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Abstract 
The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate progress of text 

mining in facilitating integrative understanding of chemical substances, diseases and their relations. 

In this article, we describe an extension of the UET-CAM system for mining chemical-disease rela-

tions from text data, of which performance was ranked 4
th
 among 18 participating corresponding sys-

tems by the BioCreative CDR track committee. In Disease Named Entity Recognition and Normaliza-

tion (DNER) phase, our system employs joint learning with a perceptron-based named entity recog-

nizer (NER) and a back-off model with Semantic Supervised Indexing (SSI) and Skip-gram for named 

entity normalization (NEN). Crucially, for solving the chemical-induced disease (CID) sub-task, we 

propose a pipeline that includes a coreference resolution module and a SVM intra-sentence relations 

extraction model. The former module utilizes a multi-pass sieve to identify inter-sentence references 

for entities while the latter is trained on both the CDR data and our silverCID corpus with a rich fea-

ture set. SilverCID is the silver standard corpus contains more than 50 thousands sentences which 

are automatically built based on the CTD database in order to provide evidence for the CID relation 

extraction. We critically evaluated our method on the CDR test set in order to clarify the contribution 

of our system components. Results show an F1 of 82.44 for the DNER task, and a best performance 

of F1 58.90 on the CID task. The comparisons also demonstrate the significant contribution of the 

multi-pass sieve coreference resolution method and the silverCID corpus. 

Availability: SilverCID- The silver standard corpus for Chemical-induced Diseases relation extraction 

is available from: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530) 

 

 

1 Introduction  

A survey of PubMed user search behavior (1) found that diseases and 

chemicals were two of the most frequently requested entities by PubMed 

users worldwide: diseases appear in 20% of queries and and chemicals in 

11%. These two entities are central to several topics such as developing 

drugs for therapeutics, discovering adverse drug reactions (ADRs) as 

well as chemical safety/toxicity among patient groups and facilitating 

hypothesis discovery for new pharmaceutical substances. As a conse-

quence, extracting the chemical-disease relations from unstructured free 

text into structured knowledge has become an important field in biomed-

ical text mining.  

Compared with other biomedical entities such as genes and proteins, 

comparatively less research has been done on capturing disease and 

chemical entities and their relations. In recent years, capturing the critical 

significance of diseases and chemicals as well as drug-side-effect rela-

tions, has led to an expansion in this field. The Comparative Toxicoge-

nomics Database (CTD) (2) is a manually curated database that promotes 

understanding about the effects of environmental chemicals (e.g., arse-

nic, heavy metals and dioxins) on human health. The CTD database had 

1,842,746 chemical–disease associations as of June, 2015. Due to the 

high cost of manual curation and the rapid growth of the biomedical 

literature, several researches have attempted to extract chemical – dis-

ease relations or drug side effects automatically. The simplest approach 

is based on the co-occurrence statistics of chemical and disease entities 

(3), i.e. if two entities are mentioned together in the same sentence or 

abstract, they are probably related. This approach achieves high recall, 

but low precision and fails to distinguish the CID relation from other 

relations that commonly occur between chemical and disease. Rule-

based techniques such as pattern-based approaches are also used for 

ADR extraction (4). This approach demands a large accumulation of 
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rules, which caused by the large number of contexts and ambiguities. 

Such therefore often lead rule-based systems to having low recalls. Kang 

et al. (5) developed a knowledge-based relation extraction system that 

requires minimal training data, and applied the system for the extraction 

of ADRs from biomedical text. Other approaches are based on sophisti-

catedly advanced machine learning techniques, such as (6, 7) but still 

have gotten limited successes. The most  important factor caused these 

limitations is the lack of a comprehensive dataset for training, moreover 

the abundant expression of ADRs in context as well as inter-sentence 

expression also make this problem more difficult. This research field, 

therefore, is  still potential and challenged. 

To accelerate progress, BioCreative V proposed a challenge task for 

automatic extraction of Chemical-induced disease (CDR) (8, 9) that has 

two sub-tasks:  

(A) Disease Named Entity Recognition (DNER). This task includes 

automatic recognition of disease mentions (named entity recognition, 

NER) in PubMed abstracts and assignment of Medical Subject Heading 

(MeSH) (10) identifiers to these mentions (named entity normalization, 

NEN). They are initial steps for automatic CDR extraction. 

(B) Chemical-induced disease relation extraction (CID). Participating 

systems were provided with raw text from PubMed articles as input and 

asked to return a list of <chemical, disease> pairs with normalized con-

cept identifiers for which drug-induced diseases are associated in the 

abstract. 

In these challenge tasks, disease are annotated following the ‘Diseas-

es’ [C] branch of MeSH 2015, including disease, disorder, signs and 

symptoms; chemical terminologies are annotated following the 'Drugs 

and Chemicals' [D] branch of MeSH 2015; the CID relation refers to 

relationship between a chemical and a disease which are marked as 

‘marker/mechanism’ in the CTD database. There are two types of such 

relationships (i) biomarker relations between a chemical and disease 

indicating that the chemical correlates with the disease and (ii) putative 

mechanistic relationships between a chemical and disease indicating that 

the chemical may play a role in the etiology of the disease (see figure 1 

for examples). 

As a team participating in the challenge for the first time, we proposed 

a modular system which solved the DNER and CID tasks in separated. 

For the DNER phrase, we proposed a reasonable manner for combining 

several state-of-the-art word-embedding techniques in NEN module in 

order to take advantages of both golden standard annotated corpus and 

the large scale unlabeled data. The NEN and NER modules are combined 

in a joint inference model to boost performance and reduce noise. The 

CID sub-task has to face many challenges such as (i) complex grammati-

cal structures, (ii) the participation of entities in a CID relation occurring 

in both single sentences or spanning multiple sentences, additionally, 

(iii) the problem of expressing entities in MeSH IDs instead of mentions 

also make this problem more complex. To overcome these challenges, a 

traditional machine learning model for relation extraction – based only 

on explicit mentions of entities in a single sentence - is definitely not 

adequate. Using a SVM intra-sentences relation extraction module as a 

central core, we use a coreference module to find more disease/chemical 

mention in text then help to convert inter-sentence relations to intra-

sentence relations. We also believe that the bigger training set is, the 

more useful information we can obtain, thus, we build a silver-standard 

annotation corpus (namely ‘silverCID’ corpus) based on a carefully 

selected sub-set of the CTD database that does not occur in the testing 

set. This corpus is used for training the SVM model. In additional, we 

explore a rich feature set, which used successfully for event extraction, 

to adapt with complexities of CID relations appearances.  

The novel contributions of this paper are as follows: (i) we proposed 

an ensemble model for structured-perceptron NER model, SSI and skip-

gram NEN model in a rational manner of DNER joint inference model, 

(ii) we automatically build the SilverCID corpus- a sentence-level corpus 

to serve CID relation extraction as well as evaluate its influence on the 

system, (iii) we present evidence for the efficacy of using the multi-pass 

sieve in a biomedical relation extraction task and (iv) we demonstrate the 

strength of the rich feature set for CID relation extraction. 

2 Materials and methods 

2.1 Data set 

Our experiments were conducted on the BioCreative V CDR data. In 

order to take advantage of the CTD database, we also built the SilverCID 

corpus –based on PubMed articles which are cited in the CTD database 

but not appearing in the BioCreative CDR track data set. 

2.1.1 BioCreative CDR track data set 

To assist CDR system development and assessment, the BioCreative V 

workshop organizers created an annotated text corpus that consists of 

human annotations for all chemicals, diseases and their chemical-

induced disease relations. This corpus contains a total of 1,500 PubMed 

articles which are separated into three sub-sets each of: 500 for the train-

ing, development and test set (the details are shown on Table 1).  Fol-

lowing the data survey of BioCreative (9), of these 1,500 articles, 1,400 

were selected from an existing CTD-Pfizer collaboration related dataset 

which was generated via a previous collaboration curation between CTD 

and Pfizer (11), the remaining 100 articles contain newly curated data 

and are incorporated into the test set.  

Table 1. Summary of the CDR track dataset 

Data set Articles 
Chemical Disease 

CID 
Men ID Men ID 

Training 500 5,203 1,467 4,182 1,965 1,038 
Development 500 5,347 1,507 4,244 1,865 1,012 
Test 500 5,385 1,435 4,424 1,988 1,066 

Men: Mention, CID: CID relations 

Fig. 1. Analysis of the Direct Evidence field in the CTD database 
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2.1.2 SilverCID corpus 

The Comparative Toxicogenomics Database (2) (CTD) is a robust, 

publicly available database that aims to advance understanding about 

how environmental exposures affect human health. Chemicals in CTD 

come from the chemical subset of MeSH. CTD's disease vocabulary is a 

modified subset of descriptors from the “Diseases” category of MeSH, 

combined with genetic disorders from the Online Mendelian Inheritance 

in Man (OMIM) (12) database.  

In more than 28 million CTD toxicogenomic relationships, there are 

1,919,790 disease-chemical relations (curated or inferred via CTD-

curated chemical–gene interaction) (October, 2015). There are several 

types of relations between diseases and chemicals, which may be de-

scribed within the Direct Evidence field of the CTD database. This field 

has two labels M and T, in which the label M indicates relations seem to 

be very similar to the chemical–induced disease relations we are interest-

ed in (figure 1).  

Fig. 2.  An example of constructing silverCID corpus 

This research is based on two assumptions: (i) Relations curated as M 

are CID relations and (ii) If two entities of a relation appear in the same 

sentence, it is highly probable that this sentence contains a grammatical 

relation. We do not know that these assumptions are correct in each case, 

therefore we consider this dataset to be a silver standard corpus.  

The SilverCID corpus is constructed according to five steps as fol-

lowed: 

(i) Relation filtering: Filter chemical-induced disease relations in CTD 

database. This step use information from ‘Direct evidence’ field in CTD 

database, only relations marked as ‘‘marker/mechanism’  are chosen. 

(ii) Collecting: Search for and collect all PubMed abstracts in the ref-

erence list of relations chosen in (i). 

(iii) Overlap removal: To avoid overlap between the SilverCID corpus 

and the test set, we remove all the PubMeb abstracts which appeared in 

the CDR track data set to ensure that the use of this silver set results in a 

fair evaluation of its contribution. 

(iv) Annotating: For each relation, automatically annotate all disease 

and chemical mentions of this relation in its referring PubMed articles. 

(v) Sentence filtering: Filter sentences in abstract from (iv) which con-

tain both chemical and disease entities of a relation. i.e., sentences that 

do not contain any entity or contain only one entity are removed. 

Figure 2 illustrates the SilverCID corpus’s construction steps.  

Two novel aspects that makes the SilverCID corpus different from 

other sources are (i) it is built automatically and (ii) it is a sentence-level 

corpus, i.e, a set of sentences, in which each sentence contains at least 

one intra-sentence CID relation with its chemical and disease entities. 

This data set contains 38,332 sentences, 1.25 millions tokens, 48,856 

chemical entities (1,196 unique chemical entities), 44,744 disease enti-

ties (2,098 unique disease entities) and 48,199 CID relations (12,776 

unique CID relations). It is available at URL: 

https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530). 

2.2 Proposed model 

The overall architecture of the system is described in figure 3. Compared 

to our participation in the BioCreative CDR track, the improved system 

uses the SilverCID corpus for training in both DNER and CID phase, the 

impact on the results due to this improvement will be analyzed in the 

following sections. Pre-processing steps include sentence splitting, to-

kenization, abbreviation identification, stemming, POS tagging and 

dependency parsing (Stanford1). The main system presented here is 

based on the integration of several state-of-the-art machine learning 

techniques in order to maximize their strengths and overcome the weak-

nesses.  

2.2.1 Named entity recognition and normalization 

This module corresponds to the CDR sub-task DNER. It is a joint-

inference model consisting of NER and NEN module to boost perfor-

mance and reduce noises (13). In which, the NER and NEN modules are 

trained separately and then decoded simultaneously.  

Following reports of high level performance in joint-inference model 

by Li and Ji, 2014 (13) and Zhang and Clark, 2008 (14), we decided to 

apply a structured perceptron model for NER. Its output has weighted-

form, the same with that of the NEN model that is therefore suitable for 

joint-inference in the decoding phase. The structured perceptron is an 

extension of the standard perceptron for structured prediction by apply-

ing inexact search with violation-fixing update methods (15).  It is 

trained on the CDR training, development set and SilverCID corpus with 

  
1 Stanford Dependencies: http://nlp.stanford.edu/software/stanford-dependencies.shtml 
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a standard lexicographic feature set: orthography features, context fea- tures, POS tagging features and dictionary (CTD) features. 

Fig. 3. Architecture of the proposed CDR extraction system. Model includes the 

pipeline of processing modules and material resources used, boxes with dotted lines 

indicate sub-modules. 

The NEN module is a sequential back-off model based on two word 

embedding (WE) methods: semantic supervised indexing (SSI) (16) - a 

supervised WE methods, and skip-grams (17)– an unsupervised WE 

methods. The SSI model is trained on the CDR training and development 

set to obtain a correlation matrix W between tokens in the training data 

as well as MeSH. Skip-gram is a state-of-the-art word-to-vector method 

that takes advantage of large unlabeled data. We use an open source 

skip-gram model provided by NLPLab2, which is trained on all PubMed 

abstracts and PMC full texts (4.08 million distinct words) with 200 di-

mensions. Several techniques are then applied to convert its output into 

correlation matrix form. In a sequential back-off manner, firstly, we 

implement the SSI model to find which pairs are linked, and then not-

linked pairs are processed once again by the skip-gram model. 

The CID subtask requires system to extract chemical-disease relations 

at the abstract level. In simple cases, CID relations can be expressed in a 

single sentence (intra-sentence relation), its corresponding entities appear 

in the same sentences. Unfortunately, the CID relation may be expressed 

in multiple sentences (inter-sentence relation). Our system is based on a 

strategy that first converts inter-sentence relations to intra-sentence rela-

tions by using a coreference resolution method and then applies a ma-

chine learning model to extract them.  

Our DNER system is based on joint inference using a modified beam 

search for decoding (13, 18), with which we train two separate models 

for NER and NEN and then decode them simultaneously. We also pro-
pose a new scoring function for Beam search decoding as followed (see 

formula 1).  

 
The scoring function for NEN is: 

 
If WNEN < WNEN (NONE) = threshold, re-write formula 1 to formula 3: 

 
In which, WNER is returned from the structured perceptron model. 

 

  
2
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin 

2.2.2 Coreference resolution 

Formally, coreference consists of two linguistic expressions - antecedent 

and anaphor (19). Figure 4 is an example of coreference, in which the 

anaphor ‘dose’ is the expression whose interpretation depends on that of 

the other expression, and the antecedent ‘adriamycin’ is the linguistic 

expression on which an anaphor ‘dose’ depends.  

Although the traditional coreference resolution task is to discover the 

antecedent for each anaphor in a document, from the perspective of this 

study, it is not necessary to always make clear which is the antecedent or 

anaphor. We consider both the antecedents and the anaphors as mentions 

of entities, and our system strives to recognize as much as possible men-

tions of an entity. 

Studies on coreference resolution in the general English domain dates 

back to 1960s and 1970s and often focus on person, location and organi-

zation. In biomedicine, because that the types of entities that a corefer-

ence resolution system resolves are atypical to the general domain (i.e. 

protein, gene, disease, chemical, etc.), coreference research in this do-

main has received comparatively less attention (19). Previous approaches 

apply several methods, from heuristics-based (20, 21) to machine learn-

ing (22, 23).  

Fig. 4.  An example of coreference between chemical entities. Two sequential sen-

tences are extracted from PubMed abstract PMID: 7449470 

Fig. 5. Coreference resolution using nine-pass sieve 

In our approach, the coreference module is based on the strategy 

called a multi-pass sieve by Souza and Ng, 2015 which was evaluated as 

a simple yet effective means for disorder mention normalization (21). 

Firstly, we process each abstract by noun phrase (NP) chunking (Genia 
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tagger3) and then create a set of NPs pairs for each abstract. These pairs 

of NPs are passed through the sieves, pairs which are kept by any sieve 

are considered as coreference pairs, pairs are not kept in each sieve con-

tinue pass through to the next sieve to the end. There are nine sieves, 

each corresponds to a set of rules, figure 5 is an illustration of the sieve-

based coreference resolution module with example pairs that are kept by 

each sieve. 

● Sieve 1 – ID matching: Two mentions of a chemical or a diseases 

having the same MeSH ID are coreferent. This sieve uses infor-

mation coming from the previous NEN step. E.g., ‘irregular heart-

beat’ and ‘irregular heart beat’ are both normalized to MeSH ID: 

D001145, thus, they are coreference. 
● Sieve 2 - Abbreviation expansion:  In this sieve we use the BioText 

Abbreviation recognition software4 to identify abbreviations and 

their full forms (e.g, full form of ‘PND’ in abstract 

PMID:11708428 is ‘prednisone’) . We then check the MeSH ID of 

the full form and apply it to the abbreviation in order to unify men-

tions.  
● Sieve 3 – Grammatical conversion: Generate similar forms of a 

mention by changing grammatical elements in mentions including 

subject, object, preposition, etc and then check the ID match crite-

rion. New forms are obtained by applying rules proposed by 

D’Souza and Ng (21), which are (i) replacing the preposition in the 

name with other prepositions, (ii) dropping the preposition from 

the name and swapping the substrings surrounding it, (iii) bringing 

the last token to the front, inserting a preposition as the second to-

ken, and shifting the remaining tokens to right by two and (iv) 

moving the first token to the end, inserting a preposition as the se-

cond to last token, and shifting the remaining tokens to the left by 

two. Examples include ‘calcification of the artery’ and ‘artery cal-

cification’, ‘mental status alteration’ and ‘alteration in mental sta-

tus’. 
● Sieve 4 - Number replacement: Generate similar forms of a men-

tion by replacing numbers with other forms and then check the ID 

match criterion. In this research, we consider the numeral, roman 

numeral, cardinal, and multiplicative forms of a number for gener-

ating new mention forms, i.e., ‘two’ can be converted to ‘2’, ‘ii’ 

and ‘double’. 
● Sieve 5 - Synonym replacement: Check the ID match criterion for 

synonyms of mentions. This sieve uses a synonym dictionary con-

structed from MeSH, which contains 780,982 entries. 
● Sieve 6- Affix normalization: Generate new forms of a mention by 

changing affixes (includes prefixes and suffixes) then check the ID 

match criterion. For examples, ‘macroprolactinemia’ and ‘mi-

croprolactinoma’ (PMID: 20595935), ‘nephrotoxicity’ and ‘ne-

phrotoxic’ (PMID: 19642243) are coreference. 
● Sieve 7 – Stemming: Mentions are stemmed using the Porter stem-

mer5, and then check the ID match criterion. 
● Sieve 8 - Partial match: This sieve uses the output information 

from the abbreviation expansion sieve and applies the criterion for 

partial matching as proposed by D’Souza,J. and Ng,V. (21). It is 

said that “a mention can be partially matched with another mention 

for which it shares the most tokens”. To give an example, ‘calcium 

channel blocking agents’ and ‘calcium channel blockers’ in ab-

stract PMID:3323259 are marked as coreference. 
● Sieve 9 – Hyponymic terms: We create two dictionaries for chemi-

cal and disease includes hyponymic nouns which often referred to 

  
3   http://www.nactem.ac.uk/GENIA/tagger/ 
4 http://biotext.berkeley.edu/software.html 
5 http://tartarus.org/martin/PorterStemmer/ 

chemical/disease. For example, chemical hyponymic dictionary in-

cludes ‘drug’, ‘dose’, etc.; disease hyponymic dictionary includes 

‘disease’, ‘case’, ‘infection’, ‘side effect’, etc. In this sieve, NER 

information is used to find chemical and disease entities, and if in 

its context window of two sentences before/after there is any term 

in dictionary, we can determine a coreference. 

2.2.3 SVM intra-sentence relation extraction 

In this research, we accept the statement that if a noun phrase and an 

entity are coreferent, the noun phrase can be considered as an entity of 

that type, too. The intra-sentence relation extraction module receives 

sentences that contain a disease -chemical pair as input and classifies 

whether this pair have CID relation or not. 

The example in Figure 4 also shows how to combine the coreference 

resolution module and the intra-sentence relation extraction module for 

handling inter-sentence relation. The strategy is that  if the intra-sentence 

relation extraction module can recognize the relation between ‘cardimy-

opathy’ and ‘dose’, we can also determine the relation between 

‘cardimyopathy’ and ‘adriamycin’ because ‘dose’ and ‘adriamycin’ is 

coreference.  

  The intra-sentence relation extraction module is based on a Support 

Vector Machine (SVM) (24) – one of the most popular machine learning 

methods which has been  successfully applied for biomedical relation 

extraction (25, 26). We use the Liblinear tool6 to train a supervision 

binary SVM classifier (L2- regularized L1-loss) on CDR track train-

ing/development data set and our SilverCID corpus. In this study, we 

observe that the complexities of CID relations (several structural forms, 

abundant related vocabulary set, difficult to determine the distance be-

tween the two entities, etc.) are similar to the event extraction problem. 

As a consequence, the feature set that is specially constructed for event 

extraction may work better than that commonly used for normal relation 

extraction (they are words, entity type, mention level, overlap, depend-

ency, parse tree and dictionary (27-29)). Following reports of high per-

formance in event extraction (30), we decided to use a rich features set 

including four types of features: Token features, neighboring token fea-

tures, token features n-gram, pair features n-gram and shortest features 

path, the feature details are shown in table 2.  

Table 2.  Rich feature set used in intra-sentence relation extraction 

module 
Feature 

types 
Description Features 

Token fea-

tures 
Token itself 

information 
- Token orthography (capitaliza-

tion, first letter of sentence, num-
ber, etc.) 
- Base form of token 
- N-grams (n=1-4) of token 
- Part-of-speech tagging 

Neighboring 

token features 
Extracts all 2-

step dependency 
paths from the 

target token, 

which then are 
used to extract n-

grams 

- Features extracted by the token 

feature function for each token 
- Token and dependency n-grams 

(n=2-4) 
- Token n-grams (n=2; 3) 
- Dependency n-grams (n=2) 

Token n-gram 
features 

Extract token n-
grams (n=1-4) 

within a window 

of three tokens 
before and three 

tokens after the 

target token 

- N-grams of word 

  
6   http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 
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Pair n-gram 

features 
Extracts word n-

grams (n=1-4) 
within a window 

from three tokens 

before the first 
tokens to three 

tokens after the 

last token in 
target chemical-

disease pair. 

- Dependency n-grams (n=2) 
- Token n-grams (n = 2, 3) 
- N-grams (n = 2-4) of dependen-

cies and tokens 

Shortest path 

features 
Shortest depend-

ency paths be-
tween two words 

(in which, each 
word belongs to a 

disease or chemi-

cal entity) 

- Length of path 
- Word n-grams (n=2- 4) 
- Dependency n-grams (n=2-4)  
- Consecutive word n-grams 
(n=1-3) representing governor-

dependent relationships  
- Edge walks (word-dependency-
word) and their sub-structures  
- Vertex walks (dependency-

word-dependency) and their sub-
structures 

3 Experimental results 

3.1 Evaluation metrics 

For evaluation, diseases entities and relations (chemical- disease pairs) 

are compared to golden standard annotated CDR test data set using 

standard metrics: precision (P), recall (R) and F1. P indicates the per-

centage of system positives that are true instances, and recall indicates 

the percentage of true instances that the system has retrieved. More 

formally this is shown by the equations 4, 5 and table 3. 

 
F1 is the harmonic means of R and P, calculated as in equation 6. 

 

 Table 3. Defining the evaluation metrics 

 Gold standard annotation 
Positive Negative 

System 
annotation 

Positive True positive 
(FP) 

False positive 
(FP) 

Negative False negative 

(FN) 
True negative 

(TN) 
 
BioCreative V also evaluates participated systems’ ability to return re-

al-time results in a timely manner. It is calculated by response time via 

teams respective web services. 

3.2 DNER results 

The experimental results of DNER on the CDR track test data set are 

shown on table 4, note that only disease entities are evaluated. We com-

pare our results with benchmarks and task results provided by BioCrea-

tive organizer, including: 
● DNER benchmark 1: A straightforward dictionary look-up meth-

od that relied on disease names from CTD database. 
● DNER benchmark 2:  Retrained models using the out-of-box 

DNorm (16) which is a competitive system which achieved the 

highest performance in a previous disease challenge. DNorm 

combines an approach based on rich features and conditional ran-

dom fields for NER with a pairwise learning to rank for NEN.  
● DNER average results: Average results of 16 teams participated in 

the DNER task (best run for each participating team). 
● DNER best team results: Results from team that is ranked number 

1 (in term of F1) in DNER task (31). This system uses linear chain 

conditional random fields (CRF) with rich features for NER, they 

use three lexicons resources to generate CRF dictionary features 

and multiple post processing steps to optimize results. In NEN 

step, they use a dictionary-lookup method based on the collection 

of MEDIC, NCBI disease corpus and CDR task data set. 
In this paper, we improve our system that participated DNER task by 

training NER perceptron model using silverCID corpus, new results are 

also listed on table 4. 

Table 4. DNER results 

 P (%) R (%) F (%) 

Dictionary look-up* 42.71 67.46 52.30 
DNorm* 81.15 80.13 80.64 
DNER AVG results* 78.99  74.81  76.03 
DNER No1 team* 89.63 83.50 86.46 

Our system in BioCreative V* 73.20 79.98 76.44 

Our improved system** 79.90 85.16 82.44 

NER-NEN pipeline 78.26 83.17 80.64 

*Results provided by the BioCreative 2015 organizer. **silverCID corpus is used 

for training NER module.  
In the BioCreative V evaluation, our system performs outstanding 

compared to dictionary look up method, but worse than DNorm which is 

considered as a very strong benchmark (note that there are only 7 partic-

ipating teams achieved performances better than DNorm). Using the 

silverCID corpus for training NER model can boost performance by 6% 

F1 and become better than the DNorm’s result. 

To demonstrate the benefit of joint inference model, we also build a 

baseline system that is based on the traditional pipeline model: NER is 

exerted first and its result is then used for NEN. In this manner, NER and 

NEN module is totally similar with our joint inference model and also 

trained on the silver-CID corpus. The results show that joint inference 

model boosts the performance by 1.8% of the F1 score. 

Following the results reported by BioCreative (8), the average re-

sponse time in the DNER task is 5.6 seconds and our system is among 

participating systems that have smallest response time (276 ms, ranked 

no. 2). 

3.3 CID results 

Table 5 shows the results of our system on the CID task. It serves for two 

purposes, i.e. the first for comparing our results with the BioCreative 

benchmark results, and the second for evaluating the contribution of 

coreference resolution approach and silver-CID corpus as well as finding 

the best combination of them. The BioCreative benchmarks include: 
● The CID benchmark results from the co-occurrence baseline 

method with two variants: abstract-level and sentence-level.  
● The CID average results of 18 teams participated in the CID task 

(best run for each team). 
● The CID best team results from team that is ranked number 1 (in 

term of F1) in the CID task (32). This system combines two SVM 

classifiers trained on sentence- and document-level, its novel as-
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pect is at using rich features coming from CID relations in other 

biomedical resources. 

Table 5. CID results 

 P (%) R (%) F (%) 

Co-occurrence* 16.43 76.45 27.05 
CID AVG result* 47.09  42.61  43.37 
CID best team* 55.67 58.44 57.03 

Our system in BioCreative V 
(SVM+ CR MPS)* 

53.41 49.91 51.60 

Our improved system 
(SVM+ CR MPS+ silverCID corpus) 

57.63 60.23 58.90 

SVM 44.73 50.56 47.47 

SVM+ silverCID corpus 51.42 52.81 52.11 

SVM+ CR EMC 47.64 50.28 48.93 

SVM: SVM intra-sentence relation extraction. CR: Coreference resolution. EMC: 

expectation maximization clustering. MPS: Multi-pass sieve. *Results provided by 

the BioCreative 2015 organizer.  
The configuration of our system which participated in the CID task 

is the pipeline of multi-pass sieve coreference resolution module and the 

SVM intra-sentences relation extraction module, achieving 51.60% F1. 

This is much better than the co-occurrence benchmark method. Further, 

using the SilverCID corpus for training SVM module can boost perfor-

mance by 7.3% of F1. It can be noted that this result exceeds the highest 

ranking system in the CID task. However evaluation results for biomedi-

cal relation extraction methods vary greatly and are largely incomparable 

across different studies – particularly in this case because the use of the 

SilverCID corpus would not have been allowed under the original rules 

of the task because it was unknown which subset of the database was 

used in the test evaluation. Thus, we should be cautious in reading too 

much into such a direct comparison. Note that since DNER is the initial 

step of CID, DNER results greatly influenced the CID results. Therefore, 

the comparison hereby requires further validations because we use NER 

and NEN information provided by our DNER phase while other systems 

use theirs. 

The contribution coreference resolution and silverCID corpus are 

evaluated by comparing results of SVM based intra-sentence relation 

extraction module with and without adding coreference resolution mod-

ule/silverCID corpus. A comparative evaluation between systems with 

different combination strategies shows that an original SVM approach 

(only trained on CDR training and development set) achieved F1 of 

47.47%, whilst adding the SilverCID corpus boosts F1 by 4.64 % 

(51.60%) and adding multi-pass sieve coreference resolution module 

boosts F1 by 4.13% more (58.90%). 

We also make a comparison between our heuristic-based multi-pass 

sieve method and another state-of-the-art machine learning based method 

for coreference resolution. In this regard, we re-implement a method 

proposed by Ng (22), it is an expectation maximization (EM) clustering 

co-reference resolution - an unsupervised machine learning method. This 

system uses intra-sentence relation extraction SVM model trained on the 

CDR training and development set. The results demonstrate the strength 

of our multi-pass sieves method. We achieve 53.41% in precision 

(5.77% better than that of the EM clustering-based), 49.91 % in recall 

(0.37% worse) and 51.60% in F1 (2.67% better).  

The feature set that used in SVM model contains 332,570 features- 

this is a clearly a non-trivially large feature space to compute. In our 

experiments, the SVM model takes more than an hour for training. Ac-

cording to the results reported by BioCreative (8), the average response 

time in CID task is 9.3 seconds and our system response time is 8.993 

second.  

4 Discussion 

Firstly, we emphasize that our silverCID corpus is built automatically 

whilst other resources which are based on the CTD database, such as 

CDR track data set (section 2.1.1) and the CTD-Pfizer collaboration data 

set (11) are a results of manual curation. A further novel aspect that 

makes the SilverCID corpus different from other sources is that it is a 

sentence-level corpus, which is especially built in order to serve the 

purpose of CID relation extraction. 

Traditionally, NER and NEN is exerted as two separate tasks, in 

which, NEN takes the output of NER as its input. Following Liu et al. 

(33), one big limitation of this pipeline approach is that errors propagate 

from NER to NEN and there is no feedback from NEN to NER, Khalid 

et al. (34) also demonstrated that most NEN errors are caused by recog-

nition errors. Joint inference is expected to overcome these disad-

vantages of such a traditional pipeline model. The results in table 4 show 

that join inference model boots performance by 1.8% in term of the F1 

score. Joint inference outperforms the pipeline model in cases of long 

entities that belongs to MeSH, such as “combined oral contraceptives” 

and “angiotensin-converting enzyme inhibitors”.  

In the DNER phase, the NEN back-off model can take advantage of 

both labeled CDR dataset and extremely large unlabeled data. SSI calcu-

lates the correlation matrix between tokens, it works better than Skip-

gram in case that token appeared in training data or MeSH (e.g. SSI links 

‘arrhythmias’ to MeSH:D001145, ‘peripheral neurotoxicity’ to 

MeSH:D010523). The skip-gram model calculates similarity between 

tokens by taking advantage of large unlabeled data, and helps improve 

the recall (e.g. Skip-gram link ‘disordered gastrointestinal motility’ to 

MeSH:D005767, ‘hyperplastic marrow’ to MeSH:D001855, they are 

false negative of SSI). 

In the CID phase, we compared the true positive results of three com-

parative systems (Table 6). This includes (i) SVM model which is only 

trained on CDR training and development data, (ii) pipeline model of 

above SVM and multi-pass sieve coreference resolution and (iii) the 

same model as in (ii), but with the silver-CID corpus used for training 

the SVM model. The disagreements between these three systems clarify 

contribution of method and data set used in our model. SVM intra-

sentence relation extraction model plays the central core of our system, it 

works in cases of intra-sentence CID relations (example 1 and 2), thus, if 

SVM fails on an intra-sentence relation, adding multi-pass sieve corefer-

ence resolution module is not helpful (example 3 and 4). Since the sil-

verCID corpus enriches the training data of SVM, using it may help to 

find more relations than only SVM model does (example 3). It, however, 

also may bring some noises lead to the small adverse effects for the 

system, i.e., adding silverCID lead to missing the results (example 2). It 

is certain that only SVM model, even trained on silverCID corpus or not, 

cannot catch the inter-sentences relation (example 5-8). Therefore, coref-

erence resolution is completely necessary for handling inter-sentence 

relation (example 5 and 7). Similar to intra-sentence relation cases, add-

ing the silverCID corpus may help (example 6) or reject a very small 

amount true positive result classified by SVM+ coreference model (ex-

ample 7). Example 4 and 8 are failed by all systems. 
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Table 6. Analysis of the contribution of methods and resources used in the proposed system for capturing CID relationships 

 

 Chemical - Disease relation example PMID 

Type of relation SVM SVM 

+CR 

SVM 

+SS 

SVM 

+CR 

+SC 
Intra- Inter- 

1 maleate (C030272) - nephrotoxicity (D007674) 25119790 �  � � � � 

2 quinacrine hydrochloride (D011796) - atrial thrombosis (D003328) 6517710 �  � �   

3 metolachlor (C051786) -liver cancer (D008113) 26033014 �    � � 

4 galantamine (D005702) – headaches (D006261) 17069550 �      

5 methoxamine (D008729)- headache (D006261) 11135381  �  �  � 

6 gemfibrozil (D015248) - myositis (D009220) 1615846  �    � 

7 oxidized and reduced glutathione (D019803) - reperfusion injury (D015427) 1943082  �  �   

8 metolachlor (C051786)- follicular cell lymphoma (D008224) 26033014  �     

SVM: SVM intra-sentence relation extraction. CR: Multi-pass sieve coreference resolution. SC: silverCID corpus. Intra-: Intra-sentence CID relation. Inter-: Inter-sentence 

CID relation. �: Chemical-disease pair is classified as CID relation correctly. 

Table 7 shows examples of where our system disagreed with the anno-

tation standard. There are two types of errors: missing results (FN) and 

wrong results (FP). Some errors are caused by the previous DNER 

phase: in example 4, NER module did not recognize ‘calcium channel 

blockers’ as chemical; in example 5, FP result ‘acute insulin’ of NER 

module leads to the FP error of the whole system; in example 6, NER 

determined the wrong boundary of entity ‘acute hepatitis’ and in exam-

ple 7, NEN module matched ‘heart hypertrophy’ to the wrong MeSH ID 

(it should be D006332). However, for errors caused by the system, since 

entities in relations are expressed by MeSH ID and evaluation is made in 

abstract-level, it is very hard to clarify cause of errors. Our comments for 

these cases are empirical, based on heuristic surveying the system output. 

Inter-sentences relations often have very complex structures, two entities 

may belong to two sentences that are not adjacent, in some cases, one 

entity even is hidden, which causes many FN errors (example no. 1- 2). 

The SVM module depends on the training data set, thus, it may lead to 

several limitation of finding new relations (which are not similar with 

relations in the training set) and classifying confusion (example no. 9). 

Coreference resolution is not a trivial problem, it has several types of 

errors by itself, FP in example 10 seems to be brought about by the co-

reference resolution module, i.e. linking the term ‘dose’ to the wrong 

entity. One more type of errors caused by the silverCID corpus: We 

know that this corpus may bring much more valuable information, but it 

also may bring some noise, leading to the FN errors (example no. 3) and 

the FP errors (example no. 8) which would disappear if we remove sil-

verCID corpus from our system. 

Table 7.  Sources of errors by our system system on the CDR test set 

 
Relation PMID 

Type of error 
Cause of error 

FP FN 

1 corticosteroid (D000305) - systemic sclerosis (D012595) 22836123  � Complex inter-sentence structure 

2 cyclophosphamide (D003520) - edema (D004487) 23666265  � Complex inter-sentence structure 

3 chlorhexidine diphosphanilate (C048279) - pain (D010146) 2383364  � Noise from silverCID corpus 

4 theophylline (D013806) - tremors (D014202) 3074291  � Error from NER 

5 scopolamine (D012601) - retention deficit (D012153) 3088653 �  Error from NER 

6 clopidogrel (C055162) - acute hepatitis (D017114) 23846525 �  Error from NER 

7 isoproterenol (D007545) - heart hypertrophy (D006984) 2974281 �  Error from NEN 

8 nicotine (D009538) - anxiety (D001008) 15991002 �  Noise from silverCID corpus 

9 oxitropium bromide (C017590) - nausea (D009325) 3074291 �  Error from SVM model 

10 gamma-vinyl-GABA (D020888) - status epilepticus (D013226) 3708328 �  Error from coreference resolution module 

Intra-: Intra-sentence CID relation. Inter-: Inter-sentence CID relation. FP: False positive. FN: False negative. 

5 Conclusions 

In this article we have presented our systematic study in an attempt to 

participate the BioCreative V CDR task: (i) A joint inference approach to 

NER and NEN based on several state-of-the-art machine learning meth-

ods for the DNER sub-task and (ii) Improving a SVM based model by 

using a rich feature set, silverCID corpus and crucially, a multi-pass 

sieve coreference resolution module for the CID sub-task. Our top per-

forming configuration achieved an F1 of 81.93 for DNER and 58.90 for 

CID. This result is better than the performance of DNorm – a very strong 

DNER benchmark and exceeds the highest ranking system in the CID 

task. 

Based on the CTD database, we built a silver standard data set (called 

silverCID corpus), including 51,719 sentences that contains CID rela-

tions with silver annotations of NER, NEN and CID relation. This sil-

verCID corpus has proven its effectiveness by boosting the system per-

formance by 7.3% in term of the F1 (note that there are no overlap be-

tween CTD-silver set and test set).  

Several comparisons were made to compare our results with other sys-

tem and analyze the system errors. The evidence points towards com-

plementarities between the SVM model, the use of the SilverCID corpus 

and the co-reference resolution module. We observed the advantage of 

using multi-pass sieve coreference resolution to handle inter-sentence 

relations. 

Our system is extensible in several ways. Firstly from improvements 

to the coreference resolution module: although the coreference resolution 

module plays a central role in extracting inter-relation, at this time, it 

only boosted performance by 4.13% in term of the F1. We are going to 

use the SilverCID corpus for training a multi-pass sieve coreference 

module, and the more results coreference resolution module find, the 

more inter-relations can be found. The second approach comes from 
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several useful biomedical resources that we did not utilize. In the report 

of best team in the CID sub-task of BioCreative V (32), they exploited 

many databases such as CTD, MEDI (35), SIDER (36), etc., they can be 

used as knowledgebase features for machine learning or dictionary for 

matching. The third approach is application of several post-processing 

steps, such as abbreviation resolution and consistency improvement, 

which was applied by the best team in DNER sub-task of the BioCrea-

tive V and showed its effectiveness (31). 
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