
Verifying OSEK/VDX OS Design
using Its Formal Specification

Dieu-Huong Vu∗, Yuki Chiba†, Kenro Yatake†, Toshiaki Aoki†
∗Vietnam National University Hanoi, Vietnam

† Japan Advanced Institute of Science and Technology, Japan

Abstract—Automotive systems are widely used in industry and
our daily life. As the reliability of automotive systems is be-
coming a greater challenge in our community, increasingly more
automotive companies are interested in applying formal methods
to improve the reliability of automotive systems. We focus on
automotive operating systems conforming to the OSEK/VDX
standard. Such operating systems are considered as important
components to ensure the reliability of the automotive systems.
In previous work, we proposed a framework to verify the
design models of reactive systems against their specifications.
This framework allows us to check whether the design model
conforms to the specification based on a simulation relation. This
paper shows a case study in which the framework is applied to a
real design of the OSEK/VDX operating system. As a result, we
found that we were able to check several important properties
of the design model. We show the effectiveness and practicality
of the framework based on the results of the case study.

Keywords—OSEK/VDX OS, formal specification, design model,
formal verification, model checking, simulation relation.

I. INTRODUCTION

As an automotive industry standard of operating system
specification, OSEK/VDX OS specification [12] is widely
applied in the process of designing and implementing the oper-
ating system (OS) for automotive systems. In order to obtain
a high-reliability OS, a design model is often developed in
advance, and some verification techniques like model checking
[3] are employed to check whether the design conforms to the
OSEK/VDX OS specification. If the design model has been
ensured then the prototype can be developed following the
design model.

We are working on a design of an OS compliant with the
OSEK/VDX standard. The aim of this work is to provide a
high quality OS by applying automated formal verification. To
conduct the verification process completely, model checking
as an exhaustive technique can be used to check the design
model with given properties. This approach is adopted in [4]
where the design is described in Promela/Spin [6] and the
properties of interest are specified as temporal logic formulas
[14]. The advantage of using Promela is that it allows us
to design the highly optimized behavior of the OS in an
imperative manner using various data structures. However, we
consider that temporal logic formulae, which allows us to
describe properties about invariants on some variables and the
relative order of event calls, are not adequate for describing
the important properties of the OS. What we need to verify
about the OS is the correctness of the scheduling which can
be precisely described by specifying the pre-condition and the
post-condition of each event. For example, when an activation

event of a task is called, the task must become running and
the currently running task must become ready in the states
just after the event is called. To specify such a property in
temporal logic, as discussed in [5], we need to explicitly define
the execution steps of the events. This makes the formulae
complex and prone to mistakes. Whereas, by using the rich
notions (e.g. sets and relations) in the formal specification
languages like Event-B[1][13], one could easily describe such
properties. Therefore, we intentionally use Event-B to facilitate
describing properties of the OS. In Event-B, one can describe
the system as a set of events and the behavior of each event can
be specified as pre-conditions and post-conditions using the
rich notions. It also provides a facility to verify the consistency
and the correctness of the properties. For these reasons, Event-
B and Promela are intended to describe the specification and
the design in our verification of the OS design. Accordingly,
we verify the conformance of the Promela design to the Event-
B specification. In such a combination between Event-B and
Promela/Spin, the OS design could be verified with respect to
a reliable specification.

In previous work, we proposed a framework to verify the
design models of the reactive systems against their specifica-
tions [16]. The framework includes three main steps. Firstly, a
labeled transition system (LTS) is generated from the specifi-
cation. Next, from each state appearing in the LTS, verification
conditions which must be met by the corresponding state of the
design are generated. Finally, the design in combination with
the LTS is input into a model checker to check the verification
conditions. In this way, one can check the correspondence of
state transitions, or the simulation relation, between the spec-
ification and the design. This shows that the design conforms
to the specification.

In this paper, we present a case study of applying the
framework to the verification of a real OS design compliant
with OSEK/VDX standard. For applying the framework, on
the one hand, we formalize the OSEK/VDX OS specification
in Event-B and make sure the consistency of the specification
before using it to verify the design [15]. On the other hand,
we determine the reasonable bounds for the verification. As
we mentioned earlier, when checking the simulation relation
between the specification and the design, we need to generate
the LTS from the specification. The problem is that generating
all possible execution sequences from the specification makes
the size of the LTS so large that it has a tendency to cause
the state explosion when we apply model checking. To avoid
this, we apply the existing framework flexibly: various ranges
are considered to give appropriate bounds for the verification;
and they need to be defined depending on the properties to

2016 10th International Symposium on Theoretical Aspects of Software Engineering

978-1-5090-1764-5/16 $31.00 © 2016 IEEE

DOI 10.1109/TASE.2016.18

81

be checked. In the case study, we mainly explain how we
defined the appropriate bounds to check our desired properties.
We also show the results of the experiments and evaluate
the effectiveness and the applicability of the framework in a
practical setting.

This paper is organized as follows. In section II, we
present the formalization of the OSEK/VDX OS specification
in Event-B. In section III, we present our verification target, a
real design of the OS. In section IV, we present a workflow to
apply the framework in verification of the OS design using its
specification in Event-B. In section V, we present verification
results of various properties. In section VI, we discuss the
effectiveness of the framework. In sections VII and VIII, we
present related works and conclusions.

II. SPECIFICATION OF OS IN EVENT-B

In this section, we present formalization of the OSEK/VDX
OS specification in Event-B.

OSEK/VDX OS Specification. The specification mainly de-
scribes entities managed by the OS (e.g., tasks, resources,
interrupt routines) and services of the OS for controlling
automotive systems. Tasks are the basic building blocks of
an application program. They transit between several states
(e.g., suspended, ready, waiting and running). The OS makes
task state-transitions whenever necessary using some system
services. The OS provides the following service groups: task
management, resource management, event control, and inter-
rupt management. The OS services are called either by tasks
or internally within the OS. In the task management, the OS’s
scheduler decides the execution of tasks based on priorities and
the task activation order. It uses multiple ready queues to store
instances of tasks that are currently in the ready state. Tasks
with the same priority are stored in the same ready queue
according to the task activation order. The scheduler always
chooses one task with the highest priority among those ready
tasks. Within the set of tasks in the ready state and of highest
priority, the scheduler finds the oldest task to be executed.

Formalizing OSEK/VDX OS Specification. In order to for-
malize the specification in Event-B, we identify essential be-
haviors that must be verified. We focus on not only individual
services of the OS but also combination of these services.
Therefore, we formalize the services of interest in Event-B
including regular and irregular aspects. Formal specification in
Event-B mainly consists of state variables, operations (events)
on the variables, and state invariants. Figure 1 illustrates the
structure of the specification in Event-B. The variables such as
tasks, res represent all the created tasks and the managed
hardware resources. The invariants represent constraints, e.g. at
any time only one task is in running state. System services are
formally defined as guarded events like ActivateTask with
guard conditions, e.g. task t is in a suspended state, and actions
that make the state transitions, e.g. transferring t to ready state
and pushing it into the corresponding ready queue. This is a
highly abstracted level description of the OS; it specifies result
of operations rather than details of how to make the results.

As a result, the specification in Event-B contains a list
of state variables, a list of events which modify states (or
state variables), and a list of invariants which are preserved by

events (or transitions). Thus, the possible execution sequences
of such specification can be represented as an LTS.

VARIABLES
tasks, res, evt, isr, tpri, tstate, rdyQuItem, qsize, rdyQSet, acnt

INVARIANTS
tasks⊆TASK, rdyQSet⊆tasks, acnt∈ℕ1
qsize ∈ 0 MAXPRI → ℕ1
rdyQuItem ∈ 0 MAXPRI × 0 MAXQSIZE → rdyQSet
tstate ∈ tasks → STATE
∀ta,tb·ta∈tasks∧tb∈tasks∧tstate(ta)=run∧tstate(tb)=run⇒ta=tb

EVENTS
ActivateTask ≙

any t where t∈tasks, tstate(t)=sus, acnt(t)<MAXACT
then tstate:∣tstate'∈tasks→STATE ∧ (tstate(t)=sus ⇒ tstate'(t)=rdy)

rdyQSet:∣rdyQSet'⊆ tasks ∧ rdyQSet' = rdyQSet ∪ {t}
rdyQuItem(tpri(t)↦qsize(tpri(t))+1)≔t
qsize(tpri(t))≔qsize(tpri(t))+1

Fig. 1: Formal Specification in Event-B

III. OS DESIGN MODEL IN PROMELA

The OS design defines a collection of functions which
realize the services in the specification. The OS design is more
concrete than the specification: the specification describes
desirable results of the services that the OS provides, whereas
the design additionally includes the details of how to make
the results. In order to make sure the conformance, we should
verify whether the results provided by the functions in the
design are the same as the results described in the specification.

The OS is an open system. It does scheduling of the tasks
if it gets stimulus such as system call invocations from its
environment. The environment of the OS includes applications
running on the OS and hardware which causes interrupts. As
mentioned earlier, the OS design only defines a collection of
functions, it cannot operate by itself. To operate it, we need
an environment which calls functions of the OS; the design
must be verified in communication with the environment. As
we explained later, the environment is constructed from the
specification, and input to Spin to check the simulation relation
between the specification and the design.

typedef TCB {int id, pr, dpr, … }
typedef RCB {int id, pr, tid, … }
TCB tsk[5];
RCB res[5];
int ready[25];
TID turn;
inline schedule() { … }
inline enq(pr, id, q) { … }
inline _DeclareTask(id, pr) { … }
inline _ActivateTask(id) { … }
inline _ChainTask(id, tid) { … }
inline _TerminateTask(id) { … }

inline _ActivateTask(id){

if
:: tsk_state[ret_ix].actcnt <OS_ACT_MAX
 -> tsk_state[ret_ix].actcnt++;
 if
 :: tsk_state[ret_ix].tstat==SUSPENDED
 -> enq_prio(tsk_state[ret_ix].tpriority,id, q);
 tsk_state[ret_ix].tstat = READY;
...}

Fig. 2: OS Design in Promela

Promela allows us to describe the design in an imperative
manner. Functions of the OS can be described by using inline
functions. Figure 2 (left) illustrates the whole structure of the
OS design. We call this model a design model. We constructed
the OS design according to the approach proposed by [2]. Our
OS design is described in about 2800 lines of Promela code.
It first defines implementable data structures such as tsk,
res, and ready which represent an array of tasks, an array
of resources, and ready queues, respectively. Following these
data structures, a set of functions are defined. For example,
_ActivateTask and _TerminateTask are the functions

82

to perform activation and termination of tasks, respectively.
Figure 2 (right) illustrates the body of the functions where de-
sign decisions to realize the behaviors are explicitly described
using various control structures. It also consists of assignment
statements over the variables. The variables such as tsk, res,
and ready represent information about the system (states).
The execution of statements changes the values of variables.
Therefore, the model in Promela can be interpreted as an LTS
if we consider that the variables are states and each function
call is a label to make transitions on the states.

IV. CHECKING OS DESIGN MODEL

According to the proposed framework, verifying a design
against its formal specification is based on a simulation relation
between them. Here, the Event-B specification and the OS
design are interpreted as LTSs. We now present the simulation
relation between two LTSs and present a workflow to apply
the framework in verification of the OS design using its formal
specification in Event-B.

Suppose that M1 and M2 be two LTSs. We define M2 sim-
ulating M1 based on semantics of LTSs by extending the given
relation on the states. The states are value assignments which
are mappings from the variables to the values. Therefore, the
relation on states of M1 and those of M2 are established based
on mappings R and C where R is the mapping from variables
of M1 to those in M2, C is the mapping from values in M1
to those in M2. Figure 3 (left) shows a relation between state
p of M1 and state q of M2. p relates to q based on R and C
because u = sus in state p corresponds to v = 1 in state q with
mappings R(u) = v and C(sus) = 1. M2 simulates M1 if for
each transition in M1 from state p to state p′ and p relates
to state q of M2, there exists state q′ and a corresponding
transition in M2 from q to q′ such that p′ relates to q′. In
Figure 3 (right), a line arrow connecting p to p′ represents a
one-step transition from p to p′, and a dashed arrow connecting
q to q′ represents an n-step transition from q to q′. To check
whether M2 simulates M1, we check whether there exists a
reachable state q′ from q such that v = 2 corresponding to
u = rdy in p′ with mappings R(u) = v and C(rdy) = 2. We
refer the readers to [16] for a more formal definition of the
simulation relation.

p

q

R(u)=v,
C(sus)=1

[u=sus]

[v=1]

R(u)=v,
C(sus)=1

[u=sus]

[v=1]

[u=rdy]

R(u)=v,
C(rdy)=2

M1

M2
[v=2]

e

f(e)

p p’

q q’

Fig. 3: Simulation Relation

The overall workflow is shown in Figure 4. Firstly, we
formalize the OSEK/VDX OS specification in Event-B. The
consistency of the behaviors and the properties is ensured
in this step. Secondly, to avoid the state explosion, we give
reasonable bounds for the verification. In this step, we pick
up behavior scenarios of the OS from the OSEK/VDX OS
specification according to the properties we want to verify.
The scenarios provide examples of the system behaviors which
satisfy the desirable properties. Based on the behavior scenar-
ios, we determine bounds for the verification so that when
we apply them to the Event-B specification, the execution

sequences of the specification within the bounds cover at
least the behaviors under consideration and prevent the state
explosion. Finally, we apply the proposed framework to check
whether the OS design conforms to the Event-B specification
within the bounds. This process includes: generating the LTS
of the specification; translating it into Promela to generate the
environment and assertions using mappings between elements
in the specification and those in the design; and applying
model checking to verify the design in communication with
the environment against the assertions. Here, the environment
is to trigger functions in the design because the design of
reactive systems does not execute by itself; and the assertions
represent verification conditions - constraints on the simulation
relation between the design and the specification. After the
verification has been completed, if no error is returned, the OS
design conforms to the specification: the results provided by
the functions in the design are the same as the results described
in the specification via the mappings. Otherwise, a transition
in the specification is not followed by the design. In the latter
case, we can show that an error really exists in the design.

Defining Bounds. Model checking does an exhaustive check
of the system. It needs a representation of the system as a finite
set of all possible states. Firstly, abstract types in Event-B, e.g.
TASK in Figure 1, must be replaced by concrete types. Also,
types having infinite ranges of values like Int and Nat must be
restricted as finite ranges. Then, by studying the properties of
interest, we can restrict the behaviors will be checked. Such
restrictions are to reduce the size of LTS explored from the
Event-B specification. We define such restrictions as bounds
of the verification.

The size of the LTS depends on ranges, denoted V , E, and
D, where V is range of values for every variable; E is range
of operating system services which are defined as guarded
events in Event-B; and D is the depth of the execution of
the Event-B specification. In order to restrict V , we define
the finite domain replacing for the infinite domain. Within this
restriction, the state space and the set of transitions of the LTS
become finite sets. However, the size of the LTS could be so
large that it causes the state explosion. Therefore, we may need
additionally restrict E or D to reduce the size of the LTS. To
restrict E, we define restricted sets of system services relevant
to intended properties. In this way, we separate verification
to deal with distinct groups of system services. As a result,
set of events that may be enabled in states is reduced; thus,
set of transitions that may be triggered in states of the LTS
is also reduced. For D, we give a value for maximum depth
of execution sequences explored from the specification. This
is useful to check the properties among different groups of
system services while avoiding the state explosion.

We determine bounds by studying the properties and the
behavior scenarios of the target system. This step is explained
in Section V.

Generating an LTS from specification. In order to generate
the LTS from the specification and bounds, our LTS Generator
computes all possible transitions and reachable states. Every
value used in the computation must be within the bounds. Start-
ing at the initialization, the generator enumerates all possible
values for the constants and variables of the specification that
satisfy the initialization and the invariant to compute the set of

83

OSEK/VDX OS
Specification

Behavior
Scenarios

Esitimating Bounds

Environment
Translating

into PromelaGenerating LTS
Model Checking

Bounds

Mappings
Design in
Promela

Assertions

Specification
in Event-B Formalizing

LTSProperties

Fig. 4: Checking Design using Its Formal Specification (Workflow)

initial states. To compute all possible transitions from a state,
the generator finds all possible values for event parameters
of an individual event to evaluate the guard of that event. If
the guard holds in the given state, the generator computes the
effect of the event based on substitution of that event. When
new states are generated, we repeat this process to these states
until no new state is generated.

Generating Environment. In the workflow, the OS design is
verified in communication with its environment. The environ-
ment includes function calls; it triggers the specific behaviors
of the designs by calling functions of the designs. We construct
such comprehensive environments that they represent all pos-
sible behaviors described in the specification of the OS. In the
previous step, we generated the LTS of the specification. In this
step, we generate the environment by translating the LTS into
Promela such that the enabled events in LTS are translated to
the corresponding function calls in Promela. This is performed
by our Promela Code Generator.

Figure 5(left) demonstrates an LTS, which is generated
from the specification of the OS. The LTS represents possible
sequences of state transitions within the bounds. Here, the
rectangles represent the states and the labeled arrows represent
the events that are enabled in each state. For example, two
events AT(t1), AT(t2) are enabled in state s0. In the frame-
work, the states are defined as the value assignments; however,
we show them here as values, e.g. (sus, sus, sus), for
readability. The LTS is translated into Promela to generate
the environment (from left to the right of Figure 5). For this
generation, we give a mapping from the events in the LTS
to the function calls in the environment. It could be one-to-
one or many-to-one mapping. Figure 5 shows a sample case
of one-to-one mapping. Here, event AT(t1) in the LTS is
mapped to function call _ActivateTask(task1.tid) in
the environment; also, event TT(t1) is mapped to function
call _TerminateTask(task1.tid). The states and tran-
sitions in the LTS are represented by labels and if-statements
in the environment. By combining the design model and the
environment model, we obtain the combination model, which
will be input to the model checker in the last step of the
workflow.

Generating Assertions. Verification conditions, which repre-
sent constraints on the simulation relation between the specifi-
cation and the design, are encoded as assertions. They will be
checked by Spin. From each reachable state of the LTS, we
generate an assertion that must be met by the corresponding
state of the design. This generation is based on the mappings
R and C from the variables, the values in the specification to
those in the design. This is also performed by our Promela
Code Generator. In sample case of Figure 3 (right), for
example, from state p′ where u = rdy at the top with mappings
R(u) = v and C(rdy) = 2, the generator outputs an assertion

v = 2 to check whether there exists corresponding state q′ at
the bottom.

In this workflow, we combine the consistency proofs in
Event-B and the model checking with Promela/Spin to verify
invariants of the specification and make sure that operations
described in the design preserve the pre-conditions and the
post-conditions. Not only individual function call but also the
relation of function calls is also taken into account when we
generate all possible sequences of function calls to construct
the environment. This is important to confirm that every
behavior is checked within the bounds.

V. CASE STUDY

Our target system is an operating system compliant with
OSEK/VDX standard. Our case study was carried out with
inputs including the OSEK/VDX OS specification, the Event-
B specification, and the OS design described in Promela. We
focus on the verification of properties concerned with the
correctness of scheduling.

Properties and Bounds. Scheduling is concerned with entities
such as tasks, ready queues, resources, events, and interruption
routines. We show some properties of scheduling in Table I.

TABLE I: Properties

Prp. Description
P1 A task with lower priority is preempted by a task

with higher priority (full preemptive scheduling)
P2 A terminated or chained task goes into the suspended

state
P3 An extended task in the waiting state is released to

the ready state if at least one event for which
the task is waiting for has occurred

P4 If a task or interrupt routine requires a resource,
and its current priority is lower than the ceiling priority
of the resource, the priority of the task is raised to
the ceiling priority of the resource

P5 If a task or interrupt routine releases the resource,
the priority of this task is reset to the priority which
was dynamically assigned before requiring that resource

P6 The index value is within the bounds of the array
P7 A task must not terminate or chain another task

while holding resources
P8 Over activation of a task is prohibited

Bounds are determined based on the properties and be-
havior scenarios of the target system. The scenarios provide
examples of the intended system behaviors which satisfy the
desirable properties. Each scenario represents a partial behav-
ior of the system. In the following, we analyze the behaviors
of full preemptive scheduling to illustrate how to determine
appropriate bounds for verification of such behaviors.

Figure 6 visualizes a scenario which represents desirable
behaviors of full preemptive scheduling. This scenario de-

84

s0:(sus,sus,sus)

s1:(run,sus,sus) s2:(sus,run,sus)

s3:(run,rdy,sus)

s4:(sus,sus,run)

s5:(sus,run,sus)

AT(t1) AT(t2)

CT(t2,t3)AT(t2)

CT(t2,t3)
TT(t1)

AT: _ActivateTask, CT: _ChainTask, TT: _TerminateTask
t1: task1.tid, t2: task2.tid, t3: task3.tid

Translation into
Promela code

typedef Taskinfor { … }
Taskinfor task1, task2, task3;
_DeclareTask(task1.id, task1.pr1);
_DeclareTask(task2.id, task2.pr2);
_DeclareTask(task3.id, task3.pr3);
s0:
if
:: _ActivateTask(task1.tid) -> goto s1;
:: _ActivateTask(task2.tid) -> goto s2;
fi;
s1:
if
:: _ActivateTask(task2.tid) -> goto s3;
:: _TerminateTask(task1.tid) -> goto s0;
fi;
s2:
if
:: _ChainTask(task2.tid,task3.tid) -> goto s4;
:: _ActivateTask(task1.tid) -> goto s3;fi;...

TT(t1)

AT(t1)

TT(t3)

Fig. 5: Generation of Environment from LTS

scribes the behaviors that satisfy property (P1). Here, the state
transitions of two tasks, T1 with priority 2 and T2 with
priority 1, caused by ActivateTask(T1). Initially, two
tasks are both in the suspended state. Next, task T2 transfers
to running state after ActivateTask(T2) and task T1 is
still suspended. Then, T2 activates T1. Due to the higher
priority of task T1, task T2 is preempted by task T1. By
counting objects appearing in the scenario, we see 2 tasks, 2
different values for the task priorities, and 3 enabled events in-
cluding ActivateTask(T1), ActivateTask(T2), and
TerminateTask (T1) used to describe such behaviors. The
least configuration of the OS to check such behavior includes
2 tasks and 2 different values for the task priorities. Therefore,
the bounds applied to the Event-B specification for checking
the behaviors under consideration are as follows: the ranges
of values for tasks and pri are {T1,T2} and {1,2},
respectively; the range of operating system services includes
ActivateTask and TerminateTask.

suspended running suspended
running

runningg s
ready

T1
T2

ActivateTask(T1) TerminateTask(T1)

pp
running

suspendedp d
suspended

ActivateTask(T2)

Fig. 6: Scenario representing P1

Property 6 is checked to make sure that the index value is
within the bounds of the array. For example, as defined in the
OS design, the bound of array ready is established by 72. To
check whether the index value exceeds this bound. We can use
4 tasks, 2 multiple activation requests, and 10 values for the
task priority. However, if we restrict only the range of values
with 4 tasks, 2 multiple activation requests, and 10 values for
the task priority, the verification could run out of memory,
while we only need to call functions including declaration of
tasks and activation of tasks to check such property. Therefore,
an appropriate bound is to restrict both the range of values and

the set of system services. Thus, ̂ΣS includes DeclareTask
and ActivateTask.

Table II shows bounds for checking the focused properties.
Here, columns “Prp.” lists the properties. As shown in Figure
1, variables tasks, res, evt, and inr define entities
managed by the OS such as tasks, resources, events, and
interrupt routines; variables tpri, rpri, and ipri define
the priorities assigned to tasks, resources, and interrupt
routines; and variable tstate defines the task state.
Because of the space limitation, we show in column
“V ” restricted ranges of values for tasks, tpri, res,

rpri, evt, inr, and ipri respectively. In column “E”,
we present the restricted set of OS services required for
checking the corresponding properties, where DT, DR,
DI, AT, CT, TT, GR, RR, WE, SE, SI, and RI stand for
DeclareTask, DeclareResource, DeclareISR,
ActivateTask, ChainTask, TerminateTask,
GetResource, ReleaseResource, WaitEvent,
SetEvent, SetINTR, and ResetINTR, respectively.
Column “D” presents the maximum depth of the execution
sequences from the Event-B specification. “-” indicates that
no restriction is applied to the range.

As shown in Table II, checking the different behaviors
of the OS requires to use different bounds; therefore, when
we extend ranges for checking specific properties, we need to
perform the boundary check.

TABLE II: Estimated Bounds

Prp. V : tasks, tpri, res, rpri, evt, inr, ipri E D
P1 {T1,T2}, {1,2}, {}, {}, {}, {},{} AT,TT -

P2 {T1,T2}, {1}, {}, {}, {}, {},{} DT,AT,CT,TT -

P3 {T1,T2}, {1}, {},{}, {Evt1}, {}, {} DT,AT,WE,SE -

P4,5 {T1,T2,T3}, {1,2,3}, {Res1},{6}, {}, DT,DR,DI,AT, -
{Inr1,Inr2}, {4,7} GR,RR,SI,RI

P6 {T1,T2,T3,T4}, {10}, {}, {}, {}, {},{} DT,AT -

P7 {T1,T2}, {1}, {Res1}, {2},{}, {},{} DT,DR,DI,AT, -
GR,RR,CT,TT

P8 {T1}, {1}, {}, {}, {},{},{} DT,AT -

Verification Results. All experiments were conducted on an
Intel(R) Core(TM) i7 Processor at 2.67GHz running Linux.
We performed experiments in two phases. In phase (I), we
checked the OS design with respect to various properties. No
bug was detected in the design. This result was considered
due to the fact that the OS design had already been reviewed
carefully by many researchers and engineers. Still, from this
result, we can be sure that the OS design is correct with
respect to its specification within input bounds. However, such
successful experiment results do not show the effectiveness of
the approach. We evaluate the effectiveness of the approach
based on its bug-detecting ability. To show the bug-detecting
ability of the approach, in phase (II), we intentionally added
several bugs into the OS design and performed experiments
to check the modified OS design with respect to the same
properties as those verified in phase (I). Our purpose here is
to make sure our approach can actually detect the bugs we
added. In this paper, we focus on two kinds of typical bugs of
the OS design: (i) the bugs that cause the condition enabling
the OS services not to conform to the specification; and (ii) the

85

bugs that cause the computational effects provided by the OS
services to violate the specification. In practical environments,
such kinds of bugs could be easily added into the design.

We present the results of experiments in Table III, which
are outputted by Spin. Here, the first column (“No.”) represents
experiment number. Cases I.1-I.8 belong to phase (I) and cases
II.1-II.8 belong to phase (II). Column “Prp.” refers to the
properties of the OS. Column “Bounded Ranges” represents
bounds used in distinct experiments, where “t”, “tp”, “r”, “rp”,
“i”, “ip”, and “e” present the size of ranges for instances
of tasks, resources, events, interrupt routines, and ranges
for values of the priorities assigned to tasks, resources, and
interrupt routines, respectively. In column “E”, we show the
size of the restricted set of system services that are required for
checking the corresponding properties. Column “D” presents
the maximum depth of execution sequences from the Event-B
specification. “-” indicates that no restriction is applied to the
range. Column “LTS Generation” shows statistics of the LTS
generator. Here, columns “#State”, and “#Trans” present the
number of distinct states and that of transitions appearing in
the LTS; column “Time” presents the time taken (s) for the
generation. Column “Model Checking” presents statistics of
the model checker including actual memory usage for distinct
verification, the time taken (s), and the verification result in
which “

√
” indicates the successful result - the verification

has completed and no bug has been found in the design, and
“Fail” indicates that some bugs have been found in the design.

Firstly, we use the least ranges which reflect the appro-
priate configuration to check the desirable behaviors for the
enumerated properties. The verification outputs for such cases
are presented in rows I.1, I.2-1, I.3, I.4, I.5-1, I.6, I.7, and
I.8. Then, we extend ranges gradually so that the verification
covers many more behaviors than those focused in previous
steps as long as the machine capacity allows this. For example,
the ranges used in cases I.2-2 and I.2-3 are extensions of those
in I.2-1; and, the ranges used in case I.5-2 are extensions of
those in I.5-1.

In the cases of I.5-3, I.5-4, and I.5-5, we want to check
the interaction of multiple system services; therefore, we do
not restrict the system services in these experiments, i.e. E is
presented as “-” in the table. However, within the given V ,
the LTS of the specification is huge. We restrict the depth of
the execution sequences of the specification to reduce the size
of LTS. We give values for the maximum depth based on the
estimation of the size of LTS that the machine capacity allows.
For example, with currently used machines, we estimated that
the machine capacity allows round 20000 transitions appearing
in LTS. Firstly, we generate LTS with the given ranges for V
and no limitation for the depth of the execution. Then, if LTS
is huge, we try some values for the depth. For example, if we
use 7 tasks, 1 resource, 2 interrupt routines, 1 event, and depth
= 7, then “#Trans” = 14046, the verification succeeds because
the size of LTS is less than that the machine capacity allows.
However, when we use the same ranges for V and depth =
8, “#Trans” = 32599, the size of LTS is significantly large
compared with the used machine capacity. This could easily
cause the state explosion. Therefore, we set the depth to 7 in
our experiments as shown in the case of I.5-4.

From the experiment results, we can see that the time taken
and the total actual memory usage for the LTS generation and

the model checking are reasonable. For the model checking
result of phase (I) shown in the table, no bugs were reported
in all cases of experiments. However, in phase (II), some bugs
were intentionally added into the OS design. Consequently,
they were shown in the model checking results of the modified
OS design. From the experiment results, we can see that bugs
were detected in short time and with reasonable total actual
memory usage for the model checking.

We added a bug to the condition expression for waking
up the task waiting for an event in function SetEvent.
This bug is detected in case II.3. A counter-example
is shown by Spin against (P3): ActivateTask(t1);
ActivateTask(t1,t2); WaitEvent(t2, evt1);
GetResource(t1,r1); ActivateTask(t1,t3);
SetEvent(t3, t2, evt1): text of failed assertion:
assert((tsk state[1].tstat == 2)). Task t2 in the waiting
state is not released to the ready state, even though evt1 has
been set for t2 by tasks t3. This violates the specification.
Because the condition expression for waking up the task
waiting for an event in the OS design includes bugs, t2 does
not satisfy this condition. Thus, t2 is not waked up.

We added another bug in the computational statement of
function GetResource. This bug makes the dynamic priority
of tasks not change for any case when the tasks get the
resources. This bug is detected in cases II.4, II.5, and II.7.
In case II.4, a counter-example is shown by Spin against
(P4): ActivateTask(t1); ActivateTask(t1,t2);
WaitEvent(t2,evt1); GetResource (t1,r1): text
of failed assertion: assert(tsk state[0].dpriority == 6). The
priority of task t1 is not raised to the ceiling priority of
resource r1, even though t1 has got r1 successfully. This
is because the ceiling priority of resource r1 is not assigned
to the dynamic priority of task t1 even though the static
priority of t1 is lower than the ceiling priority. This violates
the specification.

Experiment results above show the ability of our approach
to detect the typical bugs of the OS design such as the bugs
in the guard conditions enabling the computations and those
in computational statements of functions. Such bugs cause
undesirable design behaviors of the OS. With the exhaustive
verification within the bounds, our approach provides rapid
bug detection of design behavior.

VI. DISCUSSION

Bounds. In the framework, the bounds were defined to restrict
the range of every data element including variables, constants
and parameters. We can obtain a finite LTS associated to the
Event-B specification within the bounds. Basically, the restric-
tion of every data element produces a finite representation
of the target system; this makes possible to apply the model
checking technique. However, the OSEK/VDX operating sys-
tems includes several data elements and several functionalities,
the size of the LTS may be so large that it could easily cause
the state explosion when we apply model checking, event
though the LTS is finite. To avoid the state explosion, our
idea is to lead the verification to focus on partial behaviors
of target systems. We additionally define restriction of service
of the target system and the depth of the execution as well.
With these restrictions, we can check each functionality of

86

TABLE III: Experiment Outputs

No. Prp. Bounded Ranges LTS Generation Model Checking
V E D #State. #Trans Time(s) Mem(Mb) Time(s) Result

t,tp r,rp i,ip e

I.1 P1 2,2 0,0 0,0 0 2 - 4 10 1.0 129.2 3.5
√

I.2-1 P2 2,1 0,0 0,0 0 3 - 4 10 1.0 129.2 3.5
√

I.2-2 P2 9,3 0,0 0,0 0 4 - 512 13824 3.5 430.0 362.3
√

I.2-3 P2 5,5 0,0 2,2 0 6 - 128 1536 2.2 133.5 17.6
√

I.3 P3 2,1 0,0 0,0 1 3 - 10 27 1.0 129.2 4.2
√

I.4 P4 3,3 1,1 2,2 0 6 - 80 520 1.3 129.2 8.3
√

I.5-1 P5 3,3 1,1 2,2 0 6 - 80 520 1.3 129.2 8.3
√

I.5-2 P5 3,3 1,1 2,2 1 12 - 152 1036 2.0 132.5 14.8
√

I.5-3 P5 7,3 1,1 2,2 1 - 6 374 7063 2.5 227.6 105.7
√

I.5-4 P5 7,3 1,1 2,2 1 - 7 731 14046 3.6 285.4 360.0
√

I.5-5 P5 10,3 1,1 2,2 1 - 4 335 9476 10.0 413.8 75.4
√

I.6 P6 4,10 0,0 0,0 0 2 - 102 1220 2.1 132.0 15.0
√

I.7 P7 2,1 1,1 0,0 0 5 - 8 22 1.0 130.0 7.2
√

I.8 P8 1,1 0,0 0,0 0 1 - 2 2 1.0 129.2 3.5
√

II.1 P1 2,2 0,0 0,0 0 2 - 4 10 1.0 129.2 3.5
√

II.2 P2 2,1 0,0 0,0 0 3 - 4 10 1.0 129.2 3.5
√

II.3 P3 2,1 0,0 0,0 1 3 - 10 27 1.0 129.2 4.2 Fail

II.4 P4 3,3 1,1 2,2 0 6 - 80 520 1.3 129.2 6.0 Fail

II.5 P5 3,3 1,1 2,2 0 6 - 80 520 1.3 129.2 6.0 Fail

II.6 P6 4,10 0,0 0,0 0 2 - 102 1220 2.1 132.0 15.0
√

II.7 P7 2,1 1,1 0,0 0 5 - 8 22 1.0 129.2 5.2 Fail

II.8 P8 1,1 0,0 0,0 0 1 - 1 1 1.0 129.2 3.5
√

OSEK/VDX OS independently from the other functionalities,
e.g., the task management is checked independently from the
resource management, the event management, and the interrupt
handling. We also can check each small groups of functionali-
ties instead of all at one, e.g., checking the combination of task
management, resource management and event management.
Each of these groups represents some essential behaviors of
the target system. We could distribute partial behaviors in
variations of the environment. Accordingly, some questions
may arise regarding how we decide the partial behaviors
included in the verification and avoid the state explosion. In
our idea, the partial behaviors are decided according to the
properties of the target systems to be checked. Consequently,
we found that one could avoid the state explosion if we use
reasonable ranges for data elements and services of the OS.
Even though we cannot show the conformance of the design
and the specification in the infinite scope but if an error is
returned within the bounds, we can show it really exists in the
design.

Coverage. The coverage of this verification is evaluated by
how much of the specification is satisfied by the design. In our
experiments, the design is checked against the LTS which are
generated from the specification within input bounds. There
are two viewpoints to evaluate how much of specification
is represented in the LTS. They are structure and behavior.
Structure refers to a set of entities concerned with the con-
figuration. Behavior refers to system services. Therefore, we
divided the coverage criteria into two types: structure coverage
means how large of the configuration is used in the verification;
and behavior coverage refers to not only the individual function
call but also the order of function calls. For structure coverage,
we determine the bounds of the execution sequences based on
the properties of interest. Specifically, we define the bounds
at least as large as to cover the configuration appearing in the
scenario corresponding to the property. For these bounds, we
were able to check important properties of the OS within a rea-
sonable time and memory space. To get more reliability in the
verification, we need to extend the bounds as large as possible

depending on the machine capacity. For behavior coverage,
we have checked each functionality such as task management,
resource management, event handling independently of others,
including both of regular sequences and irregular sequences.
Even though we cannot check all the functionalities at once
due to the state explosion we still need to check at least
the combination of functionalities such as the combination of
resource management and event handling, and combination
of event handling and interrupt processing. Checking this
combination is important because it is known that bugs often
come from the interaction of different functionalities. In order
to check multiple functionalities at once while avoiding the
state explosion, we need to make the bounds of configuration
as small as possible. We consider that it is important to have a
good balance between the ranges of structures and behaviors
based on the properties to be checked.

VII. RELATED WORKS

[4] and [7] present case studies on checking the operating
systems compliant with OSEK/VDX. In [4], the authors de-
scribe the properties of interest in temporal logic formulas and
describe the design in Promela. In [7], the authors express the
properties in terms of the first-order logic and model the OS
as CSP process. In these works, the limited configurations are
used in the experiments to apply the model checking; however,
how to estimate appropriate configurations for the verification
is not explained. By using Event-B, we easily specify the
properties and the external behaviors of the OS and ensure the
quality of the specification before using it to check the design.
In addition, we present a way to determine the appropriate
bounds for the verification of desirable properties.

[17] verifies the OS design by constructing a general model
of the environment from scratch: it includes a class diagram
and state diagrams of objects in the environment. These
diagrams are composed to generate the environment scripts.
In our work, the environment is generated from the Event-B
specification. Hence, by construction, it is comprehensive with

87

respect to the specification. The environment is used to exercise
the design and check the given relation between variables of
the Promela design and variables of the Event-B specification
in every reachable state. This shows that the design satisfies
the specification. In our case study, the correctness of the
specification is guaranteed by tools of Event-B; the quality
of the environment is improved. Also, various ranges are
customized to direct the verification focus on the behaviors
relevant to intended properties and bugs.

[8] present an approach to verify the OS kernels based on
theorem proving. Theorem proving can be used to verify the
infinite systems; but, it generally requires a lot of interactive
proofs. In our workflow, we use model checking combining
with prover tools of Event-B. Although ranges are bounded due
to the limitation of model checking; however, we are able to
improve quality of the properties checked and get completely
automatic verification. Therefore, we have a high degree of
confidence in the verification results.

For combination of Event-B and model checking, tools
such as ProB[9] and Eboc[10] work as model checkers for
Event-B; [11] translates Event-B model into Promela model
and uses Spin to check the model. These existing works
focused on verifying the Event-B model. Separately, we use
the Event-B specification to verify the design in Promela.
In addition, we did not directly translate Event-B code into
Promela but translated the LTS of the Event-B specification
and assertions into Promela. Then, we input the combination
between the OS design and the LTS of the specification into
Spin to check a simulation relation between them.

VIII. CONCLUSION

We presented a case study of applying the existing frame-
work to the verification of the OS design. In this application,
we formalize the OSEK/VDX OS specification in Event-B and
use it to verify the design of the OS. With rich notions, Event-B
facilitates describing the specification of the OS. Specifically,
it is convenient to specify abstract data structures and express
the conditions for the correctness of system services in terms
of pre-conditions and post-conditions by using such data
structures. Moreover, we are able to ensure the consistency
of the specification before inputting it in the model checker.
Promela is intended to analyze the design of the OS using
the Spin model checker. It is an appropriate model language
to describe low-level data structures and the collaboration of
internal components with highly optimized behaviors. The
framework is straightforwardly applied to check the design of
the OS in Promela with respect to the specification in Event-
B. Three ranges can be effectively applied in Event-B. In
addition, it is feasible to generate the LTS from the Event-B
specification. This is a source to generate exhaustive sequences
of function calls for verification of the design. The behaviors of
the OS is deterministic; such a way of verifying the simulation
relation between the specification and the design is sufficient
to show that the OS design satisfies its specification. The
results of the experiments demonstrate that this approach can
be practically applied in verification of important properties
and detection of typical bugs of the target system. This exhibits
an ability to deal with the specifications and the designs which
are described in different specification languages. Therefore,
we can choose appropriate specification languages to describe

the specification and the design for the purpose of verifying the
design. As a result, one could decrease the cost for describing
the specification and the design. Also, one could decrease
the cost for the verification since the verification is executed
automatically with the given bounds and mappings. In the
future, we aim at an effective mechanism to identify and
remove the symmetric variations of the initial states of the
systems checked.

ACKNOWLEDGMENTS

This work is supported by the project No. 102.03–2015.25
granted by Vietnam National Foundation for Science and
Technology Development (Nafosted).

REFERENCES

[1] J.-R. Abrial, Modeling in Event-B: system and software engineering.
Cambridge Univ Press, 2010.

[2] T. Aoki, “Model checking multi-task software on real-time operating
systems,” in The 11th IEEE International Symposium on OO Real-Time
Distributed Computing, 2008, pp. 551–555.

[3] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[4] Y. Choi, “Model checking trampoline os: a case study on safety analysis
for automotive software,” Softw. Test., Verif. Reliab., vol. 24, no. 1, pp.
38–60, 2014.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
International Conference on Softw. Eng., 1999, pp. 411–420.

[6] G. J. Holzmann, The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004.

[7] Y. Huang, Y. Zhao, L. Zhu, Q. Li, H. Zhu, and J. Shi, “Modeling and
verifying the code-level OSEK/VDX Operating System with CSP,” in
Theoretical Aspects of Software Engineering, Aug 2011, pp. 142–149.

[8] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an operating-
system kernel,” Communications of the ACM, vol. 53, no. 6, pp. 107–
115, 2010.

[9] M. Leuschel and M. Butler, “ProB: An automated analysis toolset for
the B method,” International Journal on Software Tools for Technology
Transfer, vol. 10, no. 2, pp. 185–203, 2008.

[10] P. Matos, B. Fischer, and J. Marques-Silva, “A lazy unbounded model
checker for event-b,” in Formal Methods and Softw. Eng., 485-503,
2009, vol. 5885.

[11] T. MULLER, “Formal methods, Model-Cheking and Rodin plugin
development to link Event-B and SPIN,” 2009.

[12] OSEK/VDX Group, “OSEK/VDX operating system specification 2.2.3,
http://portal.osek-vdx.org/.” [Online]. Available: http://portal.osek-
vdx.org/

[13] RODIN and DEPLOY group, “Event-B and the RODIN platform,
http://www.event-b.org/.” [Online]. Available: http://www.event-b.org/

[14] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to
automatic program verification,” in Proceedings of the 1st Annual
Symposium on Logic in Computer Science, 1986, pp. 332–344.

[15] D. H. Vu and T. Aoki, “Faithfully formalizing OSEK/VDX operating
system specification,” in Proceedings of the 3rd Symposium on Infor-
mation and Communication Technology, 2012, pp. 13–20.

[16] D. H. Vu, Y. Chiba, K. Yatake, and T. Aoki, “Model checking con-
formance of a promela design to its formal specification in Event-B,”
in The third International Workshop on Formal Techniques for Safety-
Critical Systems, 2014, pp. 203–218.

[17] K. Yatake and T. Aoki, “Model checking of OSEK/VDX OS design
model based on environment modeling,” in Proceedings of the 9th
International Colloquium on Theoretical Aspects of Computing (ICTAC
’12), 2012, pp. 183–197.

88

