimum spanning tree which
has proven as the most efficient way to deliver data from one to
all destinations of the network or graph. In a dynamic network
like MANET, previous approaches that adapt for each
topological change involve Ω(E) messages [10], where E is the
number of network edges. This is likely the cost to reconstruct
the tree from scratch. In most cases, E equivalents to O(V2),
where V is the numbers of nodes, so that it cannot be applied to
design the multicast protocol for MANET in practice. Recent
result gave a better solution, optimal maintenance of a spanning
tree (OMST) [1] that reduced the amortized message
complexity to O(V).

This paper presents a novel protocol for multicast routing in
MANET with enhanced algorithm built on top of OMST. Our
main contributions in this work are improving this algorithm
for easier to use and designing a protocol with improvements,
also making an implementation of this protocol as an extension
of simulator NS-2 for evaluation. Section II describes more
detail about the improved algorithm and protocol design.
Section III evaluates this protocol with others to assess the
correctness of algorithm (authors of OMST only prove the
correctness of algorithm theoretically without any practice
assessment).

II. STM DESCRIPTION

A. Overview

STM provides IP multicast service for both static and
dynamic networks, featuring mobile ad-hoc networks, which
allows any source to send multicast packets to a given of group
through wireless broadcasting. As a tree-based protocol, STM
aims to provide high packet delivery ratio while keeping
overhead as low as possible in mobile ad-hoc environment. To
achieve this goal, STM applies the idea of optimal maintenance
of a spanning tree (OMST) algorithm which economizes the
message complexity to adapt each topological change in a
dynamic environment like mobile ad-hoc network. STM
protocol simplifies algorithm of OMST for easier to apply in
practice without changing the correctness and message
complexity.

Some requirements of STM protocol that we follow to
design STM protocol: (i) use wireless broadcast mechanism for
control packets instead of relying on unicast protocol to deliver
them, hence it may save network bandwidth, (ii) apply
retransmission mechanism to cope with collision problem in
wireless network, like the repair mode presented in [11], (iii)
not use unbounded counter, as recommended in [12], to avoid
problem of recycling sequence numbers mentioned in [3][16].

As built on top of OMST algorithm, STM enhances OMST
mainly in two main subroutines: UPDATE and FIND

- UPDATE: to make the tree replica identical with the real
tree, invoked by root when topological change occurs. This is
very important procedure, to help FIND routine reduce the
number of messages to find the best outgoing edge to merge
into current tree.

- FIND: Similar to GHS-83 algorithm [6] to choose the best
outgoing edge to merge. In STM, distance between two remote
nodes is selected as weight to find minimum outgoing edge.

Other supporting procedures are based on original OMST
algorithm. We only focus on UPDATE and FIND subroutines
with a simplified data structure of tree replica which we design
to make algorithm easier to design and implement in practice.

B. Data structure of tree replica

In OMST, tree topology is managed in special structure
called “tree replica” (another term called “forest replica” has
the same structure); actually it is a list of mobile links (or
edges). This structure requires a large memory to store than
nodes structure, especially to store “forest replica” of each
node and the mechanism to reconstruct the topology from
broken link is complicated, hence it takes more time to
complete. We present a new structure that has the same
functionality of tree replica but it is easier to design and
implement. Rather than managing the list of edges of current
tree, we store a list of mobile nodes.

Compared with “tree replica” using by OMST, “tree
replica” using by STM shows some clear advantages:

- The memory size to store the data structure is reduced
about half, since a mobile link consists of two endpoints. As
seen in Figure 1, node 6 has tree list consisting of 3 nodes
{6,1,7} (three memory units, each unit for one node). If using
data structure as mentioned in original OMST, “tree replica” of
node 6 should contain {(6,1), (1,7)}, also “forest replica”
consists of tree replica plus non-tree edges {(7,6), (1,2), (2, 6)}
(total ten memory units).

- The size of message DIFF send by subroutine UPDATE is
smaller, as it doesn’t send the list of mobile links (it sends list
of mobile nodes instead).

- There is no need to manage forest replica of the whole
tree at each node, as we describe is subroutine UPDATE and
FIND below. As a result, the use of complicated “side of tree”
is unnecessary anymore. The protocol will run faster and more
effectively in highly dynamic network.

Figure 1 shows an example of data structure for topology
management. Node 6 has three neighbors: 1, 2, 7, in which
node 1 and 7 belongs to the same tree replica of node 6. This

tree is built by two edges (7,1) and (1,6). Intuitively, edge (6,7)
may create tree cycle, hence node 6 cannot choose node 7 as
best outgoing node to merge trees, although both edges (7,6)
and (6,2) can be candidates since they are not currently
belonged to tree replica of node 6.

Each node also maintains its neighbor list by periodically
asking underlying layer service (e.g. MAC layer) to provide the
nodes list in its radio range. Based on neighbor list and “tree
replica” list, multicast node only receives packets from
neighbor node which has tree link with receiver. Otherwise,
packets will be discarded.

The management of this node list can be simplified using
binary coding: we map each node ID in node list into an index
of a binary array. For example, node list {6, 1, 7} can be
presented in binary array (low bit first) as 01000011. In our
implementation, we use an array of 128 bits (16 bytes) to map
node list, hence supporting group size up to 128 nodes.

6

7

1 2

6,1,7

Bit 0 1 2 3 4 5 6 7

 0 1 0 0 0 0 1 1

Figure 1: Node list management

C. Root election

At network starts up, each member of multicast group

consider itself as root of a tree fragment containing single

node. Based on “tree replica” list, root of each fragment

updates the whole fragment topology by sending UPDATE

messages through tree links to all fragment members. Each

node chooses best outgoing edge (minimum weight) and sends

this weight back to its parent until root. At that time, each

node has a pointer to the next node (one of its children) on the

route to the best outgoing edge. The root then transfers root

privilege to the next node on that route using CHANGE

ROOT message containing the node adjacent to the best

outgoing edge. This message continues forwarding until it

reaches the node which has the same identity with the one in

CHANGE ROOT message. This new root will try to connect

to the other endpoint of outgoing edge using the same

mechanism as described in [1]. When two endpoints agree to

connect, the one with higher identity will become the new root

of combined fragment. This new root will continue this

process until there is only one tree fragment left.

Real tree edge

Non-tree edge

D. Tree formation and maintenance

Like MAODV and ROMANT, STM uses receiver-initiated

approach to form the tree without pre-assignment of root (or

core) to multicast group. Initially each multicast group

member considers itself as a basic tree fragment in which this

member elects itself as root. All trees in the whole network

will try to connect with others using MERGE subroutine. This

distributed implementation of MERGE subroutine is

essentially similar with GHS-83 algorithm [1][6]. In STM, the

root of tree sending MERGE message will be a new root of

new tree combined by two tree fragments. Within a finite time

proportional to the size of multicast group, all members of

multicast group will join in single tree of the whole network.

At the first time of tree formation, this tree is minimum

spanning tree in which each node has the unique path to the

root.

When a link in spanning tree is lost (due to node is moving

out of range or turned off), this tree is separated into two sub

tree fragments. The parent node of broken link will send

ALERT message to its tree root through the spanning tree

path. The child node of this link will become a new root of

new tree fragment formed after link broken. Each tree

fragment will try to find the outer fragment to connect, hence

reconstruct the spanning tree. Before finding outgoing edge,

each tree fragment updates the current topology to avoid tree

cycle. After found the best outgoing edge to connect, this tree

fragment will start the MERGE subroutine, finally the whole

network will be reconstructed. This maintenance process will

execute for each topological change. To reduce message

complexity for adapting, tree fragment will execute UPDATE

subroutine before finding best outgoing node to connect.

E. UPDATE subroutine

UPDATE subroutine is activated from root when

topological change occurs, broadcasting UPDATE message.

Each node receives UPDATE message through tree link will

mark sender as parent and forward message to all neighbor

members using wireless broadcast till leaf nodes. Leaf nodes

start Echo process by sending UPDATED message to parent,

this message contains the node list of all members presented in

the current tree. This node list is initialized from leaf nodes,

beginning with ID of leaf node itself, and then feeding back to

its parent. Each node receives all UPDATED messages from

its children will make an union of all node lists into one,

append ID of itself into this list, and continue feeding back to

its parent. This process will end at root, similarly to Broadcast

and Echo mechanism [9] implemented in original OMST

algorithm. Root node has the complete node list of all

members which are presented in its current tree. This structure

will be very useful later for FIND routine.

F. FIND subroutine

Root invokes FIND routine to broadcast complete node list
of current tree to all members. Based on this structure, each
node will choose the best outgoing node from its neighbor list
which is not present in its “tree replica” list (to avoid tree
cycle). The FIND routine is similar with the original OMST

algorithm with above modification to make the correct choice
of best outgoing node.

G. Data packet forwarding

When a node wants to send data packet to a multicast

group, it firstly sets the address of this group in destination

field of packet, and then broadcasts this message. A neighbor

received this data packet will check if it has already received

before. If yes, packet will be dropped. If no, receiver node will

cache the packet number and forward this packet by

broadcasting. This process continues until packet reaches

multicast group member. From there, packet will be flooded

through tree link similar to how UPDATE and FIND message

are broadcast. Like ROMANT and PUMA, there is no need to

encapsulate a data packet inside a unicast packet as the data

packet forwards from sender to all multicast group members.

H. Message retransmission

In mobile environment, there is a lot of collision happen

when packet is transmitted broadcasting over the air. Our deep

analysis shows that it may causes packet dropped at receiver

before it reaches to IP layer, hence the Echo process of

Broadcast and Echo mechanism cannot be terminated at root.

To overcome this obstacle, we define the retransmission

mechanism to allow broadcast message like UPDATE, FIND

or data packet can be re transmitted. When the parent node

broadcasts a message, it expects all children neighbors to

forward this message. Because all communication is

broadcast, parent node will receive the original message from

each neighbor. Parent node will consider this ping back

message as implicit acknowledgement. When parent received

enough implicit acknowledgements from all children, the

original message is broadcast completely. Otherwise, after a

timeout, parent node will retransmit current message. Each

child node which already finish the Echo process of this

message simply discard this message, otherwise it simply

processes message like the first time receiving it.

I. Correctness

Theorem II.1: The tree built from nodes list maintains loop

freedom invariant.

Proof: We proof that the each local tree in each execution

loop doesn’t contain any cycle. Actually, assume that mobile

link u-v make the tree cycle, hence there is a preceded

execution that merge two local trees through u-v link. This is

impossible because the in this execution, u and v must belong

to one local tree (otherwise it cannot make the tree cycle), it

means u and v are presented concurrently in the tree list.

Therefore, FIND subroutine cannot choose u (or v) to be the

best outgoing node to merge.

Theorem II.2: As the loop freedom invariant holds,

subroutine UDPATE and FIND always terminate, and the

termination is detected by the real tree root.

This is directly resulted from idea of Broadcast and Echo

mechanism, as described in [1].

J. Message complexity

Subroutines UPDATE and FIND only execute through

spanning tree’s edges using Broadcast and Echo mechanism,

similarly with the original OMST, hence the amortized (on the

number of topological changes) message complexity is O(V).

III. PERFORMANCE EVALUATION

To prove the correctness and message complexity of STM
algorithm, we have implemented STM routing protocol as an
extension of NS-2[13]. To our best knowledge, this is the first
implementation of MANET routing protocol inspired by the
original idea of OMST. We compared performance of STM
against performance of PUMA and MAODV, which were
representatives of modern approaches to multicast routing
protocols for MANET. Like STM, PUMA uses broadcast
mechanism to transmit control packets without using any
underlying unicast routing protocol, but it is mesh-based
protocol which provides multiple routes between senders and
receivers, hence may provide better availability. MAODV and
STM share the same tree-based protocol, but MAODV relies
on AODV to send unicast packets while STM uses wireless
broadcast only. On the other hand, STM, which is based on top
of OMST, creates and maintains tree topology which is more
likely minimum spanning tree than one created by MAODV.

We compared STM, PUMA and MAODV under NS-2.
PUMA source code for NS-2 was provided by [14] and
MAODV source code was obtained from [15]. We did not
compare with ROMANT, although ROMANT was also tree
based protocol, because it did not achieve as good performance
as PUMA [3] [16].

Various experiment scenarios were carried out to figure out
the effect of group mobility and group member on performance
of each protocol. At first experiment, mobility was set across
{2, 5, 10, and 15} m/s, group size is 20; traffic load was 10
packets/s. At second one, group size was set across {10, 20, 30
and 40}, mobility was 2 m/s, traffic load was 10 packets/s.
Other environment configurations using for simulation are
listed in Table 1.

Simulator NS-2

Simulation area 1000m x 1000m

Radio range 250m

Simulation time 700s

Sender source CBR

Node placement Random

Mobility model Random Waypoint Model

Pause time 0

Packet size 512 Bytes

Table 1: Simulation environment

The metrics used for our simulation were packet delivery

ratio and control overhead as defined in Table 2. We focused

on control overhead efficient factor (we now call “control

overhead” for short) as it concerned to the ratio of useless

packets sent out (control packets) over useful packets sent out

(data packet). Because the data packets were sent from a CBR

source, the number of data packets was constant in the same

duration of simulation, hence the control overhead ratio

reflected the number of control packets sent through various

protocols. The lower control overhead ratio makes more

efficient network bandwidth.

Packet

Delivery Ratio

Data packets delivered

Data packets sent ∗ number of receivers

Control

overhead

Control packets sent

Data packets sent

Table 2: Metrics definition

A. STM vs PUMA

Figure 2 illustrates the packet delivery ratio (PDR) archived
by three protocols, varied by speed and group members. In
both cases, STM and PUMA still maintain high ratio, around
over 80%, although PUMA has slightly higher score than STM.
Since PUMA manages topology as mesh, it can keep the
network availability as high as possible. A careful analysis
shows that because STM uses two rounds of network iteration
to reconstruct the topology (for subroutines UPDATE and
FIND), it may lead to decrease PDR when speed increases. In
highly dynamic network using STM routing protocol, topology
change occurs so frequent that it continues occurring when the
procedure of two-round reconstruction adapted to previous
change has not been completed yet. This is one drawback of
STM. However, as shown in figure 2, STM, a tree-based
protocol, has the PDR which almost keeps up with PUMA, one
on top of mesh-based protocols.

Figure 2: Packet Delivery Ratio in various scenarios

0

0.2

0.4

0.6

0.8

1

2 5 10 15

P
ac

k
et

 D
ev

li
er

y
 R

at
io

Speed (m/s)

PUMA

MAODV

STM

0

0.2

0.4

0.6

0.8

1

10 20 30 40

P
ac

k
et

 D
el

iv
er

y
 R

at
io

Members

PUMA

MAODV

STM

Figure 3: Overhead ratio in various scenarios
The overhead result which has shown in Figure 3 illustrates

that as speed increases; the overhead ratio of STM is increased,
while that one of PUMA is likely constant over various speeds.
This is because topology in PUMA protocol is periodically
updated through Core announcement message regardless the
current topology, while STM protocol only reacts with each
topological change. Therefore, when nodes move faster, STM
protocol spend more control packet to reconstruct the spanning
tree, which makes the overhead of STM protocol is increased.

However, in quite “stable” networks, as in our experiment
with various group sizes (speed of nodes is 2 m/s), the
overhead ratio of STM is nearly half of PUMA’s overhead
ratio. This result is expected as an evidence of OMST’s
theorem, the number of control messages in STM is optimal,
that leads to lower overhead ratio of STM protocol than that of
PUMA, although PUMA has attained a very low overhead [3].

B. STM vs MAODV

Based on simulation results shown in Figure 2,3; we can

see that STM has a significantly better performance over

MAODV in term of PDR as well as overhead ratio in both

scenarios. We analyze deeply about control packets sent in

each protocol and figure out that MAODV sent a large number

of RREQ, RREP packets during simulation time. This is

because multicast tree built by MAODV is unstable, especially

when the mobile network is highly dynamic or has a large

group size, the number of links breaking increases, hence the

number of control packets increases, too. Since MAODV

relies on unicast routing protocol to establish communication,

it doesn’t utilize efficiently the network bandwidth in mobile

environment like STM and PUMA. In the other hand, tree

created by MAODV, not like STM, is not optimized in term of

message complexity. Therefore, the number of control packets

sent by MAODV was growing larger and larger during

simulation time, leading to packet lost due to collision, as said

in [3]. MAODV doesn’t have any mechanism to fix such a

collision like that, leads to very low packet delivery ratio and

high overhead.

IV. CONCLUSION AND FUTURE WORKS

Spanning Tree for Multicast protocol (STM) which is based
on algorithm of optimal maintenance of a spanning tree
(OMST), is low overhead multicast protocol by economizing
the amortized message complexity,. With new data structure
proposal to manage network topology, STM can simplify the
operation of OMST’s algorithm without changing the
correctness and message complexity, make this protocol can
run fast and efficiently in dynamic networks. Reliable
communication in STM is accomplished by wireless broadcast
only with retransmission enhancement, without requiring any
underlying unicast routing protocol. Results from various
scenarios of evaluation show that STM can achieve high or
comparable delivery ratio while keeping lower control
overhead than two well-known multicast protocols MAODV
and PUMA. We intend to enhance the protocol to adapt better
with topological changes in highly dynamic network.

REFERENCES

[1] B. Awerbach, I. Cidon, S. Kutten, “Optimal maintenance of a spanning
tree”, J. ACM 55(4), 2008.

[2] E. Royer and C. Perkins, “Multicast operation of the ad hoc on-demand
distance vector routing protocol,” Proceedings of Mobicom, 1999.

[3] R.Vaishampayan and J.J.Garcia-Luna-Aceves, "Efficient and robust
multicast routing in mobile ad hoc networks", IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, pp. 304-313, 2004.

[4] S. Lee, W. Su, and M. Gerla, "On-demand multicast routing protocol
(ODMRP) for ad hoc networks", draft-ietfmanet-odmrp-02.txt, 2000.

[5] J.Xie snd R.R.Talpade, A.McAuley, and M.Liu,”Amroute: Ad hoc
multicast routing protocol”, Mobile Networks and Applications, 2002.

[6] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm
for minimum-weight spanning trees,” ACM Transactions on
Programming Languages and Systems, vol. 5, no. 1, pp. 66–77, 1983.

[7] O. S. Badarneh and M. Kadoch, “Multicast Routing Protocols in Mobile
Ad Hoc Networks: A Comparative Survey and Taxonomy”, EURASIP
Journal on Wireless Communications and Networking, Vol. 2009, p. 42.

[8] C. S. R. Murthy and B. S. Manoj, “Ad Hoc Wireless Networks:
Architectures and Protocols”, Prentice-Hall, Upper Saddle River, 2004.

[9] Edsger W. Dijkstra and C. S. Scholten, Termination detection for
diffusing computations, 1980, Inf. Proc. Letter 11, pages 1-4.

[10] B. Awerbuch,O. Goldreich,D. Peleg, and R. Vainish “A tradeoff
between information and communication in broadcast protocols”,
J.ACM37(2), pages 238-256(1990).

[11] S.S. Doria, M.A. Spohn, "A Multicast Approach for Peer-to-Peer
Content Distribution in Mobile Ad Hoc Networks," Wireless
Communications and Networking Conference, pp.1-6, 2009.

[12] Y. Afek, E. Gafni, A. Rosen, “The Slide Mechanism with Applications
in Dynamic Network”, Proceedings of ACM PODC 1992, pp.35-46.

[13] The Network Simulator - ns-2: http://www.isi.edu/nsnam/ns/

[14] PUMA source code for NS2, http://sourceforge.net/projects/puma-adhoc

[15] MAODV source code for NS2, http://kunz-pc.sce.carleton.ca

[16] R.Vaishampayan and J.J.Garcia-Luna-Aceves, "Efficient and robust
multicast routing in mobile ad hoc networks" (ROMANT version)

0

1

2

3

4

5

2 5 10 15

O
v
er

h
ea

d

Speed (m/s)

PUMA

MAODV

STM

0

1

2

3

4

5

10 20 30 40

O
v
er

h
ea

d

Members

PUMA

MAODV

STM

