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Abstract In software development, refactoring is a pro-

cess that improves the system internal structure with-

out altering its external behavior. Applying design pat-

terns, which are common reusable solutions of several

kinds of problems is widely adopted. This technique,

however, raises a challenging issue that after apply-

ing design patterns the software system may not pre-

serve some certain behavioral properties. This paper

proposes a new approach to checking consistency be-

tween original software system and its evolution at both

design and implementation phases. First, we formalize

elements of software designs and programs. Methods,

based on these formalizations, are proposed for ver-

ifying the design and implementation of the system.

Finally, the paper presents a case study of Adaptive

Road Tra�c Control system to illustrate the proposed

approach in detail.

Keywords refactoring, design patterns, consistency,

formal approach

1 Introduction

In software engineering, software evolution is the pro-

cess of developing software initially, then repeatedly

updating it due to many reasons such as reducing er-

rors, saving e�orts in development or improving soft-
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ware quality. Techniques, which are commonly used in

this process are re-engineering and refactoring of soft-

ware code or models.

Refactoring is a powerful technique, which is used to

improve the quality of the software (e.g., extensibility,

modularity, re-usability, complexity, maintainability...)

by changing the internal structure of software without

altering its external behavioral properties. Refactoring

using patterns is the process of improving the design of

existing code, the classic solutions to solve the design

problems.

A design pattern [13] is a general reusable solu-

tion to a commonly occurring problem within a given

context in software design. A design pattern is not a

completed design that can be transformed directly into

source or machine code. It is a description or template

for how to solve a problem that can be used in many

di�erent situations. Patterns summarize best practices

that programmers can use to solve common problems

when designing an application or system. Object-oriented

design patterns typically show relationships and inter-

actions between classes or objects, without specifying

the �nal application classes or objects that are involved.

Patterns that imply object-orientation or more gener-

ally mutable state, are not as applicable in functional

programming languages. A software system should be

optimized by refatoring methods, in which design pat-

terns may be used to improve its source code or design

model. Patterns are language independent, they have

been broadly used in many programming languages in-

cluding Java, C++, etc..

These techniques, however, need to be performed

carefully. The main danger is that errors can inadver-

tently be introduced, especially when refactoring is done

manually. It means that some certain signi�cant proper-

ties are not preserved in the new design and source code.
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Several approaches have been proposed to checking the

consistency between systems using graph transforma-

tion techniques [25,5], description logic frameworks [23],

and XML metadata interchange [11]. This paper in-

troduces a new approach to checking the consistency

of systems before and after refactoring in two phases:

design and implementation. The main contributions of

the paper are (1) formalizing of design models and pro-

gram's constructs; (2) presenting methods for verifying

the consistency of the design and the implementation

of the software; and (3) utilizing OCL [8] and JML [21]

to check the consistency of software design and Java

programs of the ARTC system respectively.

The rest of the article is organized as follows. Sec-

tion 2 presents some works related to our research. Sec-

tion 3 gives an overview of Strategy pattern, OCL, and

JML. A motivating example of ARTC system is in-

troduced in Section 4. Section 5 portrays the frame-

work overview of checking consistency software refac-

tored systems. The basic formalization concepts for check-

ing consistency is introduced in Section 6. Section 7 de-

scribes the checking consistency process at both design

and implementation phases. Illustrating the proposed

approach with the motivating example is depicted in

Section 8. Finally, Section 9 concludes and gives some

directions for future works.

2 Related Work

Mens and Tourwe [19] made a great survey of software

refactoring where they mentioned various formal tech-

niques, used for refactoring process such as graph trans-

formation, invariants, dynamic program analysis, and

program slicing, etc. In this section, we review some

kinds of literature that work on checking the consis-

tency of software refactoring and UML models in more

detail.

One research direction in this area is using graph

transformation where models or software artifacts can

be considered as graphs and refactoring is referred to

transforming rules. Bottoni et al. [6] proposed to main-

tain consistency between the code and design models

which are composed of di�erent types of UML models

by describing refactoring as a set of distributed graph

transformations.

Mens et al. [20] introduced a graph representation

and graph formal rewriting rules to specify a program

and its refactoring. Their work could prove the preser-

vation properties after refactoring at the source code

level while this work focuses on verifying the consis-

tency of properties at the design phase and allows one

to check whether the behavior of a scenario is consistent

or not.

Zhao et al. [25] presented a graph transformation

based approach to design pattern evolution. They pro-

posed a graph grammar based syntax parser to check

the structural integrity of the evolved design patterns.

The authors de�ned a rule for each kind of design pat-

terns, then check if evolved models kept consistency

properties of applying patterns.

Van Eetvelde and Janssens [12] transformed a pro-

gram into a graph by using a set of graph production

rules. It allowed them to view and manipulate the pro-

gram and its refactoring. Their paper, however, did not

pay attention to the consistency among di�erent phases

of a software system.

Researchers also proposed to use description logic

or XML metadata to transform between UML models

and its evolution. Van Der Straeten et al. [23] make use

of the technique to formalize both models, after that,

the consistency between them was veri�ed. In the ex-

periment, they translated UML metadata into Loom

(an extensive query language) and associated produc-

tion rule system with description logic tool. They classi-

�ed the consistency into several categories, then focused

on instance de�nition missing and incompatible behav-

ior caused by referencing. Taking these inconsistencies

into account, in our opinion, are insu�cient because

when applying design patterns, software developers of-

ten expect that all external behaviors do not change,

i.e., scenarios' properties are preserved. And this is the

objective of our research.

Jing Dong et al. [11] recommended a model transfor-

mation approach to check the consistencies between de-

sign models. They depicted both the origin and evolved

UML models by XML metadata interchange (XMI) for-

mat which aimed to facilitate the transformations. Af-

terward, Java Theorem Prover was done to check con-

sistencies between them. In the research, they need one

more step to convert XMI into RDF or RDFS before

checking system properties, so this step makes the ap-

proach more complex to implement. Meanwhile, we use

OCL, a common object constraint language embedded

in UML models, to check the consistency. Therefore,

we do not need to have an intermediate transformation

step.

Li et al. [14] analyzed and presented methods for

checking �ve types of consistency properties of UML

requirements consisting a use-case model and a concep-

tual class model. Rasch and Wehrheim [22] proposed to

use Object-Z to check the consistency between classes

and associated state machines. These approaches, how-

ever, have focused on checking consistency between dif-

ferent diagrams of a model but have not considered the

consistency in refactoring.
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There are various techniques can be used in the per-

spective of checking programs in refactoring. Program

slicing is one of the techniques can be used for refac-

toring. Takeshi et al. [18] combined program slicer and

symbolic simulation to check behavior consistency of C

program source code at di�erent re�nement levels.

Opdyke [21], who gave the original de�nition of be-

havior preservation, were suggested that for the same

set of input values, the resulting set of output values

should be the same before and after the refactoring.

Their research proposed to ensure the behavior preser-

vation by specifying refactoring preconditions. But, in

this research, besides the pre-conditions concept, the

post-conditions is also complement.

Ward and Bennett [24] introduced a formal lan-

guage, named WSL, and its supporting tools provided

program structuring that proves behavior preservation

of the program. Their approach deals with the consis-

tency at the implementation level while our approach

can check the consistency at the design level.

In comparison to the prior work, our approach fo-

cuses on consistency properties between each scenario

of the model in the refactoring process with design pat-

terns. Based on pre/post-conditions of a scenario, which

are calculated from pre/post-conditions of scenario op-

erations before and after, the consistency properties can

be veri�ed. Since a scenario represents an external be-

havior of the system, software engineers then can as-

sure that using design patterns in some scenarios are

safe. With frequent usages of design patterns in soft-

ware engineering, our approach is practical and feasible

to implement.

3 Background

In this section, we brie�y introduce about the basic

knowledge of techniques used in the proposed approach

including Strategy design pattern, OCL, and JML.

3.1 Strategy pattern

Software design patterns, is originated by Christopher

Alexander [3], is a general reusable solution to a com-

monly occurring problem within a given context in soft-

ware design. It has became popular since 1994 by GOF

[13], in which they have categorized the design patterns

into three groups, namely creational, structural, and be-

havioral patterns.

In this section, we present in detail one behavioural

pattern, namely Strategy pattern, because we use this

pattern in our case study in Section 4. Strategy pattern

encapsulates, de�nes a family of algorithms and makes

them interchangeable independently from clients. It de-

�nes objects, which represent various strategies and a

context object varying as per its strategy object. The

strategy object changes the executing algorithm of the

context object.

Fig. 1 Strategy pattern

The Strategy pattern comprises three participants

as portrayed in Fig. 1:

� IStrategy: The interface that is shared among the

concrete strategy classes in the family. Class Context

uses this interface to call the algorithm de�ned by

a concrete strategy.

� ConcreteStrategy: Where the real implementa-

tion of strategy takes place.

� Context: The class maintains a reference of type

IStrategy. In some cases, Context may implement

operations so that ConcreteStrategy can access its

data.

The advantage of using strategy pattern is that en-

capsulating algorithms in individual classes will render

reusing code much more convenient and hence, the be-

havior of the Context can be altered at run-time dy-

namically.

3.2 OCL

OCL [8] is a formal language adopted as a standard

by the OMG [1]. The latest version of OCL v2.4 was

released in 2014 which is used to de�ne di�erent kinds

of expressions complementing UML models as follows.

� Invariants: stating conditions that must be satis�ed

in every instantiation of the model.

� Initialization: initializing class properties.

� Derivation rules: computing the value of derived model

elements.

� Operation contracts: consisting a set of pre- and

postconditions. A precondition de�nes a set of con-

ditions on the operation input and the system state

that must hold when the operation is performed. A

postcondition de�nes the set of conditions that the

system state must hold at the end of the operation.
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Fig. 2 The initial class diagram of ARTC system

3.3 Java Modeling Language

Java Modeling Language (JML) [15] is a behavioral in-

terface speci�cation language (BISL) that can be used

to specify Java classes and interfaces. JML speci�ca-

tions or assertions can be added directly to source code

as a special kind of comments called annotation com-

ments, or they can live in separate speci�cation �les.

These assertions are usually written in a form that can

be compiled, so that their violations can be detected at

run-time.

One should employ JML due to some following rea-

sons [15]:

� the precise, unambiguous description of the behav-

ior of Java program modules (i.e., classes and inter-

faces), and documentation of Java code;

� the possibility of tool support [7].

JML's syntax is very close to the Java programming

language, so it is to use by programmers who have fa-

miliar with Java. Th details of JML can be found in [16].

4 A motivating example: Adaptive Road Tra�c

Control System

4.1 ARTC system's description

In order to illustrate the proposed approach, we extract

scenarios from the ARTC system [2]. Tra�c congestion

is an ever increasing problem in towns and cities all

over the world. Local authorities must continually work

to maximize the e�ciency of their road networks and

to minimize any disruptions caused by accidents and

events.

From the object-oriented perspective, the initial ARTC

system is described by a simplistic model with four

Fig. 3 Sequence diagram for calculating optimal control

classes, namely Detector, Tra�cController, Road and

Optimizer. The Tra�c controller is an essential role

which coordinates the other classes. The Detector de-

scribes the physical location of the detectors as well as

counting of count vehicles number which passing on the

road during a particular time. The next class is Opti-

mizer, which includes the optimizerTra�c method, is

used to optimize the signal, time and direction at the

moment time of tra�c �ow. The UML class diagram of

initial ARTC system is shown in Fig. 2.

The UML sequence diagram have accomplished the

task of showing how the objects interact with each other

in a scenario. We will demonstrate our approach with

the main scenario: gettra�cFlow() and optimizeTraf-

�c(). This scenario of the system is depicted in Fig. 3.

4.2 Applying patterns

In Fig. 2, the method optimizeTra�c() belong to class

Optimizer, which is employed to optimize light signals

of the ARTC system. This solution is adequate if traf-

�c environment is stable or witnesses no considerable

changes. However, the system design may have follow-

ing problems with the optimizeTra�c() of the class Op-

timizer :

� Algorithms are so complex to implement in one,

therefore make the source code as large and arduous

to maintain.

� It takes time as well as e�ort to add new algorithms

to the existing ones.

� The code of the existing algorithms are di�cult to

reuse, especially when one wants to create a hierar-

chy from Optimizer class.

In order to overcome these limitations, we are going

to optimize the ARTC system by using Strategy pat-

tern. As illustrated in Fig. 4, we detach three optimiza-

tion strategies (SignalOptimizeStrategy, TimeLimitOp-

timizeStrategy, AdjacentOptimizeStrategy) from the class
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Fig. 4 Class diagram of ARTC system after applying Strat-
egy pattern

Fig. 5 Sequence diagram for calculating optimal control
after applying Strategy pattern

Optimizer then formed a hierarchy of algorithm classes

that share the interface OptimizerStrategy. After apply-

ing Strategy pattern, the sequence diagram of the sce-

nario calculating optimal control is re-drawed in Fig.

5.

4.3 Behaviour preservation

ARTC system has a real time characteristic because

of immediate responses to variant of tra�c �ow condi-

tions. It should be executed in e�cient way and returns

to correct result. In ARTC system, without loss of gen-

erality, we assume that detector works in speci�c direc-

tion, some identi�ed constraints need to be preserved

are:

� If the state is heavyTra�c and the signal is red, it

will be ensured that the signal is turned to green.

� If the state is lowTra�c and the signal is green, it

will be ensured that the signal is turned to red.

� If the state is heavyTra�c and signal is green, it

will be ensured that the signalTime is increased.

� If the state is lowTra�c and signal is red, it will

be ensured that the signalTime is increased.

� If the state is highTra�c and direction is noChoose,

it will be ensured that the direction is turned to

choose.

� If the state is lowTra�c and direction is choose,

it will be ensured that the direction is turned to

noChoose.

In this article, we are going to check the system's

behaviors preservation at a variety of di�erent phases,

especially Design and Implementation. For the former,

we use the Object Constraint Language (OCL) to rep-

resent these constraints, for the latter, Java Modeling

Language (JML) is employed to annotate into purely

Java code to guarantee the correct behavioral execu-

tion.

5 Approach overview

In this section, we outline the proposed approach de-

picted in Fig. 6. There are three constituent which have

been identi�ed: (1) refactoring, (2) computing pre/post-

conditions of scenarios, and (3) checking consistency.

Note that, in this article we spend the most interested

in checking consistency process which is executed in both

design and implementation phases of the system.

Fig. 6 The approach to checking consistency

To check consistency at design phase, we use class

and sequence UML diagrams to model the software sys-

tem. After applying design patterns in refactoring pro-

cess, we are going to check whether the system's behav-
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iors are preserved or not? In order to achieve this inten-

tion, we employ Object Constraint Language (OCL) to

describe the constraints of the system which include in-

variant and pre/post-conditions. At design level, the es-

sential of refactoring process is re-distribute classes and

methods [21], therefore, based on the de�ned consistent

rules, we re-compute all constraints on the refactored

models, then compare with their original and give out

the result of checking consistency at the design phase.

Checking the consistency at implementation has been

done analogously. The implementation phase of the soft-

ware life cycle is the process of realization the speci-

�ed design document into executable programming lan-

guage code. In this article, we use Java to implement

the motivating example. Thefore, we employ the JML

to complement to Java code to portray the constraints

of the system. With the support of existing tools [17,

9], the checking consistency at implementation phase is

done automatically.

Generally, we have been checked the consistency of

the software system at variety phases after applying

design pattern in refactoring process. The result of each

stage is the foundation to improve the reliability of the

software system.

6 Formalization of software designs

In this section, we introduce the formalizations which

are used as a foundation to check the consistency in

software refactoring. When designing a software sys-

tem with UML, it can be presented multiple scenarios

consisting of several diagrams. Among them, scenario

sequence diagrams are used for depicting the behavior

of main functionalities. UML constraints are employed

to deal with the request that conditions and restric-

tions on an UML element which must be satis�ed in

order to ful�ll the functionality requirement. There are

three standard types of constraints, which includes in-

variant, precondition, and postcondition, are de�ned on

classes as follows.

Invariant: a class invariant de�ned on class attributes

is a condition that every instance of that class must

satisfy.

Precondition: a precondition of an operation is a condi-

tion that operation has to satisfy before executing.

Postcondition: a postcondition of an operation is a con-

dition that operation has to satisfy after executing.

In this paper, we introduce two more constraints,

which are de�ned on scenarios of the design.

Scenario precondition: a scenario precondition is a con-

straint such that the state of the all involved classes'

attributes must satisfy before the scenario starts.

Scenario postcondition: a scenario postcondition is a

constraint such that the state of the all involved

classes' attributes must satisfy after the scenario �n-

ishes.

The details of formal representation of the design

are given as follows:

De�nition 1 (Model) AmodelM is a tuple 〈CM , SM 〉,
where CM is a set of classes and SM is a set of behav-

ioral scenarios.

De�nition 2 (Class) A class CiM ∈ CM is formal-

ized by a 3-tuple CiM = 〈OPCiM , ACiM , ICiM 〉, where
OPCiM is a set of public operations, ACiM is a set of

public attributes, and ICiM states a set of class invari-

ants.

De�nition 3 (Abstract operation precondition)

The precondition PREopiM
of the opei in the abstract

class CiM which is overridden by N operations opei in

concrete classes CksiM is de�ned by the disjunction of

the precondition of all the opei in the concrete classes

CksiM .

Assume Pi(opei) is the precondition of the operation

opei in every concrete class, we can compute the pre-

condition for opei in the abstract class according to this

formula PREopiM
=

∨
Pi(opei), where opei ∈ CksiM is

a realization operation, and P is predicate which dedi-

cates the precondition of the opei.

De�nition 4 (Abstract operation postcondition)

The postcondition POSTopiM
of the opei in the abstract

class CiM which is overridden by N operations opei in

concrete classes CksiM is de�ned by the disjunction of

the postcondition of all the opei in the concrete classes

CksiM .

In a similar way with the abstract operation precon-

dition, it is easy to realized that POSTopiM
=
∨

Pi(opei),

where opei ∈ CksiM is a realization operation, and P is

predicate which dedicates the postcondition of the opei.

Behavioral scenarios of the model represent the sys-

tem external behavior. In this paper, we consider sce-

narios as sequence diagrams.

De�nition 5 (Scenario) A scenario SiM is represented

by a 4-tuple SiM = 〈CISiM , PRESiM , ESiM , POSTSiM 〉
where CISiM ⊆ CiM represents a set of classes involved

in the scenario, PRESiM is the scenario precondition,

ESiM is a sequence of operations of involved classes,

and POSTSiM states the scenario postcondition.

De�nition 6 (Scenario operation) An operation in

the scenario is a 4-tuple

EkSiM = 〈PREEkSiM
, OPEkSiM

, POSTEkSiM
, k〉, where



A formal approach to checking consistency in software refactoring 7

PREEkSiM
states the operation precondition, OPEkSiM

is the public operation of the involved in the scenario,

POSTEkSiM
is the operation postcondition, and k is

the execution order of operation in the scenario.

In this article, we consider the case that both pre-

conditions and post-conditions of an operation is the

conjunction of predicates on the attributes of classes in-

volved in the scenario, i.e., PREEkSiM
=

∧
P (ACijM ),

where ACijM ∈ ACiM is a attribute, CiM ⊆ CISiM

and P is predicate. A scenario consists of a sequence of

operations, hence its pre/post-conditions are formed by

their pre/post-conditions. Note that, one public opera-

tion of a class in di�erent scenario may have di�erent

prep/post-conditions. A scenario pre/post-condition is

de�ned on post-conditions of all operations involved in

the scenario as follows.

De�nition 7 (Scenario precondition) The scenario

precondition PRESiM is de�ned by the precondition of

the �rst happened operation in the scenario.

The precondition of the �rst operation in the sce-

nario speci�es constraints of all scenario-related public

attributes.

De�nition 8 (Scenario postcondition) The scenario

postcondition POSTSiM is de�ned by the conjunction

of the constraint on public attribute ACijM in the op-

eration postcondition POSTEkSiM
of the last happened

operation in ESiM .

Let a scenario S = (e1, e2, ..en), where ei, i = 1..n,

is the i-th operation happened in the scenario. From the

Def. 6, we have ei = (preei, opei, postei, i) and post(ei) =∧
Pk(AkC), where Pk are the predicate on AkC, which

is the attribute of class C involved in the scenario. As-

sume that the scenario has one public attribute AC that

appears in both postconditions of two scenario opera-

tions ei and ej such that 1 ≤ i < j ≤ n. Then we have

postei = Pi(AC) and postej = Pj(AC). Since ei hap-

pens before ej , Pj(AC) must be hold after executing

the j-th operation.

De�nition 9 (Refactor) A refactor R using design

patterns is denoted R : M
D(SUBMS)7−−−−−−−→ M ′, where M

andM ′ are the original model and its evolution, respec-

tively, D is the applied pattern name, and SUBMS ⊆
SM is set of a�ected scenarios.

7 Verifying consistency of software refactoring

7.1 Veri�cation at design phase

In this section, we discuss how to verify the consis-

tency of a model after applying design patterns. For the

sake of reducing the di�culty in checking consistency,

we classify preservation properties into two categories:

static and dynamic preservation. For the former per-

spective, we take into account the invariant of classes.

To check the latter, we concentrate to the pre/postcon-

ditions of selected scenarios. We propose to verifying

such properties by giving new propositions of preserva-

tion.

Verifying static preservation:

Proposition 1 (Static preservation). A refactored model

is called the static preservation with the original one if

invariants of its classes are logically equivalent with the

original ones.

Formally, let R : M
D(SUBMS)7−−−−−−−→ M ′ be a refactor,

M ′ is called the static preservation with M if ∀CiM |
CiM ∈ CM ∧ CiM ∈ C ′

M =⇒ ICiM ≡ ICiM ′ .

Verifying dynamic preservation:

The critical requirement of refactoring with design pat-

terns is that the refactored model does not change the

behavior. The behavior can be described via scenarios.

Hence, we need to check if a set of selected scenarios of

a model is whether or not behavior preservation after

refactoring.

Proposition 2 (Total dynamic consistency). A refac-

tored model is said to be total dynamic consistency

with the original one if precondition and postcondition

of any scenario execution are logically equivalent with

the original ones.

Formally, let R : M
D(SUBMS)7−−−−−−−→ M ′ be a refactor,

M ′ is called the total dynamic consistency with M if

∀SiM ∈ SUBMS∧PRESiM ≡ PRESiM ′∧POSTSiM ≡
POSTSiM ′ .

In section 6, we state that the scenario pre/post

conditions can be computed from scenario involved op-

erations, hence if PRESiM ≡ PRESiM ′ ∧POSTSiM ≡
POSTSiM ′ , then all constraints of public attributes of

the refactored scenario are preserved before/after its

execution.

Proposition 3 (Partial dynamic consistency). A refac-

tored model is said to be partial dynamic consistency

with the original one if with any scenario execution, its

preconditions are preserved and its postconditions are

satis�ed the one of original model's scenario.

Formally, let R : M
D(SUBMS)7−−−−−−−→ M ′ be a refactor,

M ′ is called the partial dynamic consistency with M if

∀SiM ∈ SUBMS∧PRESiM ≡ PRESiM ′∧POSTSiM =⇒
POSTSiM ′ .

In this case, if POSTSiM =⇒ POSTSiM ′ , then

the values of public attribute after executing are still in

expected range.
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Proposition 4 (Model inconsistency). A refactored

model is called the inconsistency with the original one if

it violates consistent rules (static and/or dynamic con-

sistency).

The proposition of consistent rules between original

model and refactored model is the basis that we used

to check the consistency in software model evolution.

7.2 Veri�cation at implementation phase

In section 6, we address that the pre/post-conditions of

a scenario can be computed from pre/post conditions

of involved operations. From implementation perspec-

tive, the execution of a scenario must be preserved its

pre/post-conditions.

Proposition 5. [Execution preservation of refactored

program] A refactored program P ′ is said to be exe-

cution preservation with the original one P if with the

same scenario execution, its preconditions are preserved

before and its postconditions are hold after execution.

It is formally de�ned as clause: PRESP
≡ PRESP ′∧

POSTSP
≡ POSTSP ′ .

In this proposition, the scenario pre/post-conditions

of the refactored program are �gured out through the

scenario one of the original program according to Def. 7

and Def. 8.

8 Illustrating with ARTC system

8.1 Checking consistency of design refactoring

According to Proposition 1, we can see that the pro-

cess of model evolution has preserved invariants in both

models so that static preservation is veri�ed.

We now consider the dynamic preservation of the

model evolution. The preconditions and postconditions

of the scenario calculating optimal control() speci�ed

in initial model (Fig. 2 and Fig. 3) can be calculated,

according to Def. 7 and Def. 8 as the following:

1 PRE_SiM = trafficFlow -> isEmpty()
2 POST_SiM = if (state = heavyTraffic) then ((signal =

green) AND (greenTime > 60))
3 else if (state = lowTraffic) then ((signal =

red) AND (greenTime <= 60))
4 else if (state = highTraffic) then (direction

= CHOOSE)
5 else (direction = NO_CHOOSE)
6 endif
7 endif
8 endif

In a similar way, we �gure out the preconditions

and postconditions of the scenario calculatingoptimal-

control() in the evolution model (Fig. 4 and Fig. 5):

Fig. 7 The result of checking behavior preservation on refac-
tored program

1 PRE_S’iM = trafficFlow -> isEmpty()
2 POST_S’iM = if (state = heavyTraffic) then ((signal =

green) AND (greenTime > 60))
3 else if (state = lowTraffic) then ((signal =

red) AND (greenTime <= 60))
4 else if (state = highTraffic) then (direction

= CHOOSE)
5 else (direction = NO_CHOOSE)
6 endif
7 endif
8 endif

From the values of preconditions and postconditions

above, we conclude that the scenario is strongly pre-

served all the attributes of the model. According to

the Proposition 2, the refactoring process with Strat-

egy pattern in this case-study leads to the consistent

behavior between the original and evolution models.

Note that, OCL description is a form of pseudo �rst-

order logic, it can be transformed to pure �rst order

predicate logic [4] so that we can check automatically

the consistency conditions in software evolution model

using theorem provers [10].

8.2 Checking consistency of source code refactoring

Back to the example in Section 4, all initial behav-

iors speci�cations of the ARTC system have been val-

idated checking on Eclipse software by plug-in Open-

JML. Now, after refactoring, we are going to consider

whether evolution program satisfy all behaviors speci-

�cation of the initial program.

In experiments, we have carried out the implemen-

tation the source code of the ARTC system after refac-

toring. Based on the set of rules which was built in this

Section, we have �gured out the pre/post-conditions of

the evolution scenario as well as checked the constraints

on it. The experimental results are illustrated in Fig. 7

where we can observe that the execution of optimize-

Tra�c does not preserve the consistency.

In other words, the refactored program does not pre-

serve all behaviors of the initial one, so ones should

consider the applied refactoring process.
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9 Conclusions and Future Work

In this paper, we have proposed an approach to check-

ing the consistency between original software system

and its refactoring after applying design patterns.

We have conducted consistency checks at design and

implementation phases by introducing new formaliza-

tions. To check the former, we modeled the system by

UML and use OCL to describe the constraints. To check

the latter, the Java programs were annotated by JML

and automatically checked by OpenJML integrated into

Eclipse environment. Our approach expressed the theo-

retical uni�cation within the �eld of software engineer-

ing by means of checking consistency throughout from

design to implementation phase as well as feasibility of

experimental execution.

Check the consistency of a program or a software

model has been received a lot of interest, however, the

existing research results focus on the consistency be-

tween di�erent phases of life cycle development model

(e.g., implementation and design phase) or di�erent dia-

grams of a model (e.g., state diagrams and sequence di-

agrams). Our approach pays attention in checking con-

sistency between original software system and its evo-

lution in both the design and implementation phase.

To illustrate the proposed approach, we have con-

ducted experiments on the ARTC system. In the moti-

vating example, we just illustrated only the consistency

veri�cation when applying Strategy pattern in the only

a pair of scenario, respectively in the both programs,

other scenarios may be done in a similar way for the

more complex system.

As mention earlier, we can see that the calculation of

preconditions and post-conditions of scenarios is time-

consumed and error-prone if we do it manually. For the

future works, we will adopt tools to calculate automat-

ically constraints and verify the program evolution pro-

cess.
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