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Abstract 

This study proposes behavior-based navigation architecture, named BBFM, to deal 

with the problem of navigating the mobile robot in unknown environments in the presence 

of obstacles and local minimum regions. In the architecture, the complex navigation task 

is split into principal sub-tasks or behaviors. Each behavior is implemented by a fuzzy 

controller and executed independently to deal with a specific problem of navigation. The 

fuzzy controller is modified to contain only the fuzzification and inference procedures so 

that its output is a membership function representing the behavior’s objective. The 

membership functions of all controllers are then used as the objective functions for a 

multi-objective optimization process to coordinate all behaviors. The result of this 

process is an overall control signal, which is Pareto-optimal, used to control the robot. A 

number of simulations, comparisons, and experiments were conducted. The results show 

that the proposed architecture outperforms some popular behaviorbased architectures in 

term of accuracy, smoothness, traveled distance, and time response. 

 

Keywords: Behavior-based navigation, fuzzy logic, multi-objective optimization, 

mobile robot 

 

1. Introduction 

Mobile robot navigation is one of the most challenging problems in robotics. To 

complete a navigation task, the robot must be capable of perceiving its surrounding 

environment, interpreting data from sensors, planning the path to be tracked and 

controlling the actuators to reach the target [1]. Navigation, on the other hand, is 

fundamental for mobile robot applications. In order to complete any given task, the robot 

first needs to have the capability of reaching the target safely. Navigation of mobile robot 

thus has been receiving much research attention and the approaches can be classified into 

two main categories: hierarchical architectures and reactive or behavior-based 

architectures [2]. 

The hierarchical architecture operates through sequent steps of sensing, planning and 

acting based on a known model of the environment. This architecture is appropriate for 

static and structured environments. For unknown environments, the behavior-based 

architecture is often used. This approach splits a complex navigation task into sub-tasks or 

behaviors as shown in Figure 1. Each behavior is an independent control module dealing 

with a specific problem of navigation. It takes input data from sensors and generates an 

output control signal specifying for its objective. The output control signals of all 

behaviors are then combined in accordance with the global navigating objective to 

generate an overall control signal. As the combination only uses the local data, the 

behavior-based architecture does not need to have a global map of the environment. 

Besides, the use of behaviors enables the modularization and scalability of the 

architecture. 
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Figure 1. General Scheme of the Behavior-based Navigation Architecture 

The main challenge with the behavior-based architecture is how to combine behaviors, 

alled command fusion, to achieve the navigation objective efficiently. The superposition 

techniques deal with this problem by using a linear combination of behaviors generated 

from potential fields [3] or motor schemata [4]. The potential fields select an action based 

on vector sums of the potential fields produced by an attractive force from goal and 

repulsive forces from obstacles. The motor schemata use the potential field to define the 

output of each schema and then combine them to generate a motor action basing on 

predetermined weighting factors. Those techniques are simple to implement but difficult 

to adjust gains. 

Another command fusion approach is voting techniques in which each behavior votes 

for or against a set of actions. The actions are then combined to generate the best one. In 

[5], the combination is simply the sum of votes. In DAMN [6], the combination is based 

on weighting factors assigned by a mode manager. Due to compromise without priority, 

these techniques may present poor performance in conflict situations, for example, if the 

”obstacle avoidance” behavior votes for turning right to avoid an obstacle in front of it, 

while the ”goal reaching” behavior votes for turning left since the goal is on the left of it, 

the compromised action may direct the robot forward resulting a collision with the 

obstacle.  

A command fusion approach commonly used in recent mobile robot navigation 

systems [7] - [14] is the fuzzy technique. This technique presents each behavior by a fuzzy 

controller. The output fuzzy sets of all controllers are then combined and defuzzified to 

generate the overall control signal. This technique is simple to implement and quite 

efficient in navigation. The fusion, however, is not optimal as each defuzzification 

method often results in a different control value [15], [16].  

In order to deal with the optimization problem in command fusion, a technique based 

on multi-objective optimization theory, called MOASM, was proposed [17]. This 

technique represents each behavior by an objective function that assigns to each control 

signal a value reflecting the grade of behavior’s objective. A multiobjective optimization 

process is then applied to find the solution which best maximizes all the objective 

functions. The main advantage of this technique is its theoretical approach to ensure the 

optimality of the found solutions. However, the lack of a framework for designing 

objective functions, which are usually complicated, prevented it from practical use.  

In this study, we propose an approach to integrating the advantages of fuzzy logic and 

multi-objective optimization into a single behavior-based navigation architecture called 

BBFM. In this architecture, each behavior is represented by a fuzzy controller which only 

contains the fuzzification and fuzzy inference procedures. Consequently, the output of 

each fuzzy controller is a function of input variables whose value represents the grade of 

behavior’s objective. They are then used as the input for a multi-objective optimization 

process to find the optimal value of the overall control signal. The results from a number 

of simulations, comparisons, and experiments confirm the efficiency of the proposed 

architecture in navigating the mobile robot in complex and unknown environments. 
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The structure of paper includes five sections. Section 2 presents the BBFM 

architecture. Section 3 simulates and compares the BBFM with two other popular 

architectures. Section 4 presents experimental results. The paper finishes with conclusions 

in Section 5. 

 

2. Proposed Architecture 

In this section, the overall structure of the BBFM architecture is first described. After 

that, detailed implementation of each behavior is introduced. Finally, the command fusion 

using multi-objective optimization is presented. 

 

2.1. Overall Structure of the BBFM 

The robot used to evaluate the proposed architecture is the type of differential drive 

wheeled mobile robot with non-holonomic constraints. Its parameters are shown in Figure 

2. 
 

 

Figure 2. The Differential Drive Wheeled Mobile Robot and Its Parametes 

where R is the wheel diameter, L is the distance between two wheels, and (x, y, θ) 

represents the position and orientation of the robot. Let (xd, yd, θd) be the position and 

orientation of the target. We define three additional variables for navigation:  ρ defined by 

Equation (1) is the distance from the center of the robot to the target; α defined by 

Equation (2) is the angle between the robot heading and the vector connecting the robot 

center with the target; and ed defined by Equation (3) represents the movement of the 

robot with the target. For the sake of simplicity, whenever we refer to the position of the 

robot in this paper, we mean its position and orientation. 

2 2( ) ( )    d dx x y y                                                                                         (1) 

arctan( , ) , [ , ]         d dy y x x                                                              (2) 

1   d i ie                                                                                                               (3) 

In the system, the motion of robot is controlled by adjusting its linear velocity, u, and 

angular velocity, ω. The position of robot is determined via optical quadrature encoders. 

To sense the environment, the robot is equipped with eight ultrasonic sensors clustered 

into three groups of left, right, and front as shown in Figure 3. The measuring value of 

each group is the minimum value of all sensors in that group: 

1 2, 3

4 5

6 7, 8

min( , )

min( , )

min( , )







r

f

l

d d d d

d d d

d d d d

                                                                                               (4) 

where di  is the distance to obstacles measured by sensor i. The mission of the robot is 

to navigate in an unknown environment from an initial position to a desired target without 

colliding with obstacles and getting trapped in any trap area.  
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Figure 3. Arrangement of Ultrasonic Sensors on the Robot 

In order to complete this task, it is natural to subdivide it into small and easy-to-

manage behaviors that focus on execution of specific subtasks. The subtasks would be: (i) 

reaching the target from an arbitrary position, (ii) avoiding obstacles, and (iii) escaping 

local minimum (trapped) regions. As a result, this approach simplifies the navigation 

solution while offering a possibility to add new behaviors to the system without causing 

any major increase in complexity. Individual behavior, however, needs to cope with 

uncertainties and incompleteness of sensory information as well as with the fact that the 

operating environment contains elements of dynamics and variability. Fuzzy logic is 

known to be an organized method for dealing with those problems. Using linguistic rules, 

fuzzy logic requires neither mathematical models of the environment nor the robot 

dynamics to design motion controllers. Instead, it fuzzifies the inputs and takes advantage 

of expert knowledge to discover and represent data relationships and to improve 

uncertainty reasoning. Therefore, fuzzy logic provides a framework for designing 

individual behavior. 

The command fusion using fuzzy logic, however, does not give reliable solutions. 

Figure 4 shows that the two ways of fusion using fuzzy logic: defuzzifying first and then 

combining individual decisions, and combining individual decisions first and then 

defuzzifying, generate different results. The reason is due to the concurrent activation of 

multiple behaviors with possibility of conflict between them. In this context, it may not 

exist a globally optimal solution that is simultaneously optimal with respect to all 

behaviors. The optimization of one behavior’s objective might be associated with a 

simultaneous deterioration of other behavior’s objective. Thus, it is more appropriate to 

search for a ”good enough” solution that can guarantee a suitable trade-off between a 

multitude of conflicting behaviors’ objectives. Multi-objective optimization provides a 

theoretical approach to find this solution. It quantifies the problem through objective 

functions that assign to each input a value reflecting their objectives’ desirability and 

provide methods to optimize those functions simultaneously. Interestingly, if we remove 

the defuzzification procedure in the design process of fuzzy controllers, the output of each 

behavior will be a fuzzy membership function that its value represents the grade of 

behavior’s objective. This function, therefore, encrypts the semantics meaning of 

objective functions. This way, the fuzzy technique and multi-objective optimization can 

be combined. 
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(a)                                                             (b) 

Figue 4. Two Fuzzy-based Approaches to Command Fusion: (a) 
Defuzzifying First and Then Combining, (b) Combining First and Then 

Defuzzifying 
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Figure 5 shows the structure of our proposed architecture. It has three behaviors 

including the local minimum avoidance, obstacle avoidance, and goal reaching. Each 

behavior is implemented by one customized fuzzy controller consisting of fuzzification 

and inference modules. The inputs include variables defined in equations (1) - (4). The 

output of each fuzzy controller includes two membership functions that map the input 

space to the interval of [0, 1] representing the grade of behavior objective. They are then 

used as the objective functions for a multi-objective optimization process to generate the 

overall control signals, u* and ω*, which are the Pareto-optimal solutions. 
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Figure 5. The Overall Structure of the BBFM 

 

2.2. Design of Individual Behavior 

Each behavior is implemented by one customized fuzzy controller which only contains 

the fuzzification and inference procedures, ignoring the defuzzification. The fuzzification 

procedure maps the crisp input values to the fuzzy linguistic terms. Each linguistic term is 

determined by a fuzzy set that is characterized by its membership function. In this study, 

the Gaussian and Sigmoid membership functions are chosen to represent the fuzzy sets as 

follows: 
2
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for the input and output Gaussian membership functions, respectively, and 
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e
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for the input and output Sigmoid membership functions, respectively, where xi is the ith 

input variable, yl is the lth output variables, Aij is the jth fuzzy set of the ith input variable, 

Blk is the kth fuzzy set of the lth output variable, {cij, σij} and {clk, σlk} are the parameters 

of input and output Gaussian membership functions, respectively, and {aij, bij} and {alk, 

blk} are the parameters of input and output Sigmoid membership functions, respectively. 

The inference procedure is responsible for formulating the relationship between the 

inputs and the outputs. It is based on rules of the form” if...then...”, for example,” if x1 = 

A1j and x2 = A2j and . . . xm = Amj then y1 = B1k and y2 = B2k and . . . yn = Bnk”. The result of 

each rule for each output variable is then given by: 
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where Rk denotes the kth rule. For M control rules, the implication result of each output 

variable according to the max-min method is an aggregated output fuzzy set with the 

membership function determined by: 

1 2
( ) max( ( ), ( ),...., ( ))   

MR l R l R l R ly y y y .                                                       (10) 

The membership function (10) represents the degree of membership of each element in 

the set of output variable yl. Detailed implementations of the fuzzification and inference 

procedures for each behavior are described as follows. 

 

2.2.1. Obstacle Avoidance 

The obstacle avoidance behavior includes four input variables dr, df, dl, and α, and two 

output variables u and ω as shown in Figure 5. Their linguistic terms and membership 

functions are defined as shown in Figure 6. 
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Figure 6. The Linguistic Terms and Membership Function of Input and 
Output Variables of the Obstacle Avoidance Behavior: (a) dl, df, dr; (b) α; (c): 

u; (d): ω 

Table 1 presents 28 control rules defined for the behavior. Let
,
( )

OA kR u  and 

,
( ) 

OA kR  be respectively the results of the kth rule in this table for u and ω by using 

Equation (9). The implication results according to the max-min method are then given by: 

,1 ,2 ,28

,1 ,2 ,28

( ) max( ( ), ( ),..., ( ))

( ) max( ( ), ( ),..., ( )).

   

       





OA OA OA OA

OA OA OA OA

R R R R

R R R R

u u u u
                                               (11) 

Table 1. Rules for Obstacle Avoidance 

Collisions Rule Input Output 

dl df dr α u ω 

 

1 N N F  S Po 

 

2 F N N  M Po 

3 M N N  M Po 

4 F N M  N LPo 

 

5 N N F  M LNo 
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6 N N M  M No 

 

7 F N F  M Lpo 

8 M N F  M No 

9 F N M  M Po 

 

10 N M N  M Po 

11 N N N  S Po 

12 M N M  S Po 

 

13 N M M  M No 

14 N M F  M No 

15 N F M  M No 

16 N F F LN S Lno 

17 N F F N S No 

18 N F F Z L Zo 

19 N N N LP L Zo 

20 N F F P L Zo 

 

21 M M N  M Po 

22 F M N  M Po 

23 M F N  M Po 

24 F F N LN L Zo 

25 F F N N L Zo 

26 F F N Z L Zo 

27 F F N LP S Lpo 

28 F F N P S LPo 

 

2.2.2. Goal Reaching 

The objective of goal-reaching behavior is to control the robot to reach the target in the 

shortest time. In order to complete this task, the behavior continuously adjusts the robot 

direction to match the target direction while driving the robot at the fastest possible speed. 

The behavior uses two input and two output variables as shown in Figure 5. Three of them 

including the deflection angle α and the velocities u and ω have the same definition of 

linguistic terms and membership functions as in the obstacle avoidance behavior. The 

fourth variable, ρ, has the linguistic terms and membership functions defined as shown in 

Figure 7. 
 

MN

2

F1

(m)4 6 10 12 14 16 180 8 20




 

Figure 7. The Linguistic Terms and Membership Function of ρ 

The behavior has 15 rules defined as in Table 2. Let 
,
( )

GR kR u and 
,
( )

GR kR   be 

respectively the results of the kth rule in the table for output variables u and ω by using 

Equation (9). The implication results for u and ω according to the max-min method are 

then given by:                 

,1 ,2 ,15

,1 ,2 ,15

( ) max( ( ), ( ),..., ( ))

( ) max( ( ), ( ),..., ( )).

   

       





GR GR GR GR

GR GR GR GR

R R R R

R R R R

u u u u
                                           (12) 
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Table 2. Rules for Goal Reaching 

Rule Input Output 

ρ α u ω 

1 N Z S Zo 

2 N N S No 

3 N LN S LNo 

4 N P S Po 

5 N LP S LPo 

6 M Z M Zo 

7 M N M No 

8 M LN M LNo 

9 M P M Po 

10 M LP M LPo 

11 F Z L Zo 

12 F N L No 

13 F LN L LNo 

14 F P L Po 

15 F LP L LPo 

 

2.2.3. Local Minimun Avoidance 

During navigation, the robot may be trapped in U-shape regions called local minimum 

problem. It happens when the robot repeatedly conducts opposite turning commands 

during avoiding obstacles. Figure 8(a) illustrates such a situation. The robot starts from A, 

moves toward the target according to rules 6 and 11 in Table 1; at B, it turns left 

according to rules 11 and 12 to move to C or it can turn right to move to D depending on 

the priority; at C, it turns left to go toward the target according to rules 27 and 28 and 

back to B. The process is repeated causing the robot to be trapped. 
 

Target

C

B

D

            

Target

C

Cn

B

C1

k

1k 

 
(a)                                 (b) 

Figure 8. The Fuzzy-based Method for Dealing with the Local Minimum 
Problem: (a) the Robot is trapped in a Local Minimum Region; (b) the Robot 

Scapes the Local Minimum Region Using the Fuzzy-based Method 

In order to deal with this problem, we carefully analyze various trapped situations and 

realize that it is critical to detect the trapped points which are points C and D in the 

example shown above. We detect them by checking if the distance ed is increasing, the 

target is behind the robot (corresponding to the positive value of α), and the obstacle is on 

the right (or left) side of robot. Figure 8(b) shows that if the robot goes straight instead of 

turning left at the trapped point C, it will reach Cn as the conditions do not change from C 

to Cn. At Cn, the robot will turn right to exit the local minimum region. In order to 

implement the proposed solution, the behavior of local minimum avoidance has five input 

variables including dl, df, dr, α, and ed and two output variables including u and ω. The 

linguistic terms and membership functions of ed are defined as in Figure 9. 
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Figure 9. The Linguistic Terms and Membership Function of ed 

The linguistic terms and membership functions of the remained variables are defined as 

in the obstacle avoidance behavior. Table 3 presents 7 control rules for detecting trapped 

points and escaping local minimum regions. Let
,
( )

LM kR u and 
,
( )

LM kR  be respectively 

the results of the kth rule in the table for output variables u and ω by using Equation (9). 

The implication results for u and ω according to the max-min method are then given by: 

,1 ,2 ,7

,1 ,2 ,7

( ) max( ( ), ( ),..., ( ))

( ) max( ( ), ( ),..., ( )).

   

       





LM LM LM LM

LM LM LM LM

R R R R

R R R R

u u u u
                                              (13) 

Table 3. Rules for Local Minimum Avoidance 

Rule Input Output 

dl df dr ed α u ω 

1 N N N  Z S Po 

2 F N N  P M Po 

3 F N N  LP S LPo 

4 F F N PT P M Zo 

5 F F N PT LP M Zo 

6 F F F PT P M Zo 

7 F F F PT LP M LNo 

 

2.3. Command Fusion 

The command fusion is carried out by using multiobjective optimization. As shown in 

Figure 5, the membership functions of output variables are used as the objective 

functions. Let μi(y) be the ith objective function, y be an output control signal (y = u or y 

= ω), Y be the domain of y, and N be the number of objective functions. The optimal 

value of each output control signal is then the solution of the following equation: 

1 2
ˆ argmax[ ( ), ( ),..., ( )]   Ny y y y                                                                (14) 

According to the theory of multi-objective optimization, there might not exist the 

optimal solution, ŷ , of Equation (14), but only the ”good enough” solution, y*, which is 

the best fit for all objectives. This solution is called the Pareto-optimal solution or non-

dominated solution defined as follows: y* is the Pareto-optimal solution of Equation (14) 

if there does not exist any y   Y such that μi(y) > μi(y*) for at least one i and μj(y) ≥ μj(y*) 

for all j. In other words, the Pareto optimal solution is the one in which there is not other 

solution that improves an objective without resulting in the deterioration of at least 

another objective. 

In order to find the Pareto-optimal solution, there exist a number of methods [17] such 

as weighting, lexicographic, and goal programming. In the context of command fusion, 

we choose to use the lexicographic method due to its efficiency. This method first 

requires ranking the order of importance of all objectives, for instance, µ1 is the most 

important and µN is the least important. The Pareto-optimal solutions are then obtained by 
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solving the following sequence of problems until either a unique solution is found or all 

the problems are solved: 

1

1

1 1

2 2

: max[ ( )]

: max[ ( )]

...

: max[ ( )]

{ | solves }, 1,..., 1














  

N

y Y

y Y

N N
y Y

i i

P y

P y

P y

Y y y P i N

                                                                  (15) 

In our system, the optimal values of the overall control signal are determined by the 

output membership functions of (11), (12), and (13) as follows: 

ˆ argmax[ ( ), ( ), ( )],

ˆ argmax[ ( ), ( ), ( )]

  

      





OA GR LM

OA GR LM

R R R

R R R

u u u u
                                                              (16) 

The lexicographic method used to find the Pareto optimal solutions of (16) are carried 

out as follows: 

 Sorting all behaviors in descending order of importance: local minimum 

avoidance, obstacle avoidance, and goal reaching. 

 Sequentially solving equations Pi by using discrete values of u and ω on their 

domains U and W until a unique solution is obtained, or all equations are solved: 

1

2

1

2

*

1 1

3

2 2

: max[ ( )],

: max[ ( )],

: { | solves },

: max[ ( )],

{ | solves }
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u U
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u U

R
u U

P u

P u

u U u u P

P u

U u u P
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2
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2
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1 1

3

2 2

: max[ ( )],

: max[ ( )],

: { | solves },

: max[ ( )],

{ | solves }







 

 

  

 

 



















LM

OA

GR

R
W

R
W

R
W

P

P

W P

P

W P

     (17) 

 If more than one Pareto-optimal solution is obtained, the one with the greatest 

value of u and the smallest value of ω is chosen. 

 

3. Simulations 

Simulations have been conducted to evaluate the efficiency of the BBFM compared to 

two other popular architectures including the MOASM [17] and CDB [10]. The MOASM 

uses multi-objective optimization for command fusion. It is implemented with three 

behaviors including avoiding obstacles, maintaining the target heading and moving fast 

forward. The objective functions are defined as in the origin [17]. The overall control 

signal is determined by using the lexicographic method. The CDB is implemented with 

three behaviors as in the MOASM. Each behavior is a fuzzy controller. The overall 

control signal is determined by using fuzzy meta rules and defuzzification. In order to 

ensure the fairness in comparison, the BBFM only uses the obstacle avoidance and goal 

reaching behaviors. 

All architectures are simulated in Matlab and use the same robot configuration. Its 

mechanical parameters are set as follows: R = 0.085 m, L = 0.265 m, u   [0, 1.3] m/s, 

and ω   [-4.3, 4.3] rad/s. The ultrasonic sensors have the sensing range from 0 m to 4 m 

and the radiation cone of 15
°
. They are arranged in front of the robot as shown in Figure 3 

to cover the range of 160
°
. The universe of discourse of ρ is in the range of [0, 20] and 

that of ed is [-1, 1]. In simulations, three scenarios were chosen for navigating the robot. In 

each scenario, 15 runs were carried out to evaluate the performance of each architecture. 

Details and results of each scenario are presented as follows. 
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3.1. Popular Operating Environment 

In scenario 1, the operating environment is chosen to be the same as in the original 

paper of MOASM [17]. The start position is (-2, -1.8, 180
°
) and the target position is (-6, -

4.8, 0
°
). Figure 10 shows the path of robot generated by three architectures MOASM, 

BBFM, and CDB. It can be seen that all architectures successfully navigate the robot to 

avoid obstacles and reach the target. Table 4 shows the average performance of each 

architecture, where the index smoothness is the average absolute value of the difference 

between the current and the previous orientation, thus showing how smooth the 

maneuvers is; the index target error is the distance between the final position of the robot 

and the target position, thus evaluating the reachable ability to the target at the steady 

state; and the indexes traveled distance and elapsed time are respectively the total distance 

of the robot’s traveled path and the time taken to go through that path. As can be inferred 

from Table 4, the BBFM is more efficient than the remaining architectures in almost all 

criteria. 
 

 
(a)                                           (b)                                            (c) 

Figure 10. Travelling Paths of the Robot Navigated by Three Architectures 
in Scenario 1: (a) BBFM, (b) MOASM, (c) CDB 

Table 4. Navigation Results in Scenario 1 

Index BBFM MOASM CDB 

Traveled distance (m) 10.36 11.02 11.02 

Elapsed time (second) 28.26 41.45 36.43 

Smoothness (degree) 0.88 1.29 6.1 

Target error (m) 0.05 0.2 0.05 

 

3.2. Office-like Operating Environment 

In scenario 2, the operating environment is chosen to be more like an office with wall 

and bulkhead obstacles. The start position is (-7, -6, 0
°
) and the target is (-2.5, -1.5, 0

°
). 

Figure 11 and Table 5 show the navigation results. It can be seen that the MOASM does 

not complete the navigation task as its objective functions are built based on the principle 

of Instantaneous Center of Curvature (ICC) of differential drive wheeled mobile robot 

which does not efficient in escaping corners. On the other hand, both the BBFM and CDB 

can safely navigate the robot to reach the target due to the efficiency of fuzzy control. 

However, the BBFM is more efficient than the CDB. 
 

 

 

 

 



International Journal of Control and Automation 

Vol. 10, No. 2 (2017) 

 

 

360  Copyright © 2017 SERSC 

 
(a)                                   (b)                                   (c) 

Figure 11. Travelling Paths of the Robot Navigated by Three Architectures 
in Scenario 2: (a) BBFM, (b) MOASM, (c) CDB 

Table 5. Navigation Results in Scenario 2 

Index BBFM CDB 

Traveled distance (m) 9.35 15.66 

Elapsed time (second) 12.09 24.45 

Smoothness (degree) 2.04 3.16 

Target error (m) 0.05 0.05 
 

3.3. Operating Environment with Local Minimun Regions 

In the third scenario, the operating environment has local minimum regions. The robot 

starts at position (-6, -6, 0
°
) and desires to reach position (-2.5, -1.5, 0

°
). The results in 

Figure 12 show that all three architectures are not able to complete the navigation task 

because of local minimum problem. This problem can be solved if adding a local 

minimum avoidance behavior to the BBFM as shown in Figure 13(a). Even in a more 

complicated local minimum situation, the BBFM still completes the navigation task as 

shown in Figure 13(b). 
 

    
(a)                                            (b)                                  (c) 

Figure 12. Travelling Paths of the Robot Navigated by Three Architectures 
in Scenario 3: (a) BBFM, (b) MOASM, (c) CDB 

 

 

Figure 13. Travelling Paths of the Robot Navigated by the BBFM in 
Operating Environment with Local Minimum Regions 
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4. Experiments 

In order to evaluate the performance of the BBFM in real environments, we carried out 

a number of experiments described as follows. 

 

4.1. Experimental Setup 

The robot used in experiments is a Sputnik robot [18] as shown in Figure 14. It is 

equipped with three ultrasonic sensors DUR5200 at left, front and right directions creating 

the scanning range from −60
°
 to 60

°
. To extend the scanning range from −90

°
 to 90

°
, we 

added two additional ultrasonic sensors SRF05 to the left and right sides of the robot. 

Each employs a microcontroller PIC12F1572 to synchronize its data with the main board 

of Sputnik robot. The linear and angular velocities of the robot are respectively set to [0, 

0.5] m/s and [-3.7, 3.7] rad/s. The position of the robot is determined via optical encoder 

sensors. The robot has a wireless module connecting it to a Wifi router (Figure 14). The 

BBFM is written in Matlab and installed on a PC which communicates with the robot 

through a Wifi router. The sampling time Ts is 300 ms and the experimental environment 

is an indoor office with the size of 4 m x 3 m and changeable obstacles. 
 

 

Figure 14. The Sputnik Robot and Its Configuration to Communicate 
with the Control Computer 

 

4.2. Experimental Results 

Experiments were carried out with different configurations of the environment and 

target position. Figure 15 shows results of the traveled paths, velocity responses and 

images of the robot in three of such configurations. In configuration 1 (Figure 15(a)), the 

robot starts at A (0, 0, 90
°
) and then moves forward along two walls to B. At B, it turns 

right two times to C and then goes straight to D. At D, the robot continuously adjusts its 

direction to avoid the bulkhead corners while on average maintaining the target heading to 

reach E and finally goes straight to reach the target F (1.9, 2.5, 0
°
). Figure 15(b) shows the 

correspondence of linear and angular velocities of the robot with those movements, for 

instance, between D and E near the target, the angular velocity switches between the left 

and right directions to avoid the bulkhead corners while the linear velocity gradually 

decreases to prepare for stopping at the target. 

In configuration 2 as shown in Figure 15(d), the environment structure changed with 

more potential local minimum regions. The robot starts at position (-0.1, -1, 90
°
) and the 

target is set to (-0.1, 2.5, 0
°
). The path from B to D shows that the robot successfully 

escapes the local minimum region near the starting position. From D to F, it succeeds in 

avoiding obstacles located at the center and near the target. Figure 15(e) shows the 

correspondence of the robot’s velocities with its movements. The operating environment 

in Configuration 3 is similar to the configuration 2. However, the start and target positions 

are changed to (0.1, -0.2, 0
°
) and (1.8, 2.3, 0

°
), respectively. As can be inferred from 

Figure 15(g)-(i), the robot can reach the target while avoiding obstacles and potential 

local minimum regions. 

Table 6 shows the navigation performance in each configuration. As can be inferred 

from the table, configuration 1 introduces the best performance in smoothness and elapsed 
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time because it is the simplest case. On the contrary, configuration 2 introduces the worst 

performance due to obstacles and local minimum regions. Nevertheless, the closeness 

between values of average linear velocities in all configurations implies that the operation 

of robot is stable and suitable for the indoor environment. 

Table 6. Navigation Results in Three Configurations 

Configuration uaverage 

(m/s) 

Smoothness 

( degree) 

Elapsed 

time (s) 

Traveled 

distance (m) 

Target 

error (m) 

1 0.18 3.72 22.5 4.06 0.05 

2 0.15 6.54 33 4.86 0.08 

3 0.16 5.75 24 3.77 0.07 

 

  

   

   
(a) (b) (c) 

  

   

   
(d) (e) (f) 

  

   

   
(g) (h) (i) 

Figure 15. Travelling Paths, Velocity Responses, and Photos of the 
Robot Operating in Three Different Navigation Configurations: (a) – (c): 

Configuration 1, (d) – (f): Configuration 2, (g) – (i): Configuration 3  

 

5. Conclusions 

In this paper, we have proposed new behaviorbased navigation architecture for 

navigating the mobile robot in unknown environments. We modified the procedures of 

designing fuzzy controllers for behaviors so that their outputs can be used as inputs for a 

multiobjective optimization process to coordinate the behaviors. Consequently, the 

architecture inherits advantages of fuzzy logic in dealing with uncertainties of sensory 

information while providing a framework for designing objective functions. It also takes 

advantage of multiobjective optimization to generate Pareto-optimal solutions for 

command fusion. During the development, we proposed a very simple yet effective fuzzy-

based approach for dealing with the local minimum problem which often happens in 
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mobile robot navigation. The results show that the proposed architecture is practical in 

implementation and possibly navigates the robot to reach the target along a smooth and 

efficient trajectory in environments with unpredictable obstacles, topographies and local 

minimum regions. 
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