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Abstract

Background: A well-known diagnostic imaging modality, termed ultrasound tomography, was quickly developed
for the detection of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave
without ionizing radiation, compared to the current gold-standard X-ray mammography. Based on inverse scattering
technique, ultrasound tomography uses some material properties such as sound contrast or attenuation to detect small
targets. The Distorted Born Iterative Method (DBIM) based on first-order Born approximation is an efficient diffraction
tomography approach. One of the challenges for a high quality reconstruction is to obtain many measurements from the
number of transmitters and receivers. Given the fact that biomedical images are often sparse, the compressed sensing
(CS) technique could be therefore effectively applied to ultrasound tomography by reducing the number of transmitters
and receivers, while maintaining a high quality of image reconstruction.

Methods: There are currently several work on CS that dispose randomly distributed locations for the
measurement system. However, this random configuration is relatively difficult to implement in practice.
Instead of it, we should adopt a methodology that helps determine the locations of measurement devices in
a deterministic way. For this, we develop the novel DCS-DBIM algorithm that is highly applicable in practice.
Inspired of the exploitation of the deterministic compressed sensing technique (DCS) introduced by the
authors few years ago with the image reconstruction process implemented using l1 regularization.

Results: Simulation results of the proposed approach have demonstrated its high performance, with the normalized
error approximately 90% reduced, compared to the conventional approach, this new approach can save half of
number of measurements and only uses two iterations. Universal image quality index is also evaluated in order to
prove the efficiency of the proposed approach.

Conclusions: Numerical simulation results indicate that CS and DCS techniques offer equivalent image reconstruction
quality with simpler practical implementation. It would be a very promising approach in practical applications of
modern biomedical imaging technology.
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Background
Since Wilhelm Roentgen discovered the X-ray beam in
1885, there has been a big leap in the clinical diagnostic
field in which more advanced technologies for Biomedical
imaging applications have been developed, e.g. Magnetic
Resonance Imaging (MRI), Computed Tomography (CT),
Ultrasound Tomography (UT), Electron Paramagnetic
Resonance (EPR), etc.… Among the newly developed
techniques, ultrasound imaging techniques have become
the widely used tool in the health sector due to its imple-
mentation ability for diagnostic and therapeutic as well as
its many advantages such as low cost, non-invasive nature,
painless test, mobility and fast diagnosis.
Ultrasound imaging which uses sound waves in the range

between 20 kHz and 1 GHz is commonly used since the
development of sonar in 1910. Based on the principle of
sonar, one of the techniques that can be widely used is B-
mode imaging [1]. This technique is used for non-
destruction evaluation and biomedical imaging. B-mode
image represents a qualitative change of acoustic impedance
function. As a result of this change, it allows to distinguish
between environments in the region of interest. However,
this imaging technique, using feedback of sound waves
when encountering target, only provides the qualitative
information of the imaged targets. Meanwhile, ultrasound
tomography, based on inverse scattering technique, pro-
vides the quantitative information of those targets. Indeed,
when sound waves encounter a heterogeneous environ-
ment, some of the energy will then be scattered in all
directions. The scattered data will be obtained by the re-
ceivers which are set up around the target of interest.
Therefore, a set of measurements of the scattered field is
obtained. Inverse scattering problem includes estimating
the distribution of acoustical parameters (e.g. speed of
sound, attenuation and density) to reconstruct the target of
interest in the inhomogeneous environment. This technique
allows a more detailed description of the imaged target.
Instead of using acoustical impedance parameter in B-mode
imaging, it uses one of parameters of acoustical properties.
Therefore, acoustic tomograms display quantitative infor-
mation of the target under examination.
Although ultrasound tomography has many advantages,

this technique has not been widely applied in practice. One
of the reasons is the lack of applications that can take
advantage of inverse scattering techniques. Currently, the
main application of this technique is only for breast
imaging in women to detect cancer-causing cells [2–4].
Another limitation of inverse scattering techniques is the
lack of efficient and powerful calculation methods. Inverse
scattering techniques have high computational complexity
and it is also the main reason that there is only a certain
number of commercialized tomography devices. Hence,
state-of-the-art inverse scattering techniques primarily
focus on reducing the computational complexity and

constantly improving the quality of imaging. Most of re-
search work on ultrasound tomography are based on Born
approximation. Born Iterative Method (BIM) and Distorted
Born Iterative Method (DBIM) are well-known for diffrac-
tion tomography [5]. The DBIM is a quantitative approach
in image reconstruction of the very small target. In this
method, the background medium is considered inhomo-
geneous and is updated with each iteration. Therefore, the
equation for Green’s function and the equation for incident
field are updated with each iteration.
Compressed sensing (CS), which is introduced by Candes

and Tao [6] and Donoho [7] in 2006, could acquire and re-
construct sparse signals at a rate lower than that of Nyquist.
Random measurement approach in the detection geometry
configuration is proposed in [8, 9]. A set of measurements
of the scattered field is performed using sets of receiver’s
random positions. This method can reduce the computa-
tional complexity and improve the quality of the recon-
struction of the sound contrast, compared to the linear
measurement method. However, this method does not well
de-noise and the implementation of compressed sampling
technique based on random sampling leads to a difficult
restriction on the hardware of the ultrasound tomography
system. It means that the probes will have to be randomly
distributed on the measurement system. This problem is
difficult to implement because in order to create a random
sequence, one must use a hardware random number
generator (HRNG) or a pseudo-random number generator
(PRNG). The implementations of HRNG and PRNG in
practice are very complex. In [10], the authors proposed to
use a deterministic measurement matrix, which is deter-
ministic, instead of random one. The elements of this
deterministic measurement matrix are chosen from the
sequence generated by a logistic deterministic system.
Previous simulated results indicate that this approach offers
a very good performance compared to the random method.
Moreover, using deterministic CS system inherits a simpler
hardware implementation than using the random one. The
hardware implementation of the deterministic generator is
just a simple nonlinear circuit which is much simpler than
a random generator. In this paper, based on the compressed
sensing technique, we propose a methodology which helps
to determine the locations of transmitters and receivers in
a deterministic way for ultrasound tomography. Then, we
develop a novel DCS-DBIM (Deterministic CS-DBIM)
algorithm that is highly applicable in practice. As a result,
this approach offers a very high performance, compared to
the conventional DBIM method.

Methods
Distorted born iterative method
Proposal of measurement configuration
Consider the setting of transmitters and receivers in Fig. 1.
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As shown in Fig. 1, the measurement configuration is
arranged circularly around the target. The pressure signal
from a transmitter is propagated, scattered and measured
by receivers. In principle, transmitters and receivers can
be distributed uniformly, randomly, or deterministically
based on the measurement configuration. Besides, the
number of transmitters and receivers depends on different
scenarios, in line with practical requirements. It should be
noticed that the number of transmitters and receivers
should not be so large because the measurement system
will be complex. In addition, a large amount of computa-
tion and memory requirement are needed to store and
process the data. It should be also noticed that the loca-
tions of transmitters and receivers may be either different
or identical. However, with current ultrasound transducer
technology, one transducer can both transmit and receive
ultrasound signals. In other words, the location of trans-
mitter and receiver can be identical.
For the proposed measurement configuration, we as-

sume that there are M transmitters and N receivers. M
transmitters are arranged around the target to obtain
complete information about the target at different an-
gles. Transmitter-receiver procedure of ultrasound wave
is performed as follows. Initially, only the first transmit-
ter transmits ultrasound signal and all receivers (N) will
simultaneously collect the scattered ultrasonic signal. As
a result, we get the 1st set of measurements (i.e. N mea-
surements) at the first position of the transmitter. The
second transmitter then begins operating and all re-
ceivers simultaneously obtain scattering signal at the
second position of the transmitter. At the end of this
procedure, we obtain the 2nd set of measurements (i.e.
2 × N measurements). The process continues until the
last transmitter (i.e. Mth) where we will obtain M sets of

measurements (i.e. M ×N measurements). With these
measured values, full information about the target at
different angles around the target are received.
The measured data will then be brought to DBIM to

estimate the sound contrast. The change of the sound
speed would be utilized to detect any tissue if exists. In this
paper, the transmitters and receivers are working under the
condition of homogeneous background medium, i.e. water,
where there is a target (strange tumor). This target has
sound contrast different from the background (denoted as
Δc) which is embedded in this medium. Because DBIM is
used to detect strange tumors in early stage in this paper,
sound constrast compared to the background medium is
usually very small. Therefore, in our scenarios, which will
be discussed in section Results below, value of Δc will be
selected to a few percents.

DBIM method
Because of the well-known properties, Bessel function
[11] is usually used in the numerical simulation as a
transmitted signal called Incident Wave whose frequency
is f. Wavelength λ of this wave is calculated by

λ ¼ c0=f ;

where c0 is the sound speed in background medium. For
homogeneous medium, the received signal at the receiver
is the Incident Wave itself. In presence of tumors, the
medium becomes inhomogeneous; when the incident
wave hits the target, the following two situations may
occur: if the target size is much larger than the wavelength
of the incident wave, it is reflected; if the target size is less
than or equal to the wavelength of the incident wave, it is
scattered in all directions around the target. Notice that
ultrasound frequency for clinical diagnosis is in the range
from 20 KHz to 12 MHz. As a result, the wavelength
ranges from 6.2 μm to 74.2 mm if sound speed in the
background is 1484 m/s. Born iterative method is used to
find out the linear relationship of the scattered pressure
difference and the sound contrast difference. The key of
this method is that the scattering signal is considered to
be very small in comparison with the incident signal. This
is entirely consistent with the real requirements which
need to detect strange tumors in early stage. Therefore,
we consider to reconstruct targets with very small sound
contrast, i.e. scattering signal is very small.
The wave equation of the scheme discussed above can

be expressed by

p r!� � ¼ pinc r!� �þ psc r!� �
; ð1Þ

where psc r!� �
, pinc r!� �

, and p r!� �
are the scattered, inci-

dent, and total signals respectively. It can be seen that the
known data arethe total signal and the incident signal.
However, what we concern about is the reconstruction of

Fig. 1 Geometrical and acoustical configuration
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the unknown target T (r) from the obtained data. This is
the inverse problem.
Consider the wave numbers of the background and

target mediums to be k0 and k (r) respectively. According
to [12], inhomogeneous differential equation has the form

∇ 2 þ k20 rð Þ� �
p rð Þ ¼ −O rð Þp rð Þ

Green function is an effective method to solve inhomo-
geneous differential equation. Therefore, it is used to find
out the nonlinear relationship of the scattered signal and
the target based on the total and incident signals. Eq. (1)
can be rewritten in details using the Green function G0 (·)

p r!� � ¼ pinc r!� �þ ∬T r!� �
p r

0!� �
G0 k0; r!− r

0!����
����

� �
d r

0!

ð2Þ
Notice that when the background medium is homoge-

nerous, G0 is the 0-th Hankel function of the first kind
and described by

G0 k0; r!− r
0!����
����

� �
¼ −i

4
H 1ð Þ

0 k0 r!− r
0!����
����

� �

¼ −i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πk0 r!− r
0!����
����

vuuut e
i k0 r!− r

0!�� ��−π=4� 	
:

ð3Þ
T (r) in Eq. (2) is the target function that needs to be

estimated. It can be calculated as follows:

T rð Þ ¼ k rð Þ2–k20 ¼ ω2 1
c2
−
1
c20

� �
if r≤R

0 if r > R

8<
:

ð4Þ
Equation (4) indicates that the ideal target function

depends on the frequency of the incident signal (ω = 2πf )
and the sound speed difference of the background
medium (c0) as well as the target medium (c). In order to
calculate in details each pixel inside the region of interest,
scattering wave equation (2) needs to be discreterized.
The method of moment (MoM) which uses basic sinc
function is used to solve this problem.
The total pressure field in the observed mesh area

(N ×N points) can be expressed by

p ¼ I−C :D T
� �� �

pinc; ð5Þ

where C is the Green matrix showing the interactions
among pixels, Ī is unit matrix, and D (·) returns a square
diagonal matrix of the input vector. The scattered signal
in the form of NtNr × 1 vector is described by

psc ¼ B:D T
� �

:p; ð6Þ

where B is the Green matrix showing the interaction of
all pixels to the receiver. We have to determine two
parameters p and T in Eqs. (5) and (6).
By rewritting these equations, we have [13]

Δpsc ¼ B:D pð Þ:ΔT ¼ M:ΔT ; ð7Þ
where M ¼ B⋅D pð Þ . For a transmitter and a receiver, we
formulate a matrix M and a scalar value Δpsc. The target
function T has N2 variables corresponding to the number
of pixels in the region of interest. It can be estimated by:

T
n ¼ T

n−1ð Þ þ ΔT
n−1ð Þ

; ð8Þ
where n and n-1 are two consecutive discrete-time points.
ΔT is estimated by using Tikhonov’s regularization [14]:

ΔT ¼ arg min
ΔT

Δpk sc
t−MtΔT

2
2



 þ γ ΔT


 

2

2; ð9Þ

where Δpsc is the difference between estimated and mea-
sured scattered signals whose size is (NtNr × 1). Besides,
measurement results are assembled in a matrix form Mt

of (NtNr ×N2) elements and γ is the regularization factor
that needs to be carefully chosen.
The DBIM procedure is presented in Algorithm 1.

Deterministic compressive sampling
Fundamentals of compressive sampling
Compressive Sampling (CS) or known as Compressed
Sensing [15] allows for exactly recovering signal v ∈ ℝn

from a small number of “random measurements” u ∈
ℝm (m < < n), which are defined as follows:

u ¼ Φv; ð10Þ

where Φ is a m × n matrix called sampling basis. The
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columns of Φ have entries equal to 1 at random positions;
the entries at other positions are null. This structure
means that measurements are done randomly.
The core problem of compressive sampling is that

assuming v has sparse representation in an orthonormal
basis Ψ, i.e.

v ¼ Ψw; ð11Þ
in which, w, also known as sparse, only has s <m≪ n
non-zero coefficients. Note that s is the sparsity degree of
the signal u and the number m of required measurements
is normally higher than s. Compressive sampling theory
shows that this sparse property allows accurate recovery w
with overwhelming probability success [16]. In particular,
sensing basis must have incoherent property to the model
basis Ψ [17]. This property is guaranteed by the random-
ness of the non-zero components in Φ. Therefore, the
problem can be written as follows:

u ¼ ΦΨw ¼ Aw; ð12Þ
where A ∈ Rmxn is full-rank, i.e. the m rows of A are
linearly independent. By these settings, Eq. (12) is solved
for w with w-sparse constraint. Once w is obtained, v can
be calculated from (11). With A satisfying “Restricted
Isometry Property (RIP)” condition which is first estab-
lished by Candes et al. [16], the CS problem can be solved
through l0-minimization technique:

ŵ ¼ arg min
w∈Rn

w l0kk subject to u¼Aw; ð13Þ

where l0 norm is defined as wk kl0 :¼ maxi wij j . In this
paper, instead of solving (13), the sparsest solution v̂ of
(12) can be found by solving the l1-minimization prob-
lem [18]:

ŵ ¼ arg min
w∈Rn

wk l1k subject to u¼Aw; ð14Þ

in which, the l1 norm is defined as wk kl1 :¼
Xn

i¼1
wij j:

Equation (12) is introduced under the assumption that
the exact form of the reconstructed signal is given. This
is rarely the case in practice, because the measurements
are often affected by noise. To reconstruct the signal in
case of noisy measurements, we have:

u ¼ Awþ e; ð15Þ
where e represents the noise ek kl2≤ε. l1 problem in pres-
ence of noise can be expressed as follows [18]:

ŵ ¼ arg minw∈Rn wk kl1 subject tou ¼ u−Awk l2≤ε ð16Þ

Compressive sampling using deterministic filters
In this paper, we use a deterministic basis generated by a
pseudo random sequence instead of pure random basis.
The advantage of this method in comparison with CS is

that it offers a simpler hardware design, because of the
deterministic nature of the proposed measurement sys-
tem. In fact, to facilitate the practical implementation,
researchers focused on the measurement system design
whose properties are not completely random or com-
pletely deterministic. The first work exploited this view
is introduced in [11], followed by others [19, 20]. In the
work [21], the authors offer some simple criteria to de-
sign a deterministic compressed sampling system that
ensures the ability to successfully reconstruct sparse sig-
nals. Overall, the deterministic compressed sampling
technique inherits some advantages over random one,
such as more effective recovery time, clear structure, ef-
ficient storage and tighter recovery limit [20].
Because of simpler hardware implementation of a deter-

ministic system compared to a random one’s, in this work,
the matrix Φ is constructed using the deterministic method.
To perform this, we consider a dynamic deterministic system
with deterministic nonlinear characteristic; as its dynamic is
very sensitive to initial conditions, its output has random-like
property [22]. Note that the reconstruction accuracy of deter-
ministic compressed sampling technique is ensured like the
random one [23]. To construct Φ, we consider a Logistic
map based dynamic structure that generates a very simple
deterministic sequence which is transformed into a sequence
that would have a Gaussian-like behavior [22, 23]. The
following Logistic map sequence is used as follows

q nþ 1ð Þ ¼ ρq nð Þ 1−q nð Þð Þ; ð17Þ
We then convert it by the Logit Transform to become

Gaussian-like as

qG nð Þ ¼ ln
q nð Þ

1−q nð Þ
� �

ð18Þ

Remarks: When the control parameter ρ in (17)
equals to 4, the dynamics described by (17) is deter-
ministic; this means that the dynamic of (17) is very
sensitive in regard of the initial condition q (0). A
very small change in q (0) would largely change q (n)
in a relatively short time. More detailed construction
of Φ from qG (n) can be found in [22]. Finally, the
image reconstruction is performed using sparse ap-
proximation algorithms.

The deterministic compressive sampling DBIM
Measurement configuration
Assume that there are Nt ×Nr transducers where Nt is the
number of transmitters and Nr is the number of receivers
(that gives Nt ×Nr measurements). We need to recon-
struct the target which is divided into N pixels vertically
and horizontally, i.e. N2 variables. There are three cases
for the arrangement of transducers and transmitters that
are required for consideration.
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Firstly, if Nt ×Nr is larger than N2, the number of equa-
tions is greater than the number of variables. This is the
over-determined problem and it is called a dense scattering
domain. In this configuration, the amount of scattered in-
formation obtained around the target is large, from which
we can calculate and easily reconstruct the target image.
However, a large number of transmitters and receivers is re-
quired. This high number of devices makes the imaging
system much more complex in terms of setting up the
measurement equipment and of large required processing
time consuming in target image reconstruction. Therefore,
this configuration is less likely used in practice.
Secondly, if Nt ×Nr is approximately or equals to N2,

the number of equations equals to the number of vari-
ables. This case is called a moderate scattering domain.
For the high-resolution images in this paper, i.e. large N2,
we still need in this situation a relatively large amount of
transducers to give enough measurement for correctly
reconstructing images.
Thirdly, if Nt×Nr is smaller than N2, i.e. the number of

equations is smaller than the number of variables, this is the
under-determined problem. When Nt×Nr is significantly
smaller than N2, we call this a sparse scattering domain, that
is, transducers is sparse on the measurement system due to
the small number of transducers and the amount of scat-
tered information is less and sparser than the case of the
dense and moderate scattering domains. Define the com-
pressed ratio r as the ratio of Nt ×Nr and N2, i.e.

r ¼ NtNr

N2 : ð19Þ

It is clear that for the sparse scattering problem, r < 1.
When r is small, the measurement system is simple and the
collected data is of small size. Consequently, the system set-
up and calculation are less complex. Henceforth, we need
to focus on the case of the smallest value of r, with which,
the imaging system is the simplest and it ensures the ac-
ceptable image reconstruction.
The implementation processes of the conventional

method and the proposed method are shown in Fig. 2 and
Fig. 3 respectively. In both figures, the Input represents the
ideal target function and the Output represents the recon-
structed target function. Nevertheless, in Fig. 2, the ideal
target function of interest is reconstructed using Tikhonov
regularizations while it is reconstructed using sparse-based

approximation techniques such as l1 optimization or greedy
Algorithms in Fig. 3. Besides, the measurement configur-
ation of linear transmitter-and-detector locations is used in
conventional method and the measurement configuration
of transmitters and detectors with linear transmitter loca-
tions and deterministic detector locations is used in the
proposed method.
The signal accurate reconstruction of the CS is guaran-

teed if the sparse domain is not associated with the sam-
pling domain [6, 7]. In [24], the authors compared the
efficiency of sparse signal recovery methods, namely l1-
LSP, MOSEK, PDCO-CHOL, PDCO-LSQR, l1-MAGIC
and HOMOTOPY, and MOSEK. Their results show that
l1-LSP method outperforms others by its fast reconstruc-
tion and low computational complexity. Moreover, this
also works effectively in large dense problems. With these
observations, the DBIM method can be employed for not
only detecting small scale targets (like breast cancer) but
also for other larger-scale applications. Therefore, in this
paper, we use l1-regularized least-squares programs (l1-
LSP) [24] for reconstructing the image target.

l1-regularized least-squares and DCS-DBIM procedure
The l1-LSP solves l1-regularized least squares problems
using the truncated Newton interior-point method and
has the form as follows:

min Aw−u 2




 þ ζ wk k1; ð20Þ

where A is a data matrix in dense or sparse format with n
columns and m rows; w is a vector of length n; and u is a
vector of length m. In the DCS-DBIM approach, A, w, u
are Mt , ΔT , and Δpt

sc respectively. It is noted that the size
of Mt is dependent on the number of transmitters (Nt),
receivers (Nr) and variables (N2). In other words, it is
changed in different scenarios. In the DCS-DBIM form, l1
problem is expressed as

ΔT ¼ arg min
ΔT

Δpk sc
t−MtΔT

2
2



 þ ζ ΔT


 



1; ð21Þ

where ζ is the regularization parameter in l1 problem. The
selection of regularization parameter ζ is crucial because it
has a great influence on the image reconstruction quality.
The large value of ζ will make the reconstructed image
rough and the small value of ζ will result in high computa-
tional complexity. It is noted that the inverse solver matrix

Fig. 2 The implementation process of the conventional method

Fig. 3 The implementation process of the proposed method
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Mt is changed at each iteration. In fact, in DBIM, the
Green function is updated in each iteration; therefore,
matrices B and C are changed, leading to the variation of
Mt at each iteration.
In this context, the regularization parameter ζ also

changes at each iteration. It is chosen as a function of the
forward error. For the computation process, the Rayleigh
quotient is recursively iterated; the value σ0 of the first sin-
gular value of the inverse solver matrix Mt is estimated; ζ
is then selected as given in [25]. In the simulation scenario
presented in this paper, the value of ζ for the first iteration
is chosen as 10−15. The DCS-DBIM procedure is pre-
sented in Algorithm 2.

Results
Parameters set up
The frequency of the incident signal, f = 1 MHz, is selected
as in a previous experimental work [26]. It is known that
the convergence rate of DCS-DBIM method depends on
the tolerated reconstruction error. For large error, the
convergence is fast; it slows down when the error is fixed
smaller. In any case, after a few iterations, the normalized
error reaches a floor. Reducing this floor value requires
the reduction in the tolerated distortion of reconstructed
images in the l1 algorithm. Furthermore, it will lead to a
more complex computational procedure and as conse-
quence, a much longer imaging time.
The propagation speed of ultrasound wave in the

women breast environment is actually in the range of
1350 m/s to 1600 m/s (in the background medium of
about 1484 m/s) [27], that is, the difference in the
propagation speed in women breast is in the range from
0 to 15.6%. Therefore, choosing the wave propagation
speed difference of 5% is reasonable.
The main limitation of the DBIM approach is that the

divergence issue occurs when Δφ > π, where Δφ ¼ 2ω

1
c −

1
c0

� 	
R [28]. Therefore, the incident frequency must

satisfy f < c0
2d � %Δc. The incident pressure for a Bessel

beam of zero order in two-dimensional case is de-
scribed by

pinc ¼ J0 k0 r−rkj jð Þ; ð22Þ

where J0 is the 0th order Bessel function and |r − rk| is
the distance between the transmitter and the kth point in
the range of interest.
Based on the above discussions, for the simulations,

the following parameters are finally chosen: frequency
f = 1 MHz; the total number of iterations Nsum = 8; N = 21
(i.e. Number of variables is N2 = 21 × 21 = 441); Target
diameter = 7.3 mm; Sound contrast 5%; Signal-to-noise
ratio SNR = 20 dB; Distances from transmitters and
receivers to the center of the target are 100 mm. The
numerical simulation program used is MATLAB running
on a PC with Intel core i3 processor and 2 GB RAM.

Performance evaluation of the DCS-DBIM and DBIM
The ideal target function T (r) described in Eq. (4) is
shown in Fig. 4 where it is placed at the center of the
meshing area with X and Y indicating the pixels coordi-
nates. The conventional linear configuration of transmit-
ters and for the case of Nt =Nr = 22 is presented in
Fig. 5a while histogram of linear detector locations over
full circle in case of Nr = 22 is shown in Fig. 5b.
We propose a deterministic under-sampling configur-

ation of detectors, in which the number of detectors is
smaller than the number of detectors in the conven-
tional configuration in Fig. 6. With a reduced number M
of measurements and the less computational complexity
in the iteration process, the proposed configuration
sustains a quality of the reconstruction comparable to

Fig. 4 Ideal target function (N = 21)
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that obtained by the conventional configuration. Notice
that the transmitters are still placed at equal distance as
in the conventional configuration. The proposed config-
uration of transmitters and detectors with linear trans-
mitter locations and detector DCS locations in case of
Nt =Nr = 16 is depicted in Fig. 6a. Meanwhile, Fig. 6b
shows the histogram of detector DCS locations over full
circle in case of Nr = 16.

To quantify the efficiency of the proposed approach,
we acquire the target functions to obtain experimental
data to be used in the iterative reconstruction of target
image. Then, the error in the reconstructed image is
determined and compared to the original image at each
iteration. Suppose that m is a P ×Q original image (i.e.
ideal target function) and m̂ is the reconstructed image.
The normalized absolute error can be defined as:

Fig. 5 a Conventional configuration of transmitters and detectors using linear transmitter-and-detector locations (Nt = Nr = 20, r = 0.826);
b Histogram of linear detector locations over full circle (Nr = 20)

Fig. 6 a Proposed configuration of transmitters and detectors using linear transmitter locations and detector DCS locations (Nt = Nr = 16, r = 0.581);
b Histogram of detector DCS locations over full circle (Nr = 16)
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The normalized absolute errors and runtimes of the
DBIM and DCS-DBIM methods through iterations with
different number of transmitters (Nt) and receivers (Nr)
are presented in Table 1. These simulation results have
shown that after Nsum iterations, in some cases, the run-
time of the DCS-DBIM method is significantly larger than
that of the DBIM method. The price to pay for imple-
menting easiness and the less complex hardware of the
new proposed DCS-DBIM approach is the time penalty
compared to the classical technique. However, for the
ultrasound imaging, the required batch processing would
last few minutes so that this time penalty for DCS-DBIM
does not affect in any way its usefulness in practice.
For the normalized error after Nsum iterations, the image

reconstruction quality of the DCS-DBIM method is worse
than the DBIM method when r <0.5 and is significantly

better than the one of the conventional method when r
>0.5. In case of r <0.5, although the reconstruction quality
of the proposed method is not as good as the conventional
method, it can successfully reconstruct the target function
when r is very small (in case of r = 0.082 and 0.145). Mean-
while, the conventional method cannot reconstruct the
target function (i.e. NaN in Table 1). In case of r >0.5, the
reconstruction quality of the proposed method is signifi-
cantly better than conventional method. We are concerned
in practice the case that offers the best performance with a
small number of measurements. Thus, we are interested in
the case of r = 0.735 (i.e. 324 measurements) that offers a
much better performance compared to the conventional
method, as shown in Fig. 7.
In general, the simulation results have demonstrated

that the DCS-DBIM method is a very robust tool with a
very high-quality reconstruction. It is really a very prom-
ising approach in practical applications of modern
biomedical imaging technology.

Table 1 The normalized errors and runtimes of the DBIM and DCS-DBIM methods through iterations with different Nt and Nr

Number of Transmitters (Nt)
and Receivers (Nr)

Methods Normalized error from the first iteration to the eighth iteration Runtime (seconds)

Nt = Nr = 6 DBIM 0.8682 0.8438 NaN NaN NaN NaN NaN NaN 69.692787

(r = 0.082) DCS-DBIM 1.2077 1.2102 1.2105 1.2105 1.2105 1.2105 1.2105 1.2105 42.139530

Nt = Nr = 8 DBIM 0.7964 0.7515 0.7490 0.7489 0.7489 NaN NaN NaN 61.308944

(r = 0.145) DCS-DBIM 1.1587 1.1718 1.1721 1.1721 1.1721 1.1721 1.1721 1.1721 47.157182

Nt = Nr = 10 DBIM 0.7305 0.6811 0.6779 0.6772 0.6771 0.6770 0.6770 0.6770 40.428921

(r = 0.227) DCS-DBIM 1.1123 1.1224 1.1226 1.1226 1.1226 1.1226 1.1226 1.1226 53.017146

Nt = Nr = 12 DBIM 0.6808 0.6140 0.6083 0.6073 0.6070 0.6069 0.6069 0.6069 48.419012

(r = 0.327) DCS-DBIM 0.8834 0.8945 0.8950 0.8950 0.8950 0.8950 0.8950 0.8950 63.057426

Nt = Nr = 14 DBIM 0.9367 0.6457 0.5824 0.5547 0.5398 0.5308 0.5254 0.5218 55.754608

(r = 0.444) DCS-DBIM 0.7025 0.7084 0.7085 0.7085 0.7085 0.7085 0.7085 0.7085 90.422976

Nt = Nr = 16 DBIM 0.5272 0.4629 0.4585 0.4576 0.4572 0.4570 0.4570 0.4570 66.137258

(r = 0.581) DCS-DBIM 0.1604 0.1078 0.1082 0.1082 0.1082 0.1082 0.1082 0.1082 185.779095

Nt = Nr = 18 DBIM 0.8196 0.5734 0.4919 0.4480 0.4176 0.3948 0.3773 0.3632 77.524221

(r = 0.735) DCS-DBIM 0.1240 0.0342 0.0338 0.0337 0.0337 0.0337 0.0337 0.0337 251.473327

Nt = Nr = 20 DBIM 0.4749 0.2760 0.2356 0.2225 0.2158 0.2115 0.2086 0.2066 94.343578

(r = 0.907) DCS-DBIM 0.2243 0.0689 0.0672 0.0670 0.0670 0.0669 0.0668 0.0668 237.118941

Nt = Nr = 22 DBIM 0.4604 0.2106 0.1598 0.1353 0.1209 0.1110 0.1036 0.0973 112.128716

(r = 1.098) DCS-DBIM 0.3255 0.0777 0.0729 0.0724 0.0723 0.0721 0.0719 0.0718 234.584982

Nt = Nr = 24 DBIM 0.5754 0.2832 0.1321 0.0942 0.0725 0.0641 0.0534 0.0632 125.724742

(r = 1.306) DCS-DBIM 0.3870 0.0310 0.0197 0.0192 0.0190 0.0188 0.0186 0.0184 225.159681

Nt = Nr = 26 DBIM 0.5545 0.1933 0.1141 0.0846 0.0685 0.0585 0.0516 0.0464 144.661175

(r = 1.533) DCS-DBIM 0.1768 0.0129 0.0066 0.0064 0.0064 0.0064 0.0064 0.0064 201.250795

Nt = Nr = 28 DBIM 0.4905 0.1680 0.0858 0.0570 0.0417 0.0329 0.0271 0.0229 170.032561

(r = 1.778) DCS-DBIM 0.1338 0.0080 0.0031 0.0030 0.0029 0.0029 0.0029 0.0029 238.488285

Nt = Nr = 30 DBIM 0.5971 0.3079 0.2179 0.1602 0.1215 0.0948 0.0764 0.0633 212.923908

(r = 2.041) DCS-DBIM 0.1466 0.0062 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 263.288455
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The error performances of both the DCS-DBIM
method (in case of Nt =Nr = 16, i.e. the number of mea-
surements = 16 × 16 = 256) and the conventional DBIM
one (in case of Nt =Nr = 22, i.e. number of measure-
ments = 22 × 22 = 484) are shown in Fig. 8a. Although
the number of measurements of the DCS-DBIM
method is approximately half the one of the DBIM
method, these methods offer the same image recon-
struction quality after the sixth iteration step. With the
same normalized error, DCS-DBIM method only needs
3 iterations to complete while the DBIM method re-
quires 6 iterations. Therefore, in this scenario, when
using the proposed method, we save half of number of

measurements and iterations. Furthermore, it is also
shown in Fig. 8b that the proposed method still offers a
very good performance (with 400 measurements), com-
pared to the conventional method (with 900 measure-
ments). However, as mentioned above, the runtime for
the proposed method is much longer.
The reconstructed results of the DBIM and DCS-

DBIM approaches through iterations 1 to 8 in case of
Nt =Nr = 16 (i.e. r = 0.581) are depicted in Figs. 9 and 10.
It can be seen that the convergence rate is obtained very
fast by the DCS-DBIM approach just after the first few
iterations and is not largly affected by noise. In contrast,
the DBIM approach has a very low convergence rate and

Fig. 7 Probability of exact reconstruction performance comparison of the conventional and proposed methods

Fig. 8 a Normalized error comparison of the (484 measurements) conventional and (256 measurements) proposed methods; b Normalized error
comparison of the (900 measurements) conventional and (400 measurements) proposed methods
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it is much affected by noise. With this observation, the
proposed approach offers a much better quality than the
conventional approach.
The normalized error and similar performance in-

dexes such as Mean Normalized Absolute Error
(MNAE), Root Mean Squared Error (RMSE) are used
to evaluate the reconstruction of ultrasound tomog-
raphy in some relative work [9, 29–32]. In this paper,
we add one more performance index (Q-index) to com-
pare our work (DCS-DBIM) with DBIM. Universal
image quality index (or Q-index) [33] comparison of

the DBIM and DCS-DBIM in accordance with different
number of measurements is shown in Fig. 11. The ob-
tained results have shown that the Q-index of the DCS-
DBIM method is much better in the range of small
number of measurements. As shown in Fig. 11, a small
number of measurements (about 200 measurements) in
the DCS-DBIM method can also provide the Q-index
which is equivalent to a large number of measurements
(about 800 measurements) in the DBIM method. Be-
sides, when the number of measurements is small and
moderate (less than or equal to N2), as shown in Fig. 8,

a b c d

e f g h

Fig. 9 The reconstructed results of the DBIM and DCS-DBIM approaches through iterations 1 to 4 in case of Nt = Nr = 16, r = 0.581. Figures a, b, c,
and d are of the DBIM approach and Figs. e, f, g, and h are of the DCS-DBIM approach

a b c d

e f g h
Fig. 10 The reconstructed results of the DBIM and DCS-DBIM approaches through iterations 5 to 8 in case of Nt = Nr = 16, r = 0.581. Figures a, b,
c, and d are of the DBIM approach and Figs. e, f, g, and h are of the DCS-DBIM approach
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we found that the quality of the DCS-DBIM method is
much better than that of the DBIM method.
Reconstruction performances with different values

of the sound contrast of the DBIM and DCS-DBIM
methods are shown in Fig. 12. It can be seen that the
DCS-DBIM method is quite sensitive to the level of
sound contrast. As shown in Fig. 12, when the sound
contrast increases, the normalized error also in-
creases. The normalized error has the smallest value
when the sound contrast is about 1%. Meanwhile, the
DBIM method is relatively stable when changing
sound contrast (as the sound contrast increases, the
normalized error increases slightly, and almost does
not change much). Because the purpose of ultrasound
tomography is to detect tumors in early stage, sound
contrast is very small, about a few percent. Therefore,
in practice, we only consider the small sound con-
trast. In summary, in case of small sound contrast,
the DCS-DBIM method is far more effective than the
DBIM method.

Performance evaluation of the DCS-DBIM and CS-DBIM
The performances of DCS-DBIM and DBIM have
been discussed and compared in the last part. We are
going to compare DCS-DBIM and CS-DBIM perfor-
mances. In Fig. 13, we have seen that the DCS-DBIM

offers a performance almost similar to that of the CS-
DBIM.
The numerical simulation results are quite consistent

with previous work on deterministic compressed sam-
pling technique [10]. Furthermore, because the imple-
mentation of compressed sampling technique is based
on random sampling, this means that transducers are
randomly distributed on measurement system. This ran-
dom structure leads to a complex hardware implementa-
tion. If we apply the deterministic compressed sampling
technique which uses a non-linear deterministic system
that apparently acts like a random system [21], its hard-
ware implementation of the deterministic structure is
simpler than the random one. Note that the exact recon-
struction of the deterministic compressed sampling
technique is guaranteed like the random one.
The implementation procedure of the DCS-DBIM is

presented in Fig. 14. Assume that number of pixels of the
ideal object function (N) and total number of iterations
(Niter) are given. The flowchart presented in Fig. 14 starts
with the initialization of three parameters On; p0 , and n (
On ¼ O0; p0 ¼ pinc; n ¼ 0 ). In addition, NtNr is also
chosen so that it is smaller than N2, pixels of the ideal ob-
ject function (for the best case, 0.5 < r <1). We set up the
deterministic measurement configuration based on deter-
ministic filter. Next, the DCS-DBIM algorithm is used to

Fig. 11 Universal image quality index comparison of the DBIM and DCS-DBIM in accordance with different number of measurements
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Fig. 12 Reconstruction performance with different values of sound contrast of the DBIM and DCS-DBIM methods (Nt = Nr = 22)

Fig. 13 Normalized error of the CS-DBIM and DCS-DBIM methods with different compressed ratios

Huy et al. BMC Medical Imaging  (2017) 17:34 Page 13 of 16



reconstruct the target in Nsum iterations. The output result
of the procedure is the reconstructed function after Niter

iterations.

Discussion
Based on inverse scattering theory, the DBIM is a well-
known quantitative imaging approach for detecting very
small targets thanks to its mechanical properties.

Deterministic compressive sampling technique is a promis-
ing approach for feasible hardware implementation in prac-
tical applications. This paper has successfully applied DCS
technique for setting up the measurement configuration for
the DBIM, and then the target is reconstructed using l1 least
square problem in order to improve the quality of the image
reconstruction. This method also offers a simpler setting
compared to the others. Simulation scenarios of sound con-
trast reconstruction were implemented to demonstrate the
very good performance of this method. These results have
shown that the gain of this new approach merits practical
considerations. For practical purposes, the reconstruction of
three-dimensional (3D) image is done by using many 2D
slices at different positions of z-axis; indivual processing out-
comes are finally all merged together [34]. Therefore, the
core issue is that we need to acquire good 2D slices.
With current transducer array technology, one trans-

ducer can both transmit and receive ultrasound signal.
Thus, when setting up the actual measurement configur-
ation, depending on imaging quality requirement, we can
arrange transducers on the measurement system so that
the distance between two transducers can be 1°, 2°, etc.…
If the distance between two transducers is small, we can
arrange multiple transmitters and receivers on the meas-
urement system such that we can reconstruct high-
resolution images (i.e.large number of pixels in the range
of interest); reciprocally, if the distance between two trans-
ducers is large, the number of transmitters and receivers
will be less. Therefore, we can reconstruct low-resolution
images. The number of transmitters and receiverswill have
to be chosen in the acceptable range in order to recon-
struct good-enough image, i.e. 0.5 < r < 1. However, to be
more reasonable, we should arrange the configuration
such that the distance between two transducers are small,
about 1°. With this arrangement, when we createthe deter-
ministic sequence of the DCS, the indexes of this se-
quence correspond to the positions of transducers on the
measurement system. This creates a random-like system,
and thus ensures conditions of reconstruction in com-
pressed sampling technique [6, 7]. This set-up does not
make the imaging process more complex. In fact, not
all transducers in the measurement system work, only
transducers whose indexes coincide with the ones of
the deterministic sequence. Therefore, the volume of
calculation only depends on the number of active trans-
ducers on the measurement system.

Conclusion
Inspired of easier hardware implementation of deter-
ministic CS, in this paper, we have proposed the de-
terministic measurements in the detection geometry
configuration and the image reconstruction process
has been implemented using l1 regularization. The
simulation results of the proposed method have

Fig. 14 Proposed flowchart of the DCS-DBIM procedure
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demonstrated the high performance of the proposed
approach, where the normalized error is approxi-
mately 90% reduced, compared to the conventional
DBIM approach. With the same quality, we can save
half of number of measurements and only use two
iterations when using the proposed method. Further-
more, numerical simulation results also indicate that
CS and DCS techniques offer equivalent image recon-
struction quality. However, DCS has the advantage of
being able to execute much more convenient hard-
ware. With current transducer technology and using
the slicing technique that transforms 3D images to
several 2D images, we can produce multiple sliced
images at the same time. This will significantly reduce
imaging time for patients and make ultrasound tom-
ography imaging a real-time imaging tool. To imple-
ment this approach in practice while keeping the cost
at an acceptable level, the following two possibilities
might be considered: 1) We only need a 2D measure-
ment system; when imaging different slices, the meas-
urement system will shift along the z axis to produce
images of different slices. However, this will take
more time and the shifted measurement system will
cause mechanical errors; 2) We set up the measure-
ment system following women’s breast shape; the
process of imaging at different slices will simultan-
eously take place. However, can we arrange transduc-
ers on various slices differently and sparsely? If this
can be done, set-up costs would significantly reduce.
This is a fascinating issue for further study.
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