
Computers and Operations Research 88 (2017) 258–278 

Contents lists available at ScienceDirect 

Computers and Operations Research 

journal homepage: www.elsevier.com/locate/cor 

Solving the multi-vehicle multi-covering tour problem 

Tuan Anh Pham 

a , b , Minh Hoàng Hà c , d , Xuan Hoai Nguyen 

e , ∗

a Military Logistics Research Center, Military Logistics Academy, Vietnam 

b GRD Department, VNG Corporation, Vietnam 

c University of Engineering and Technology, VNU, Vietnam 

d FPT Technology Research Institute, FPT University, Vietnam 

e IT R&D Center, Hanoi University, Vietnam 

a r t i c l e i n f o 

Article history: 

Received 22 July 2016 

Revised 12 April 2017 

Accepted 13 July 2017 

Available online 14 July 2017 

Keywords: 

Vehicle routing problem 

Covering tour problem 

Multi-covering 

Metaheuristic 

Genetic algorithm 

Branch-and-cut 

a b s t r a c t 

The well-known multi-vehicle covering tour problem ( m -CTP) involves finding a minimum-length set of 

vehicle routes passing through a subset of vertices, subject to constraints on the length of each route 

and the number of vertices that it contains, such that each vertex not included in any route is covered. 

Here, a vertex is considered as covered if it lies within a given distance of at least a vertex of a route. This 

article introduces a generalized variant of the m -CTP that we called the multi-vehicle multi-covering Tour 

Problem ( mm -CTP). In the mm -CTP, a vertex must be covered at least not only once but several times. 

Three variants of the problem are considered. The binary mm -CTP where a vertex is visited at most once, 

the mm -CTP without overnight where revisiting a vertex is allowed only after passing through another 

vertex and the mm -CTP with overnight where revisiting a vertex is permitted without any restrictions. We 

first propose graph transformations to convert the last two variants into the binary one and focus mostly 

on solving this variant. A special case of the problem is then formulated as an integer linear program 

and a branch-and-cut algorithm is developed. We also develop a Genetic Algorithm (GA) that provides 

high-quality solutions for the problem. Extensive computational results on the new problem mm -CTP as 

well as its other special cases show the performance of our methods. In particular, our GA outperforms 

the current best metaheuristics proposed for a wide class of CTP problems. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The Vehicle Routing Problem (VRP) is one of the most popular

optimization problems. Its objective is to find the optimal set of

routes for a fleet of vehicles in order to visit all the customers ( Toth

et al., 2014 ). However, in a number of real-world routing appli-

cations, we do not need to visit every customer but a subset

of them to fulfil their demands. Many variants of the VRP have

been introduced and studied in the literature to deal with such

situations. For example, the Generalized Vehicle Routing Problem

(GVRP) was studied in Bektas et al. (2011) and Hà et al. (2014) ,

the Capacitated Team Orienting Problem (CTOP) and Profitable

Vehicle Routing Problem (PVRP) was in Archetti et al. (2009) , etc.

Interested readers are recommended to Toth et al. (2014) for more

details on different variants of the VRP and solution methods. 

Another related variant called the multi-vehicle Covering Tour

Problem ( m -CTP) was introduced in Hachicha et al. (20 0 0) . In the

m -CTP, among all vertices in a graph, we must select a subset
∗ Corresponding author. 
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f them to visit such that covering constraints are met. We now

ive the formal description and applications of the problem and

ummarize the work related to m -CTP in the literature. 

.1. Multi-vehicle covering tour problem 

The m -CTP is defined on an undirected graph G =
(V ∪ W, E 1 ∪ E 2 ) , where V ∪ W is the vertex set and E 1 ∪ E 2 is

he edge set. V = { v 0 , . . . , v n −1 } is the set of n vertices that can

e visited, T ⊂ V is a set of vertices that must be visited and

 = { w 1 , w 2 , . . . , w l } is the set of l vertices that must be cov-

red. Vertex v 0 ∈ T is the depot, where m identical vehicles are

ocated. m can be a predefined number or a decision variable.

owever, in this paper, we consider the case where m is a

ariable. A length (or cost) c ij is associated with each edge of

 1 = { (v i , v j ) : v i , v j ∈ V, i < j} and a distance d ij is associated with

ach edge of E 2 = { (v i , v j ) : v i ∈ V \ T , v j ∈ W } . The m -CTP consists

n finding at most m vehicle routes such that the total cost is

inimized and the following constraints are satisfied: 

• Each route begins and ends at the depot; 
• Each vertex of T is visited exactly once while each vertex of

V �T is visited at most once; 

http://dx.doi.org/10.1016/j.cor.2017.07.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.07.009&domain=pdf
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• Each vertex w j of W is covered by at least a route, i.e., lies

within a distance r of at least one vertex of V �T that is visited,

where r is the covering radius; 
• The number of vertices on each route (excluding the depot) is

less than a given value p ; 
• The length of each route does not exceed a fixed value q . 

Main applications of the m -CTP are to model problems con-

erned with the design of bilevel transportation networks such as

he construction of routes for mobile health-care teams ( Hodgson

t al., 1998; Swaddiwudhipong et al., 1995 ) and urban pa-

rolling teams ( Oliveira et al., 2013 ), and the location of post

oxes ( Labbé and Laporte, 1986 ), banking agencies, milk collection

oints ( Simms, 1989 ), and relief centers ( Doerner and Hartl, 2008 ).

n these applications, a number of distribution centers must be

ocated among a set of candidate sites in such a way that all cus-

omers are within reasonable distance from at least one center and

hat the cost of delivery routes is minimized. As an example, in the

isaster relief problem ( Doerner and Hartl, 2008 ), after a disaster

he health care organizations have to supply the affected popula-

ions with food, water, and medicine. The relief vehicles (e.g., mo-

ile hospitals) stop at several locations and the populations must

isit one of the vehicle stops. The health care organizations have to

hoose appropriate stops among potential locations so that all pop-

lations can reach one of these stops within acceptable time and

he transportation cost passing through chosen stops is minimized.

The number of published works on the CTPs has been limited

espite their numerous potential applications. A special case of

he one-vehicle version (1-CTP) was first defined and introduced

n Current (1981) . They called it the “Covering Salesman Problem

CSP)” and did not distinguish between the visited and covered

ertices (i.e. V ≡ W ). Recently, the CSP was solved by an integer

inear programming-based heuristic in Salari and Azimi (2012) and

n ant colony optimization algorithm in Salari et al. (2015) . The

-CTP was solved exactly by a branch-and-cut algorithm and ap-

roximatively by a heuristic in Gendreau et al. (1997) . The authors

f Baldacci et al. (2005) used a two-commodity flow formulation

nd developed a scatter search algorithm. 

For the multi-vehicle version ( m -CTP), Hachicha et al. (20 0 0)

ntroduced a three-index vehicle flow formulation and three

euristics inspired from classical algorithms: Clarke and Wright

1964) , the sweep algorithm ( Gillett and Miller, 1974 ), and the

oute-first/cluster-second method ( Beasley, 1983 ). The three

euristics were compared to each other, and the optimality gap

s therefore unknown. Recently, Jozefowiez (2014) proposed a

ranch-and-price algorithm. It was based on a column generation

pproach in which the master problem was a simple set covering

roblem, and the pricing problem was formulated similarly to the

-CTP model of Gendreau et al. (1997) . 

Another exact approach was proposed in Hà et al. (2013) to

olve the m -CTP without the length constraints on each route. The

roblem was called m -CTP- p and the method was a branch-and-cut

lgorithm based on two-commodity flow formulation strengthen

y valid inequalities. Computational results for a set of instances

ith up to 200 vertices where the tour contains up to 100 vertices

howed that, although less general, it outperformed the algorithm

f Jozefowiez (2014) in the same context. Also in Hà et al. (2013) ,

 metaheuristic, which is a hybrid of the Greedy Randomized

daptive Search Procedure (GRASP) and Evolutionary Local Search

ELS), was introduced. The algorithm seemed to be very efficient

or solving the m -CTP- p since it provided very good solutions

hich were within 1.45% of optimality for the considered test

nstances. Although the authors claimed that their algorithm could

olve the general problem m -CTP, they did not report results for it.

Kammoun et al. (2017) solved the m -CTP- p using Variable

eighborhood Search (VNS) heuristic based on Variable Neigh-
orhood Descent (VND) method. Their results outperformed those

f Hà et al. (2013) . However, the VNS worked only on the special

ase m -CTP- p and could not solve the general m -CTP. 

More recently, the multi-depot covering tour problem was in-

roduced and studied in Allahyari et al. (2015) . Two mixed integer

rogramming formulations and a hybrid metaheuristic combin-

ng GRASP, iterated local search, and simulated annealing were

eveloped. Flores-Garza et al. (2015) introduced the multi-vehicle

umulative covering tour problem whose motivation arises from

umanitarian logistics. In this problem, the goal is not to minimize

he cost but the sum of arrival times at visited nodes. A mixed

nteger linear formulation and a GRASP were proposed for the

roblem ( Flores-Garza et al., 2015 ). 

.2. Multi-vehicle multi-covering tour problem 

All of the earlier generalizations of the m -CTP assume that once

 node is covered, its entire demand can be serviced. However,

n many real-world situations this is not necessarily the case. For

nstance, in the disaster relief problem mentioned above, if the de-

and of some areas is too large and cannot be satisfied by a single

overage, multiple coverages are needed. Consequently, rather than

ssuming that a node’s demand is completely serviced when one

f its covering vertices is visited, we generalize the m -CTP by

pecifying the coverage demand u k which denotes the number of

imes a node w k should be covered. In other words, node w k must

e covered u k times by visits to nodes that can cover node w k .

 similar generalization for the CSP can be found in Golden et al.

2012) where the authors generalized the CSP without depot by

onsidering that each vertex is covered at least several times. The

roblem was called the Generalized Covering Salesman Problem

GCSP) and was solved by local search-based heuristics. 

In this article, we study the multi-vehicle multi-covering tour

roblem ( mm -CTP) which generalizes the m -CTP in the same way.

he problem is defined exactly as in the m -CTP except that each

ertex w j of W is now covered at least u j times by the routes, i.e.,

ies within a distance r of at least u j vertices of V that are visited.

he mm -CTP is clearly NP-hard since it reduces to a m -CTP when

 k = 1 , ∀ w k ∈ W, or to a GCSP when the capacity constraints are

elaxed, i.e., p, q = ∞ and W ≡ V . 

As proposed in Golden et al. (2012) , we also define three vari-

nts of the mm -CTP. The first, called binary mm -CTP, enforces

hat each node can be visited by the routes at most once. In the

econd one, visiting a node v i more than once is possible, but an

vernight stay is not allowed (i.e., to revisit a node v i , the tour

as to visit another node before it can return to v i ). Finally, in the

hird variant, the tour can visit each node more than once consec-

tively. In the following, we show that the last two variants can

e reduced to the first one by appropriate graph transformations: 

• Reduction of the second variant. Let W i be the set of vertices

covered by vertex v i , we construct a new graph G 1 = (V 1 , E 1 )

by adding, for each node v i ∈ V �T, co i copies of v i to the graph G

where co i = max w j ∈ W i 
u j − 1 . Let C i be the set that contains the

node v i and its copies. The length of the new edges is defined

as follows. The length of edges whose two endpoints in C i is

set to a very large number in order to forbid the revisit to the

node v i . The length of edges linking a copy of node v i to a

node v k ∈ V 1 �C i is equal to the length of those linking v i to v k . 
• Reduction of the third variant. We build a new graph G 2 in a

similar way as for G 1 , except that the length of edges whose

two endpoints in C i is set to zero in order to allow the revisit

to node v i . 

The Fig. 1 illustrates our graph transformations on an exam-

le with | V | = 3 and | W | = 2 . The number above a node of W

epresents its number of required coverages. 



260 T.A. Pham et al. / Computers and Operations Research 88 (2017) 258–278 

Fig. 1. Example of graph transformations. 
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Since the two last variants can be reduced to the first one, we

mostly focus on solving the first variant. However, we also report

and analyse computational results for the remaining variants. The

main contributions of the article are: 

• We introduce the mm -CTP, a new variant of the CTPs which

generalizes several existing problems. 
• We propose an exact method for a special case of the variant 
• We propose a GA-based metaheuristic for the general problem

( mm -CTP). 
• We conducted extensive computational experiments and the

results show that our exact method can solve problem in-

stances up to 50 vertices of V and our metaheuristic gives very

high quality solutions. More remarkably, the new genetic algo-

rithm outperforms current state-of-the-art algorithms, namely,

GRASP-ELS ( Hà et al., 2013 ) on all six variants of mm -CTP, and

VNS ( Kammoun et al., 2017 ) on the m -CTP- p variant. 

The remainder of the paper is organized as follows.

Section 2 describes our problem formulation, several valid in-

equalities and the branch-and-cut algorithm. Our metaheuristic

is presented in Section 3 . Section 4 discusses the computational

results, and Section 5 summarizes our conclusions. 
. Mathematical formulation and exact method 

To formulate the mm -CTP, one can adapt the formulation with

hree-index variables proposed for the m -CTP by Hachicha et al.

20 0 0) . However, branch-and-cut algorithms based on three-index

ormulations are only capable of solving very small-size instances

ecause of symmetries among vehicle indices. In this section,

e describe an integer programming formulation with two-index

ariables to solve a special case of the mm -CTP in which the

onstraints on the length of each route are relaxed (i.e. q = + ∞ ).

e name the problem mm -CTP- p and develop a branch-and-cut

lgorithm based on the mathematical formulation which can solve

o optimality instances with up to 50 vertices of V . Solutions of

he branch-and-cut algorithm are used to analyse the complexity

f the problem as well as the performance of the metaheuristics. 

The idea underlying the formulation was first introduced

n Finke et al. (1984) for the traveling salesman problem (TSP).

angevin et al. (1993) extended this approach to solve the TSP

ith time windows. Baldacci et al. (2004) used this method to

erive a new formulation and a branch-and-cut for the VRP, and

aldacci et al. (2005) adapted it to formulate the 1-CTP without

he capacity constraints. Our formulation is an extension of the

odel proposed for the m -CTP- p in Hà et al. (2013) . 
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The original graph G is first extended to G = ( V ∪ W, Ē 1 ∪ E 2 )

y adding a new vertex v n , which is a copy of the depot v 0 . We

ave V = V ∪ { v n } , V ′ = V \ { v 0 , v n } , E = E 1 ∪ { (v i , v n ) , v i ∈ V ′ } , and

 in = c 0 i , ∀ v i ∈ V ′ . 
This formulation requires two flow variables, f ij and f ji , to

epresent an edge of a feasible mm -CTP solution along which the

ehicle initially carries a load of p units. When a vehicle travels

rom v i to v j , flow f ij represents the number of vertices that can

till be visited and flow f ji represents the number of vertices

lready visited (i.e., f ji = p − f i j ). 

Let x ij be a 0 − 1 variable equal to 1 if edge { v i , v j } is used

n the solution and 0 otherwise. Let y i be a binary variable that

ndicates the presence of vertex v i in the solution. We set the

inary coefficients λik equal to 1 if and only if w k ∈ W can be

overed by v i ∈ V �T . Then mm -CTP can be stated as: 

inimize 
∑ 

{ v i , v j }∈ E 
c i j x i j (1) 

subject to 

∑ 

v i ∈ V \ { v 0 } 
λik y i ≥ u k , ∀ w k ∈ W 

(2) 

∑ 

v i ∈ V ,i<k 

x ik + 

∑ 

v j ∈ V , j>k 

x kj = 2 y k , ∀ v k ∈ V 

′ 
(3) 

∑ 

v j ∈ V 

(
f ji − f ij 

)
= 2 y i , ∀ v i ∈ V 

′ 
(4) 

∑ 

v j ∈ V ′ 
f 0 j = 

∑ 

v i ∈ V ′ 
y i (5) 

∑ 

j∈ V ′ 
f nj = mp (6) 

f ij + f ji = px ij , ∀ 

{
v i , v j 

}
∈ E (7) 

f ij ≥ 0 , f ji ≥ 0 , ∀ 

{
v i , v j 

}
∈ E (8) 

x ij ∈ { 0 , 1 } , ∀ 

{
v i , v j 

}
∈ E (9) 

y i ∈ { 0 , 1 } , ∀ v i ∈ V 

′ (10) 

 ∈ N (11) 

here m is the decision variable indicating the number of used

ehicles in the solution. 

The objective (1) is to minimize the total travel cost. Con-

traints (2) ensure that every customer w k of W is covered at

east u k times, while constraints (3) enforce that each vertex of

 

′ is visited at most once. Constraints (4) –(7) define the flow

ariables. Specifically, constraints (4) state that the inflow minus

he outflow at each vertex v i ∈ V 

′ is equal to 2 if v i is used and to

 otherwise. The outflow at the source vertex v 0 (5) is equal to

he total demand of the vertices that are used in the solution, and

he inflow at the sink v n (6) corresponds to the total capacity of

he vehicle fleet. Constraint (7) is derived from the definition of

he flow variables. Constraints (8) –(11) define the variables. 

The linear relaxation of mm -CTP can be strengthened by the

ddition of valid inequalities. The following valid inequalities are
irectly derived from the definition of the binary variables x ij and

 i : 

 i j ≤ y i and x i j ≤ y j (v i or v j ∈ V \ T ) (12) 

The following flow inequalities, which were introduced in

aldacci et al. (2005) are also valid for the problem: 

f i j ≥ x i j , f ji ≥ x ji if v i , v j � = v 0 and v i , v j � = v n . (13) 

Dominance inequalities can also be derived, based on covering

onsiderations. Let v i , v j ∈ V �{ v 0 }, vertex v i is said to dominate v j 
f v i can cover all the vertices of W that v j can cover. Define W j 

he set of all vertices covered by v j . Then the following dominance

onstraints follow immediately: 

 i + y j ≤ max w k ∈ W j 
u k (14) 

In the dominance inequalities (15) , this dominance relation

s extended to three vertices where a set of two vertices v i , v t 
ominates vertex v j . We have 

 i + y j + y t ≤ 1 + max w k ∈ W j 
u k (15) 

Eventually, the inequalities (14) and (15) are useful only when

ax w k ∈ W j 
u k is equal to 1. 

All the valid inequalities of the set multi-covering polytope

onv { y : �b k y k ≥ u k , y k ∈ {0, 1}} where b k is the binary coefficient,

re valid for mm -CTP- p . Here we extend the facets with coefficients

n {0,1,2} proposed by Balas and Ng (1986) for the set covering

olytope which is a particular case of the set multi-covering

olytope with u k = 1 , ∀ k . Let S be a nonempty subset of W and

efine for each v i ∈ V �T the coefficient 

S 
i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 if v i does not cover any vertex in S, i.e. λik = 0 

for all w k ∈ S 

2 if v i covers all vertices in S, i.e. λik = 1 for all w k ∈ S 

1 if v i covers some but not all vertices in S. 

Then the following inequality is valid for mm -CTP- p 

∑ 

 i ∈ V \ T 
αS 

i y i ≥
⌈∑ 

w k ∈ S u k 

| S| − ε

⌉
. (16) 

here ε is a real number and ε > 0.5. 

It is easy to see that the inequality (16) is indeed obtainable

rom the covering constraints (2) by the following procedure: 

• Add | S | inequalities 
∑ 

v i ∈ V \ T λik y i ≥ u k , w k ∈ S; we have∑ 

v i ∈ V \ T ( 
∑ 

w k ∈ S λik ) y i ≥
∑ 

w k ∈ S u k ; 
• Divide the resulting inequality by | S| − ε; 
• Round up all coefficients to the nearest integer. The resulting

coefficient of the variable y i will be equal to αS 
i 
. Indeed, the

coefficient is equal to 0 if v i does not cover any vertex in S . It

is rounded up to 1 if v i partially covers the vertices in S ; and

to 2 if v i covers all the vertices in S . 

Based on the formulation above, we develop a branch-and-cut

rocedure to solve the problem to the optimality. We solve a linear

rogram containing the constraints (1) –(8) . We then search for

iolated constraints of type (12) –(15) and (16) , and the detected

onstraints are added to the current LP, which is then reoptimized.

his process is repeated until all the constraints are satisfied.

f there are fractional variables, we branch. If all the variables

re integer, we explore another tree node. Our branch-and-cut

lgorithm is built around CPLEX 12.6 with the Callable Library. All

arameters are set to their default values. 

The separation of the constraints of type (12), (14), (15) and

13) is straightforward. For constraints (16) , to reduce the com-

utational effort we verify only the sets S that include three

lements. 
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3. Metaheuristics for finding approximate solutions 

In this section, we present a genetic algorithm for solving

efficiently the mm -CTP. Because the problem is new, there is no

available metaheuristic for the comparison. As can be seen in the

experimental section, we mainly use the GRASP-ELS proposed

in Hà et al. (2013) as a reference method to assess the performance

of the GA. Since the GRASP-ELS was designed to solve the m -

CTP- p , a special case of the mm -CTP, several components of the

algorithm must be modified when dealing with the considering

problem. We next describe these modifications. 

3.1. GRASP-ELS algorithm 

The GRASP-ELS is constructed in two phases. The aim of the

first phase is to randomly generate a number of subsets of V �T

such that each subset meets the covering requirements. This can

be done by solving the following mixed integer programming

problems: 

Minimize 
∑ 

v i ∈ V \ T 
b i y i (17)

subject to 

∑ 

v i ∈ V \ T 
λi j y i ≥ u j , ∀ w j ∈ W (18)

y i = { 0 , 1 } , ∀ v i ∈ V \ T (19)

where b i is a random integer varying from 1 to a given number B . 

Let θ1 be the number of mixed integer programs solved in

the first phase. After each program is solved, the vertices corre-

sponding to the variables y i equal to 1 in the solutions of the

model above combined with the vertices of T create a set of

the vertices that must be visited. The problem now becomes a

distance-constrained VRP with unit demands, and it is solved

in the second phase by an algorithm based on the ELS method

of Prins (2009) . We apply the ELS due to its simplicity, speed, and

good performance. In this method, a single solution is mutated

to obtain several children that are then improved by local search.

The next generation is the best solution among the parent and

its children. As in Hà et al. (2013) , four local search operators are

used: swap two nodes, relocate a node, combine two routes and

try a new node. The three former operators are re-applied without

any modification but in the latter operator, we must take into the

account the multi-covering requirements while trying to replace a

node in a solution by a new one. 

The value of B is selected so that it is neither too large nor too

small. If it is too large, the number of vertices in the solution may

be more than necessary. By necessary, we mean the number of

visited vertices in the optimal solution. On the contrary, if B is too

small, the number of visited vertices may be less than necessary.

Both of these cases often lead to sub-optimal solutions. In Hà et al.

(2013) , B was set to 2 and θ1 was set to 5(| V | − | T | ) . Our tests

show that the algorithm can give slightly better solutions if we

increase the values of θ1 to 10| V | and B to 3. Therefore, we use

these parameter values in our algorithm. For more details about

the GRASP-ELS (settings, implementation and parameters), we

recommend readers to Hà et al. (2013) . 

The aforementioned GRASP-ELS is relatively simple and has

very few parameters. However, it also has several disadvantages.

First, the disconnection between the two phases makes it rather

random. Moreover, since a solution created from a GRASP iteration

could be completely different from previous ones, the algorithm

cannot utilize historical information to find better solutions.

Therefore, it is not easy to design a mechanism which guides the

algorithm exploring more potential search spaces. This gives us

motivation to build a GA for the mm -CTP. 
.2. Genetic algorithm 

Genetic algorithm (GA) is an adaptive approach inspired by

he natural evolution of biological organisms. In GA, an initial

opulation of individuals (chromosomes) evolves through gener-

tions until some criteria of quality are satisfied. New individuals

children) are generated from individuals forming the current

eneration (parents) by means of genetic operators (crossover

nd mutation). To date, GA and GA-based hybrid algorithms

ave become state-of-the-art metaheuristics for solving many

ariants of VRP ( Vidal et al., 2012; 2014 ). However, to the best of

ur knowledge, GA has not been applied to the CTP problems.

his section describes a method using GA with Variable Length

enomes called GA-VLG to solve the mm -CTP. Our method reuses

ome ideas of Unified Hybrid Genetic Search (UHGS), the current

tate-of-the-art algorithm for many VRP variants ( Vidal et al., 2014 ).

e now describe the general structure of the UHGS. 

.2.1. Unified Hybrid Genetic Search 

The UHGS is a general framework for VRPs that hybridizes

enetic algorithms with local search operators (i.e it is similar to

emetic algorithms). It maintains two distinct sub-populations,

ne for feasible solutions, and the other for infeasible solutions.

he size of each sub-population is in the range from μmin to μmax 

nd determined by a survivor selection procedure that is triggered

hen the size of a sub-population reaches a maximal size μmax .

ach individual is represented as a giant tour without trip delim-

ters ( Prins, 2004 ). This giant tour is then converted to an explicit

easible solution by using a Split algorithm ( Prins et al., 2008 ). The

omputation of the individual fitness is based not only on the

otal cost (distance/duration) of the tours, but also on its feasibility

y using penalty coefficients associated to capacity constraints as

ell as on its contribution to the population diversity. The penalty

arameters are adaptively changed during the search to achieve a

atio of feasible solutions within a predefined interval. 

The main steps of UHGS and their brief description are shown

n Algorithm 1 . The algorithm evolves the population by iteratively

Algorithm 1: Main steps in UHGS 

1 population initialization ; 

2 while stopping conditions are not satisfied do 

3 Selection: Select two individuals as parents via a binary 

tournament based on the biased fitness measure; 

4 Mating: Create an offspring from these parents by 

crossovers. It generates new giant tours which inherit 

common characteristics from both parents while 

introducing a significant level ofrandomness. 

5 Education: Educate the offspring by local searches. It is 

applied to any new offspring and is the main force which 

improves solutions. 

6 Repair: Repair an offspring with a probability of 0.5 if it 

is infeasible. This operator simply consists in running the 

local searches with higher penalty values with the aim of 

converging towards a feasible solution. 

7 Population management: Insert the offspring into an 

appropriate sub-population. The survivor operator is 

triggered if the sub-population size exceeds μmax . 

8 Diversification: Keep only 1/3 best individuals in each 

sub-population and reinserts new random initial solutions 

after a given number of consecutive iterations without 

improvement of the best solution. This operator is to 

avoid a premature convergence of the method due to 

elitism. 

9 return the best individual ; 
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Algorithm 3: Modified Order Crossover (MOX) 

Data : smallInd, bigInd 

Result : offspring 

1 Let p1 , p2(p1 < p2) are crossover points between 0 and len 

(smallInd) ; 

2 Initialise an offspring with size equal to len (bigInd) ; 

3 of f spring[ i ] = 0 , i = 0 , .., len (of f spring) ; 

4 Copy vertices in [ p1 , p2] from smal l Ind to offspring ; 

5 pos = p2 + 1 ; 

6 bigSize = len (bigInd) ; 

7 for i = 1 to len (bigInd) do 

8 v = bigInd[(p2 + i )% bigSize ] ; 

9 if v / ∈ offspring then 

10 offspring[ pos % bigSize ] = v ; 
11 pos + + ; 

12 if pos == p1 then 

13 break ; 

14 return ( of f spring) ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our experiments, εmin = 0 . 4 and εmax = 0 . 6 
xecuting operators: Selection, Mating, Education, Repair, Popula-

ion management and Diversification. It terminates and returns the

est feasible individual after processing Iters max iterations without

ny improvement, or when the running time exceeds a time limit.

or more details on UHGS, the readers are recommended to Vidal

t al. (2012, 2014) . 

.2.2. Genetic algorithm with variable length genomes (GA-VLG) 

In the standard GAs including the UHGS, feasible solutions

enerally are encoded in chromosomes with a fixed length. How-

ver, mm -CTP solutions could have different number of visited

ertices. This requires us to make a number of modifications when

dapting the UHGS to mainly deal with variable length genomes.

onsequently, the new features of GA-VLG compared to UHGS are:

• Individual representation: Our system has to use a variable

length representation. That is, the length of each individual is

not fixed during the evolutionary process. 
• Crossover operator: Most of popular crossovers for VRPs, such

as Order Crossover (OX), Partial Mapped Crossover (PMX), etc.,

cannot be directly applied for the variable length represen-

tation. Therefore, we propose two new crossover operators

adapted from OX namely Shaking Order Crossover (SOX) and

Modified Order Crossover (MOX). SOX creates an offspring by

replacing at most nb SOX successive vertices from a random

position of the shorter individual with those of the longer

individual according to the OX’s mechanism. The experiments

show that the value of nb SOX equal to 3 leads to the best

performance of our method. However, making relatively small

changes in many situations might trap the search in local

optima. Therefore, we combine SOX with MOX, a crossover

that could make larger changes. This crossover is similar to

OX except that two crossover points are chosen from shorter

individual and an offspring has the same length as shorter

individual. Algorithms 2 and 3 describe in more details SOX

Algorithm 2: Shaking Order Crossover (SOX) 

Data : smallInd, bigInd 

/* smallInd, bigInd are respectively shorter and longer 

chromosomes */ 

Result : offspring 

1 Let p1 , p2(p1 < p2) are crossover points between 0 to len 

(smallInd) ; 

2 if p2 − p1 > 3 then 

3 p2 = p1 + random number in [0 , 3] ; 

4 offspring = copy of smal l Ind ; 

5 of f spring[ i ] = 0 , i = p1 ..p2 ; 

6 for i from p1 to p2 do 

7 Find a vertex v in bigInd starting from i, v / ∈ of f spring ; 

8 of f spring[ i ] = v ; 

9 return ( of f spring) ; 

and MOX respectively. Fig. 2 depicts two examples of our

crossovers. Gray rectangles represent the genes copied from a

parent to the offspring. 
• Local search: The UHGS used classical local searches ( Vidal

et al., 2012; 2014 ) which did not change the length of chromo-

somes. This might lead to a poor performance of our algorithm

if they are used without the support of other local searches

dealing with an additional decision layer in the mm -CTP that

requires to select visited vertices. Hence, we propose to add

three simple but effective local search operators as follows: (1)

Add : a vertex that is not in a solution is added into that solu-

tion, (2) Remove : a visited vertex is removed from a solution,
and (3) Swap : it swaps a vertex in a solution with another

vertex that is not in the solution. These operators also help

us to remove redundant vertices without which the solution

is still feasible with regard to the covering constraints. All

neighborhoods are explored in a random order with a first im-

provement move acceptance policy. The LS search stops when

no improving move can be found in the entire neighborhood,

and the resulting solution is transformed back to a giant tour,

which is then inserted into the corresponding populations. 
• Fitness evaluation: Our algorithm maintains not only feasible

solutions, but also infeasible solutions. Therefore, the fitness

of each individual has to take into account its feasibilities re-

garding not only two capacity constraints but also the covering

constraints. 

For any route σ with distance ϕ 

D ( σ ), load ϕ 

Q ( σ ), and length

ϕ 

L ( σ ), define φ( σ ) - the cost of a route σ as in Eq. (20) , where

ω 

Q , and ω 

L are the penalty coefficients for the load and length

violations. 

φ(σ ) = ϕ 

D (σ ) + ω 

Q max (0 , ϕ 

Q (σ ) − Q ) + ω 

L max (0 , ϕ 

L (σ ) − L ) 

(20) 

For any solution S with a set of routes 
 , the covering violation

�C ( S ) and the fitness of S denoted by F ( S ), are calculated as

in Eqs. (21) and (22) respectively, where ω 

C is the penalty

coefficient for the covering violation. 

�C (S) = 

∑ 

w k ∈ W 

max (0 , u k −
∑ 

v i ∈ S 
λik ) (21)

F (S) = 

∑ 

σ∈
 
φ(σ ) + ω 

C �C (S) (22)

• Adaptive penalty coefficients: Penalty coefficients of the

UHGS are adaptively changed according to the ratio of feasible

solutions. In GA-VLG, we also update regularly these penalty

coefficients every 100 iterations. Let εmin and εmax are the

minimum and maximal ratios of new feasible individuals, εX 

is the ratio of feasible solutions with respect to constraint X

( X can be Q, L, C for capacity, load, covering constraint respec-

tively). These penalty coefficients are updated as follows: 

ω 

X = 

{
ω 

X × 1 . 2 , i f εX ≤ εmin 
ω 

X × 0 . 8 , i f εX ≥ εmax 
(23) 

1 / | W | 1 / | W | 
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Fig. 2. Examples of SOX and MOX. 
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4. Computational Experiments 

In this section, we describe the mm -CTP instances and the com-

putational evaluation of the proposed algorithms. All algorithms

are coded in C/C++ and run on a 2.4-GHz Intel Xeon. For the GA-

LG, we use two crossovers SOX and MOX with probability of 0.8

and 0.2, respectively. The termination criteria is Iters max = 30 , 0 0 0

for the mm -CTP variant, and Iters max = 20 , 0 0 0 for other variants. 

4.1. Data instances 

We now explain the way to generate instances for the mm -CTP

to test the algorithms proposed in the previous sections. The

instances of TSPLIB are first used to build the instances for the

m -CTP as described in Hà et al. (2013) . More precisely, the in-

stances kroA100, kroB100, kroC100, and kroD100 are first used to

create a set of nb total = | V | + | W | = 100 vertices. Tests are run for

| V | = � 0 . 25 nb total � and � 0.5 nb total � and | T | = 1 and � 0.20 n � , and

W is defined by taking the remaining vertices. The covering radius

c ij are computed as the Euclidean distances between the vertices.

The value of c is determined so that each vertex of V �T covers at

least one vertex of W , and each vertex of W is covered by at least

two vertices of V �T (see Gendreau et al., 1997; Hà et al., 2013; Joze-

fowiez, 2014 for further information). The value of p is set to {4,

5, 6, 8}. As in Jozefowiez (2014) , the value of maximal route length

q is computed by the formula q = β + ρ where β = 2 × max 
i ∈ V \{ 0 } c 0 ,i 

and ρ = { 250 , 500 } . We also use instances kroA200 and kroB200

with nb total = 200 vertices to generate larger instances for mm -CTP.

And finally, the number of coverages u k for each vertex w k of

W is created as followed. Let nb k be the maximal number of nodes

in V which can cover w k . Then the number of coverages u k can be

set to a random integer in the interval from 1 to min(3, nb k ) in

order to ensure that the generated instances are feasible in term

of covering constraints. 

As a result, we have 192 instances for the mm -CTP, each is

labeled as X −| T | − | V | − | W | − | p| − | q | , where X is the name of

the TSPLIB instance and the remaining labels are self-explained.

In some situations, the labels without the value of q implicate

instances for the case in which the constraints on the route length

are relaxed. 

4.2. Results for the branch-and-cut algorithm 

This subsection presents the results of the branch-and-cut al-

gorithm for the problem without the length constraints mm -CTP- p .

To accelerate the solving process, we integrate into the algorithm

the best solutions found by the metaheuristics as the initial upper

bounds on the objective function. The running time of the branch-

and-cut algorithm is limited to 2 hours for each instance. During

the solution process, we observe that the cuts of type (14) –(16)
re very rarely activated on the tested instances. Therefore, we do

ot use these cuts in our branch-and-cut algorithm. Moreover, the

xperiment shows that our algorithm cannot solve the instances

ith more than 50 vertices of V . As a result, we report the results

or only the instances with | V | ≤ 50. We also present the best

olutions provided by the metaheuristics GRASP-ELS and GA-VLG 

In the tables of results, the blank entries indicate that the al-

orithm could not solve an instance to optimality, and the bolded

ntries in GAP column indicate the better solutions. The column

eadings are as follows: 

• Data: name of instance. 
• m : number of vehicles in solution; 
• Nv : number of vertices of V visited by the route in solution; 
• Search tree: number of nodes in search tree of branch-and-cut

algorithm; 
• Time: total running time in seconds. 
• Result: objective value of solution; 
• GAP: deviation between solution of metaheuristic and the best

lower bound found by CPLEX. A solution is proved optimal if

its GAP is equal to zero. 

Table 1 shows that our branch-and-cut algorithm can solve 69

ut of 80 instances with 50 vertices of V . Since a similar exact

ethod could solve almost all m -CTP- p instances with up to 100

ertices ( Hà et al., 2013 ), this indicates that the mm -CTP- p is much

ore difficult than the m -CTP- p . This can be explained by the

act that, in the mm -CTP- p , we need to visit more vertices of V

o satisfy the covering constraints. Hence, the “underlying” model

ith regard to routing aspect is larger and CPLEX needs more

omputational time. 

The problem difficulty increases with n and the instances with

p = 4 or 5 are usually solved more readily than the instances with

igher p values. These are similar to problems 1-CTP in Gendreau

t al. (1997) and m -CTP- p in Hà et al. (2013) . Another interesting

bservation is that the difficulty depends on the size of W . This

s contrary to m -CTP- p when the dependency is not clear (see Hà

t al., 2013 ). Moreover, for the m -CTP- p and the 1-CTP, the greater

he value of | T |, the harder the problem. But the hardness of the

m -CTP- p is fairly insensitive to | T |. In many cases, for example

2–1–50–150–4 and B1–1–50–50–8 etc., the augmentation of | T |

akes the instances easier to solve. 

The results also confirm the high quality of solutions provided

y the metaheuristics. The branch-and-cut algorithm provides

he optimal solution for 69 instances and our methaheuristics

an find all these solutions. In addition, for all the instances, the

ranch-and-cut algorithm can not give any solution better than

ne of the metaheuristics and we believe that the large GAP in

ome cases are due to the poor quality of the lower bounds. Two

etaheuristic methods are here very competitive but GA-VLG is
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Table 1 

Computational results of branch-and-cut algorithm on instances with | V | ≤ 50 . 

Data Branch-and-Cut GRASP-ELS GA-VLG 

m Nv Search tree Time Result Result GAP Time Result GAP Time 

A1–1–25–75–4 5 17 4 1.0 17,774 17,774 0.00 56.8 17,774 0.00 178.3 

A1–1–25–75–5 4 17 1016 4.1 15,793 15,793 0.00 61.9 15,793 0.00 177.5 

A1–1–25–75–6 3 17 11,222 16.4 14,628 14,628 0.00 59.1 14,628 0.00 178.3 

A1–1–25–75–8 3 17 0 0.8 12,590 12,590 0.00 60.4 12,590 0.00 179.2 

A1–1–50–50–4 6 23 3004 17.6 21,473 21,473 0.00 860.5 21,473 0.00 283.1 

A1–1–50–50–5 5 23 43,127 348.4 18,680 18,680 0.00 898.8 18,680 0.00 287.9 

A1–1–50–50–6 4 23 930,785 5796.5 17,481 17,481 0.00 944.4 17,481 0.00 285.0 

A1–1–50–50–8 3 23 52,200 355.9 14,380 14,380 0.00 965.4 14,380 0.00 278.4 

A1–10–50–50–4 7 28 5472 35.0 25,340 25,340 0.00 1166.0 25,340 0.00 298.6 

A1–10–50–50–5 6 28 3165 18.0 21,712 21,712 0.00 1133.2 21,712 0.00 309.5 

A1–10–50–50–6 5 28 1,005,828 5326.7 20,125 20,125 0.00 1144.1 20,125 0.00 300.3 

A1–10–50–50–8 – – 1,064,416 7200.0 – 17,603 3.66 1253.4 17,603 3.66 309.0 

A1–5–25–75–4 3 11 28 0.7 13,082 13,082 0.00 20.8 13,082 0.00 159.8 

A1–5–25–75–5 3 11 234 1.5 11,969 11,969 0.00 21.7 11,969 0.00 159.8 

A1–5–25–75–6 2 11 4274 9.8 11,746 11,746 0.00 21.1 11,746 0.00 162.5 

A1–5–25–75–8 2 11 0 0.6 9081 9081 0.00 21.5 9081 0.00 155.1 

A2–1–50–150–4 – – 706,135 7200.0 – 23,601 2.07 798.4 23,601 2.07 533.4 

A2–1–50–150–5 – – 932,839 7200.0 – 20,439 1.78 835.1 20,439 1.78 617.6 

A2–1–50–150–6 – – 785,820 7200.0 – 18,410 4.41 829.2 18,410 4.41 493.0 

A2–1–50–150–8 – – 676,066 7200.0 – 15,565 3.42 768.6 15,502 3.02 371.1 

A2–10–50–150–4 7 26 78,061 375.9 25,702 25,702 0.00 1072.5 25,702 0.00 380.9 

A2–10–50–150–5 5 25 10,634 47.4 21,503 21,503 0.00 1046.2 21,503 0.00 369.1 

A2–10–50–150–6 – – 1,122,196 7200.0 – 20,250 2.18 1126.1 20,250 2.18 353.1 

A2–10–50–150–8 4 25 46,422 214.7 16,676 16,676 0.00 1091.2 16,676 0.00 354.5 

B1–1–25–75–4 4 16 148 3.9 17,417 17,417 0.00 71.6 17,417 0.00 194.1 

B1–1–25–75–5 4 16 3436 10.6 15,891 15,891 0.00 77.5 15,891 0.00 183.7 

B1–1–25–75–6 3 16 5064 13.3 14,260 14,260 0.00 70.9 14,260 0.00 186.4 

B1–1–25–75–8 2 16 39 4.3 11,538 11,538 0.00 72.9 11,538 0.00 188.1 

B1–1–50–50–4 5 19 52,758 381.4 19,966 19,966 0.00 555.0 19,966 0.00 280.3 

B1–1–50–50–5 4 20 41,221 284.1 17,113 17,113 0.00 573.7 17,113 0.00 328.0 

B1–1–50–50–6 4 20 4 4 4,025 3624.3 15,989 15,989 0.00 534.8 15,989 0.00 292.2 

B1–1–50–50–8 – – 918,165 7200.0 – 14,027 1.54 540.4 14,027 1.54 296.4 

B1–10–50–50–4 6 23 1068 7.5 20,075 20,075 0.00 735.6 20,075 0.00 277.2 

B1–10–50–50–5 5 23 122,766 754.6 17,986 17,986 0.00 789.6 17,986 0.00 307.1 

B1–10–50–50–6 4 22 21,480 159.0 15,924 15,924 0.00 803.4 15,924 0.00 258.9 

B1–10–50–50–8 3 23 61,380 413.2 13,672 13,672 0.00 703.8 13,672 0.00 267.9 

B1–5–25–75–4 4 15 1228 5.7 17,079 17,079 0.00 54.8 17,079 0.00 202.0 

B1–5–25–75–5 3 15 3446 10.8 15,110 15,110 0.00 59.7 15,110 0.00 190.7 

B1–5–25–75–6 3 15 153,942 285.8 14,707 14,707 0.00 62.3 14,707 0.00 192.4 

B1–5–25–75–8 2 16 126 6.1 11,319 11,319 0.00 60.7 11,319 0.00 194.4 

B2–1–50–150–4 6 23 183,130 1060.1 23,288 23,288 0.00 882.0 23,288 0.00 339.1 

B2–1–50–150–5 5 23 148,963 800.9 20,039 20,039 0.00 866.4 20,039 0.00 332.4 

B2–1–50–150–6 – – 830,854 7200.0 – 18,046 0.98 891.9 18,046 0.98 345.8 

B2–1–50–150–8 – – 806702 7200.0 – 15,668 5.27 959.2 15668 5.27 313.8 

B2–10–50–150–4 7 28 300697 1457.7 25,967 25967 0.00 1452.2 25967 0.00 346.4 

B2–10–50–150–5 6 28 184455 1268.3 22,359 22359 0.00 1422.0 22359 0.00 334.2 

B2–10–50–150–6 5 28 175686 914.8 19,792 19792 0.00 1539.9 19792 0.00 348.4 

B2–10–50–150–8 4 28 182972 1149.7 17106 17106 0.00 1386.2 17106 0.00 361.9 

C1–1–25–75–4 3 10 2349 4.4 13012 13012 0.00 31.9 13012 0.00 160.6 

C1–1–25–75–5 2 10 1329 4.2 11666 11666 0.00 31.4 11666 0.00 159.9 

C1–1–25–75–6 2 10 0 0.9 9820 9820 0.00 30.0 9820 0.00 156.8 

C1–1–25–75–8 2 10 382 1.3 9818 9818 0.00 31.9 9818 0.00 159.0 

C1–1–50–50–4 5 20 18056 101.6 20294 20294 0.00 574.6 20294 0.00 259.0 

C1–1–50–50–5 4 20 2066 11.5 17378 17378 0.00 619.5 17378 0.00 268.8 

C1–1–50–50–6 4 20 70181 451.6 16365 16365 0.00 636.5 16365 0.00 265.5 

C1–1–50–50–8 3 20 341157 2254.3 13900 13900 0.00 616.4 13900 0.00 260.3 

C1–10–50–50–4 7 26 43620 208.8 26931 26931 0.00 937.8 26931 0.00 291.9 

C1–10–50–50–5 6 26 48229 263.4 23544 23544 0.00 1075.8 23544 0.00 412.6 

C1–10–50–50–6 5 26 51231 207.8 20818 20818 0.00 1001.7 20818 0.00 331.6 

C1–10–50–50–8 4 26 123008 593.2 18154 18154 0.00 980.8 18154 0.00 292.6 

C1–5–25–75–4 3 12 75 0.4 13738 13738 0.00 35.9 13738 0.00 168.4 

C1–5–25–75–5 3 12 10095 10.3 13575 13575 0.00 34.9 13575 0.00 175.3 

C1–5–25–75–6 2 12 1 0.3 10826 10826 0.00 37.0 10826 0.00 166.6 

C1–5–25–75–8 2 13 366 2.7 10556 10556 0.00 34.4 10556 0.00 169.0 

D1–1–25–75–4 4 15 546 3.4 18127 18127 0.00 35.4 18127 0.00 175.3 

D1–1–25–75–5 3 15 408 3.6 15972 15972 0.00 36.8 15972 0.00 175.9 

D1–1–25–75–6 3 15 1166 5.0 14532 14532 0.00 39.3 14532 0.00 175.7 

D1–1–25–75–8 2 15 1681 5.0 12700 12700 0.00 36.7 12700 0.00 174.5 

D1–1–50–50–4 6 22 661253 5406.0 23275 23275 0.00 716.3 23275 0.00 271.1 

D1–1–50–50–5 5 22 115345 1238.4 20402 20402 0.00 719.3 20402 0.00 275.1 

D1–1–50–50–6 4 22 644239 6685.7 18072 18072 0.00 741.8 18072 0.00 257.4 

D1–1–50–50–8 3 22 73029 625.8 14930 14930 0.00 685.0 14930 0.00 249.7 

D1–10–50–50–4 7 28 12408 68.4 30390 30390 0.00 1407.2 30390 0.00 309.0 

D1–10–50–50–5 6 28 927581 4808.5 26284 26284 0.00 1509.5 26284 0.00 331.6 

D1–10–50–50–6 – – 982448 7200.0 – 23646 2.49 1433.9 23646 2.49 304.1 

D1–10–50–50–8 – – 789953 7200.0 – 19986 4.59 1404.4 19986 4.59 323.8 

D1–5–25–75–4 4 15 69 2.8 18464 18464 0.00 22.0 18464 0.00 177.6 

D1–5–25–75–5 3 15 27 1.1 15767 15767 0.00 21.9 15767 0.00 176.2 

D1–5–25–75–6 3 15 1334 4.4 14851 14851 0.00 21.9 14851 0.00 180.3 

D1–5–25–75–8 2 15 660 3.4 12705 12705 0.00 20.6 12705 0.00 183.8 
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Table 2 

Impacts of generated cuts on the branch-and-cut algorithm. 

Data Do1 Do2 Do3 Cov Flow LB 0 LB 1 

A1–1–50–50–4 387 5 74 0 541 20.25 12.18 

A1–1–50–50–5 390 7 72 0 635 24.43 14.97 

A1–1–50–50–6 386 16 216 0 700 25.78 17.53 

A1–1–50–50–8 404 16 224 0 738 32.96 23.70 

B1–1–50–50–4 191 0 2 0 300 21.16 7.81 

B1–1–50–50–5 357 0 10 0 629 27.04 13.93 

B1–1–50–50–6 551 6 79 0 969 30.74 18.66 

B1–1–50–50–8 606 7 92 0 1147 35.69 24.64 

C1–1–50–50–4 323 13 90 0 506 23.63 15.55 

C1–1–50–50–5 372 19 131 0 587 26.41 17.41 

C1–1–50–50–6 255 11 71 0 409 24.14 15.37 

C1–1–50–50–8 325 16 131 0 486 30.55 21.86 

D1–1–50–50–4 864 32 415 18 1366 26.24 17.01 

D1–1–50–50–5 747 31 327 10 1339 29.57 19.69 

D1–1–50–50–6 760 33 429 12 1419 33.50 24.15 

D1–1–50–50–8 873 33 375 10 1473 38.01 29.51 
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slightly better than GRASP-ELS when it gives a better solution for

the instance A2–1–50–150–8 with smaller running time. 

We now analyse the impacts of valid cuts proposed in the

previous section. During the solution process, the flow constraints

(13) and the domination constraints (12) are the most frequent.

However, as mentioned above, the cuts of type (14) –(16) are very

rarely activated on the tested instances. One of reasons could be

that, for instance, the inequalities (14) and (15) , are useful only

when max w k ∈ W j 
u k is equal to 1 as mentioned in Section 2 . But in

our current instances, very few vertices in V satisfy this condition

due to a majority of vertices in W requiring to be covered more

than once. Therefore, to investigate the usefulness of all the pro-

posed cuts we test our branch-and-cut algorithm on new instances

generated in such a way that they include a large number of ver-

tices in V (70 % in our experiment) with unit covering demands,

i.e. those need to be covered only once. X −| 1 | − | 50 | − | 50 |−
settings are chosen to create these new instances. 

Table 2 presents the number of constraints generated in the

branch-and-cut algorithm. We also compute the linear relaxations

before and after adding the valid cuts to analyse the ability of

these cuts in improving lower bounds. Note that all automatic

CPLEX’s cuts are turned off to avoid their unintended impacts on

the linear relaxations. In the table, the column headings are as

follows: 

Do1: number of constraints of type (12) ; 

Do2: number of constraints of type (14) ; 

Do3: number of constraints of type (15) 

Cov: number of constraints of type (16) ; 

Flow: number of constraints of type (13) ; 

Gap 0 : deviation between the value of linear relaxation ( LB 0 )

before adding any cut and the best solution found so far; 

Gap 1 : deviation between the value of linear relaxation ( LB 1 )

after adding the proposed cuts and the best solution found so far; 

Let UB be the value of the final solution found by branch-and-

cut algorithm or the value of the solution of the metaheuristic if

the branch-and-cut algorithm fails to find a solution), Gap 0 and

Gap 1 in Table 2 are computed as: 

Gap i = 

100 . (UB − LB i ) 

UB 

i = 1 , 2 (24)

Table 2 clearly shows the performance of valid inequalities

in improving the linear relaxation of mm -CTP- p . All the cuts

are activated during the solving process. Among them, the flow

constraints (13) are the most frequent while the cover constraints

(18) are the least. This is similar to problems 1-CTP in ( Gendreau

et al., 1997 ) and m -CTP- p in ( Hà et al., 2013 ). 
.3. Results for metaheuristics 

We now investigate the performance of our metaheuristic. Six

ariants of the mm -CTP are selected for the experiments: 

• m -CTP- p : multi-vehicle covering tour problem with only

constraints on route length; 
• m -CTP: general multi-vehicle covering problem; 
• mm -CTP- p : multi-vehicle multi-covering tour problem with

only constraints on route length; 
• mm -CTP: general multi-vehicle multi-covering tour problem; 
• mm -CTP-o: general multi-vehicle multi-covering tour problem

with overnight; 
• mm -CTP-wo: general multi-vehicle multi-covering tour problem

without overnight; 

To solve the mm -CTP-o and the mm -CTP-wo, we use the graph

ransformation to convert the instances to binary mm -CTP prob-

ems and then apply directly the methods. Because the size of

enerated instances is too large, we only run the metaheuristics

n 32 instances with | V | = 50 , | T | = 1 and | W | = 50 . 

In the following, we compare our GA with current best meta-

euristics (if available) for each variant, that is with the modified

RASP-ELS on all six variants and with the VNS ( Kammoun et al.,

017 ) on the m -CTP- p . Further, the GRASP-ELS and GA are run

0 times for each instance to better observe their variance. It is

orthy to mention that the GRASP-ELS ( Hà et al., 2013 ) and VNS

ere run only once for each instance and only the single-run

esults for the m -CTP- p were reported. To avoid long and tedious

ables, we summarize the results by reporting the average values

or each variant. The detailed results for the separate instances are

resented in Appendix A . 

In Table 3 , the criteria used for the comparison are the total

unning time in seconds of 10 runs (column “Time”) and the av-

rage gaps of average solution (column “Avg.”), and best solution

column “Best”) over 10 runs to the current best known solution

ound by existing and considering methods. In addition, column

Better” represents the number of problem instances on which

n algorithm (GRASP-ELS or GA-VLG) finds a better solution than

he other does. For each criterion we indicate the better results in

old. The results obtained show that the GA-VLG performs better

n all criteria on all variants. 

Another interesting observation is that by allowing to revisit a

ertex, we can significantly reduce the transportation cost. Specif-

cally, we can save on average 2.33% with GRASP-ELS and 2.60%

ith GA-VLG of the cost in the case without overnight. The savings

n the case with overnight is even better up to 13.64% with GRASP-

LS and 14.01% with GA-VLG of the cost on average (see column

Save’ in Tables A.10 and A.11 for more detail). Therefore, allowing

he revisiting (if possible) is an effective way to reduce the cost. 

The computational time of our metaheuristic is acceptable. The

unning time for each run in general can be measured in minutes.

etween two methods, on average, the GA-VLG is usually faster

han the GRASP-ELS, even more than 40 times in some cases such

s instance B2–20–∗ of mm –CTP–p and mm -CTP. More precisely,

A-VLG is often faster on large instances and slower on small

nstances (see more details in Appendix A ). This can be explained

y the fact that the parameters of GA-VLG are set to the fixed

alues for every instance while those of GRASP-ELS depend on the

nstances’ size. 

We also compare our methods with VNS proposed by Kammoun

t al. (2017) , the current best metaheuristic for the m -CTP- p (see

able A.6 for detailed results). Note that only single-run results

rovided by the VNS were reported in Kammoun et al. (2017) .

ince the platform which was used to run the VNS was not

resented, we could not compare the running times of three

lgorithms. In terms of solution quality, our methods have found
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Table 3 

Performance analysis of GRASP-ELS and GA-VLG on variants of mm -CTP problems. 

Variants Methods and criteria 

Methods Avg.(%) Better Best(%)) Better Time(secs) 

m –CTP–p GRASP-ELS 0.011 0 0.0 0 0 0 530.28 

GA-VLG 0.002 9 0.0 0 0 0 229.80 

m –CTP GRASP-ELS 0.092 7 0.001 0 624.85 

GA-VLG 0.006 29 0.0 0 0 7 232.17 

mm –CTP–p GRASP-ELS 0.042 6 0.010 1 3936.32 

GA-VLG 0.015 19 0.001 7 347.01 

mm –CTP GRASP-ELS 0.156 9 0.033 3 4729.70 

GA-VLG 0.021 59 0.001 17 487.92 

mm –CTP–o GRASP-ELS 0.889 4 0.428 0 1840.55 

GA-VLG 0.369 25 0.0 0 0 18 612.90 

mm –CTP–wo GRASP-ELS 0.523 8 0.312 2 2346.35 

GA-VLG 0.141 20 0.031 10 559.16 

Table 4 

Stability of GRASP-ELS and GA-VLG on variants of mm -CTP problems. 

Variants Methods and criteria 

Methods Same Cost GA-VLG Better GRASP-ELS Better 

m –CTP–p GRASP-ELS 2 0 0 

GA-VLG 8 0 0 

m –CTP GRASP-ELS 5 3 0 

GA-VLG 24 1 0 

mm –CTP–p GRASP-ELS 4 4 0 

GA-VLG 13 3 1 

mm –CTP GRASP-ELS 9 6 2 

GA-VLG 39 11 1 

mm –CTP–o GRASP-ELS 5 9 0 

GA-VLG 6 9 0 

mm –CTP–wo GRASP-ELS 6 6 0 

GA-VLG 10 4 2 
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h  
olutions at least as good as ones of the VNS. More interestingly,

e found a new best known solution for the instance B2–20–100–

00–5. It is noted that our methods are more general than the

NS when they can deal with not only the m -CTP- p but also many

ther variants of the mm -CTP. 

Moreover, we examine the performance of our metaheuristic on

 m -CTP instances where the constraints on the number of visited

ertices on each route are relaxed, i.e. p = + ∞ . The instances

ere named A2–1–50–150–250/500 and B2–1–50–150–250/500

nd their exact solutions were found in Jozefowiez (2014) by

 branch-and-price algorithm. The obtained results show that,

hile GRASP-ELS finds only 3 optimal solutions, GA-VLG finds

ll 4 optimal solutions. In particular, all ten runs of GA-VLG on

ach instance reach the optimal solutions. This again confirms the

erformance of our GA-VLG. 

Finally, we investigate the stability of our metaheuristics by

alculating the variance of solution costs over 10 runs. Variance

alues of each problem instance are detailed in Appendix A .
Table 5 

Sensitivity analysis of the new features of GA-V

Variants Conf-SOX Con

m -CTP- p Best (%) 0.00 5.98

Avg. (%) 1.17 40.8

m -CTP Best (%) 0.02 13.0

Avg. (%) 3.30 50.3

mm -CTP- p Best (%) 0.00 5.19

Avg. (%) 3.79 31.8

mm -CTP Best (%) 0.06 13.9

Avg. (%) 8.09 69.9

mm -CTP-o Best (%) 2.03 8.87

Avg. (%) 19.99 56.8

mm -CTP-wo Best (%) 0.00 17.0

Avg. (%) 4.41 67.2
able 4 summarizes this result, where “Same Cost” column

resents the number of problem instances that an algorithm

GRASP-ELS or GA-VLG) has better (smaller) variance than the

ther while they provide the same best cost; “GA-VLG Better” and

GRASP-ELS Better” columns are the same as “Same Cost” column,

ut when GA-VLG provides better solutions than GRASP-ELS does

r vice versa, respectively. It is clear from this table that, when

RASP-ELS and GA-VLG achieve the same best cost, GA-VLG is

uch more stable (reliable) than GRASP-ELS. In other cases, when

n algorithm (GRASP-ELS or GA-VLG) finds a better result, it tends

o have worse variance, especially in the case of GA-VLG. This can

e explained as an algorithm, that finds worse solution, gets the

ame bad results for each run, it has smaller variance. In this case,

omparing variances between the two methods is less meaningful.

.4. Sensitivity analysis of the main resolution strategies 

This section investigates the sensitivity of two new important

omponents of GA-VLG: crossovers and adaptive covering penalty

oefficients. Overall, we tested 4 configurations: 

• Standard (Conf-Stand): this configuration was described in

Section 3.2.2 . 
• SOX Crossover (Conf-SOX): this is similar to the standard

configuration except that only SOX crossover is used. 
• MOX Crossover (Conf-MOX): this is similar to Conf-SOX, but

SOX crossover is now replaced by MOX crossover. 
• No Adaptive Covering Penalty Coefficient (Conf-NoACPC): this

is the same as in Conf-Stand, but the penalty coefficients of

the covering constraints are set to very large values and do not

change during the evolving process. Our goal here is to observe

the impact of the adaptive covering penalty coefficient on the

performance of the method. 

Table 5 presents sensitivity analysis of 4 configurations. We

ave executed 10 runs for each instance and reported the total
LG. 

f-MOX Conf-NoACPC Conf-Stand 

 11.61 0.00 

5 53.91 0.23 

4 25.45 0.00 

0 98.42 1.17 

 16.08 0.06 

1 67.15 1.43 

8 42.20 0.22 

0 137.63 4.17 

 36.62 0.00 

7 142.74 11.80 

4 53.51 0.82 

4 133.09 4.33 
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gaps of average solutions (row ‘Avg. (%)’), and best solutions

(row ‘Best (%)’). The gap here is calculated as the distance to the

best known solution. As can be seen in the table, all of our new

features contribute to the overall performance of the method.

Particularly, the adaptive covering penalty mechanism significantly

improves the solution quality. Using MOX as the only crossover

operator leads to a poor performance of the approach because it

creates too much randomness. On the other hand, the Conf-SOX

configuration does not provide enough randomness to guide the

searching process escaping from local optima. As a consequence,

although the crossover SOX seems to work well on finding the best

solution, its results related to the average solution are not really

good. The SOX-MOX combination provides a better trade-off be-

tween the best and average solutions. The standard configuration

performs in the most stable and reliable way. Its ‘Best’ criterion

is worst than one of the Conf-SOX configuration on several cases

but better on m -CTP and mm -CTP-o variants. More importantly, it

outperforms all other configurations on the ‘Average’ criterion. 

5. Conclusions 

In this paper, we have generalized several existing variants of

the CTP problem to introduce a new problem called mm -CTP. The

new characteristic of this problem is that vertices must be covered

multiple times. We discussed three variants of the mm -CTP: the

binary mm -CTP where a vertex is visited at most once, the mm -

CTP with overnight where revisiting a vertex is freely permitted

and the mm -CTP without overnight where revisiting a vertex is

allowed only after passing through another vertex. 

An exact method and a metaheuristic have been proposed to

deal with the first version. For remaining variants, we proposed

the graph transformations to convert them into the binary variant.
Table A.6 

Computational results of experiments on m -CTP- p problem 

Data instances GRASP-ELS 

Best Avg. σ 2 Time 

A1–1–25–75–4–250 8479.00 8479.00 0.00 6.93 

A1–1–25–75–5–250 8479.00 8479.00 0.00 7.59 

A1–1–25–75–6–250 8479.00 8479.00 0.00 7.55 

A1–1–25–75–8–250 7985.00 7985.00 0.00 7.19 

A1–1–50–50–4–250 10271.00 10271.00 0.00 77.26 

A1–1–50–50–5–250 9220.00 9220.00 0.00 75.54 

A1–1–50–50–6–250 9130.00 9130.00 0.00 77.64 

A1–1–50–50–8–250 9130.00 9130.00 0.00 79.14 

A1–10–50–50–4–250 17953.00 17954.30 15.21 214.47 

A1–10–50–50–5–250 15440.00 15440.00 0.00 236.19 

A1–10–50–50–6–250 14064.00 14064.00 0.00 231.80 

A1–10–50–50–8–250 13369.00 13369.00 0.00 254.16 

A1–5–25–75–4–250 10827.00 10827.00 0.00 15.64 

A1–5–25–75–5–250 8659.00 8659.00 0.00 17.00 

A1–5–25–75–6–250 8659.00 8659.00 0.00 16.00 

A1–5–25–75–8–250 8265.00 8265.00 0.00 16.46 

A2–1–100–100–4–250 11885.00 11885.00 0.00 279.63 

A2–1–100–100–5–250 10234.00 10234.00 0.00 275.83 

A2–1–100–100–6–250 10 020.0 0 10 020.0 0 0.00 290.37 

A2–1–100–100–8–250 9093.00 9093.00 0.00 280.16 

A2–1–50–150–4–250 11550.00 11550.00 0.00 77.53 

A2–1–50–150–5–250 10407.00 10407.00 0.00 76.50 

A2–1–50–150–6–250 10 068.0 0 10 068.0 0 0.00 73.51 

A2–1–50–150–8–250 8896.00 8896.00 0.00 77.53 

A2–10–50–150–4–250 17083.00 17083.00 0.00 132.12 

A2–10–50–150–5–250 14977.00 14977.00 0.00 141.36 

A2–10–50–150–6–250 13894.00 13894.00 0.00 139.97 

A2–10–50–150–8–250 11942.00 11942.00 0.00 133.42 

A2–20–100–100–4–250 26594.00 26597.60 8.64 2478.58 

A2–20–100–100–5–250 23419.00 23419.00 0.00 2385.05 

A2–20–100–100–6–250 20966.00 20966.00 0.00 2583.07 

A2–20–100–100–8–250 18415.00 18443.70 241.21 2590.73 
he exact method based on the branch-and-cut principle could

olve to optimality instances in which the tour contains up to

0 vertices of a special case with the relaxed length constraints.

ts solutions were used to analyse the problem complexity as

ell as the performance of our metaheuristic. Our metaheuristic

as adapted from the genetic algorithm proposed by Vidal et al.

2014) with several new features exploring the problem charac-

eristics. The extensive experiments on different mm -CTP variants

ave confirmed its performance. The metaheuristic retrieved all

nown optimal solutions and was much more reliable. It outper-

ormed the GRASP-ELS proposed by Hà et al. (2013) especially on

he large instances. When tested on the special existing case of

he problem, it provided and improved best known solutions. All

n all, our GA-VLG has become the state-of-the-art metaheuristic

or a wide class of the CTP problems. 
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ppendix A. Detailed experimental results 

Tables A .6–A .11 present computational results of GRASP-ELS and

A-VLG on instances of the problems: m -CTP- p, m -CTP, mm -CTP- p,

m -CTP, mm -CTP-o and mm -CTP-wo. 
GA-VLG VNS 

Best Avg. σ 2 Time Best Time 

8479.00 8479.00 0.00 132.09 8479 0.016 

8479.00 8479.00 0.00 132.92 8479 0.016 

8479.00 8479.00 0.00 133.44 8479 0.013 

7985.00 7985.00 0.00 130.80 7985 0.014 

10271.00 10271.00 0.00 198.18 10271 0.022 

9220.00 9220.00 0.00 199.82 9220 0.017 

9130.00 9130.00 0.00 202.69 9130 0.023 

9130.00 9130.00 0.00 196.39 9130 0.018 

17953.00 17953.00 0.00 262.73 17953 1.041 

15440.00 15440.00 0.00 261.06 15440 0.020 

14064.00 14064.00 0.00 258.19 14064 0.041 

13369.00 13369.00 0.00 250.93 13369 0.078 

10827.00 10827.00 0.00 138.20 10827 0.015 

8659.00 8659.00 0.00 135.20 8659 0.014 

8659.00 8659.00 0.00 135.19 8659 0.015 

8265.00 8265.00 0.00 131.59 8265 0.017 

11885.00 11885.00 0.00 314.09 11885 0.154 

10234.00 10234.00 0.00 302.21 10234 0.058 

10 020.0 0 10 020.0 0 0.00 339.10 10020 0.026 

9093.00 9093.00 0.00 315.57 9093 0.270 

11550.00 11550.00 0.00 221.31 11550 0.024 

10407.00 10407.00 0.00 249.38 10407 0.025 

10 068.0 0 10 068.0 0 0.00 258.61 10068 0.023 

8896.00 8896.00 0.00 225.47 8896 0.063 

17083.00 17083.00 0.00 277.74 17083 0.474 

14977.00 14977.00 0.00 269.84 14977 0.120 

13894.00 13894.00 0.00 264.63 13894 0.190 

11942.00 11942.00 0.00 254.10 11942 0.068 

26594.00 26594.00 0.00 458.28 26594 0.891 

23419.00 23419.00 0.00 407.73 23419 5.201 

20966.00 20966.00 0.00 481.03 20966 5.813 

18415.00 18435.80 416.76 638.16 18415 123.884 

( continued on next page ) 
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Table A.6 ( continued ) 

Data instances GRASP-ELS GA-VLG VNS 

Best Avg. σ 2 Time Best Avg. σ 2 Time Best Time 

B1–1–25–75–4–250 7146.00 7146.00 0.00 28.22 7146.00 7146.00 0.00 130.81 7146 0.004 

B1–1–25–75–5–250 6901.00 6901.00 0.00 26.66 6901.00 6901.00 0.00 128.96 6901 0.005 

B1–1–25–75–6–250 6450.00 6450.00 0.00 21.43 6450.00 6450.00 0.00 128.60 6450 0.004 

B1–1–25–75–8–250 6450.00 6450.00 0.00 25.87 6450.00 6450.00 0.00 128.10 6450 0.004 

B1–1–50–50–4–250 10107.00 10107.00 0.00 66.38 10107.00 10107.00 0.00 189.40 10107 0.012 

B1–1–50–50–5–250 9723.00 9723.00 0.00 68.95 9723.00 9723.00 0.00 188.37 9723 0.009 

B1–1–50–50–6–250 9382.00 9382.00 0.00 67.18 9382.00 9382.00 0.00 193.56 9382 0.016 

B1–1–50–50–8–250 8348.00 8348.00 0.00 69.66 8348.00 8348.00 0.00 183.72 8348 0.016 

B1–10–50–50–4–250 15209.00 15209.00 0.00 156.94 15209.00 15209.00 0.00 224.26 15209 0.004 

B1–10–50–50–5–250 13535.00 13535.00 0.00 162.78 13535.00 13535.00 0.00 212.58 13535 0.052 

B1–10–50–50–6–250 12067.00 12067.00 0.00 148.02 12067.00 12067.00 0.00 212.11 12067 0.012 

B1–10–50–50–8–250 10344.00 10344.00 0.00 135.57 10344.00 10344.00 0.00 212.55 10344 0.016 

B1–5–25–75–4–250 9465.00 9465.00 0.00 17.98 9465.00 9465.00 0.00 139.84 9465 0.004 

B1–5–25–75–5–250 9460.00 9460.00 0.00 21.41 9460.00 9460.00 0.00 139.59 9460 0.004 

B1–5–25–75–6–250 9148.00 9148.00 0.00 21.24 9148.00 9148.00 0.00 139.83 9148 0.004 

B1–5–25–75–8–250 8306.00 8306.00 0.00 20.62 8306.00 8306.00 0.00 136.00 8306 0.004 

B2–1–100–100–4–250 18370.00 18370.00 0.00 1083.06 18370.00 18370.00 0.00 339.71 18370 0.057 

B2–1–100–100–5–250 15876.00 15876.00 0.00 1156.48 15876.00 15876.00 0.00 401.00 15876 0.076 

B2–1–100–100–6–250 14867.00 14878.60 577.44 1069.07 14867.00 14867.00 0.00 340.53 14867 0.05 

B2–1–100–100–8–250 13137.00 13137.00 0.00 1106.34 13137.00 13137.00 0.00 340.25 13137 0.026 

B2–1–50–150–4–250 11175.00 11175.00 0.00 89.00 11175.00 11175.00 0.00 231.35 11175 0.177 

B2–1–50–150–5–250 10502.00 10502.00 0.00 84.56 10502.00 10502.00 0.00 241.88 10502 0.020 

B2–1–50–150–6–250 9799.00 9799.00 0.00 84.19 9799.00 9799.00 0.00 260.78 9799 0.018 

B2–1–50–150–8–250 8846.00 8846.00 0.00 85.20 8846.00 8846.00 0.00 223.76 8846 0.072 

B2–10–50–150–4–250 16667.00 16667.00 0.00 219.46 16667.00 16667.00 0.00 255.75 16667 0.019 

B2–10–50–150–5–250 14188.00 14188.00 0.00 209.76 14188.00 14188.00 0.00 237.36 14188 0.010 

B2–10–50–150–6–250 12954.00 12954.00 0.00 194.40 12954.00 12954.00 0.00 231.03 12954 0.026 

B2–10–50–150–8–250 11495.00 11495.00 0.00 191.97 11495.00 11495.00 0.00 226.99 11495 0.016 

B2–20–100–100–4–250 34062.00 34095.20 1370.56 7282.60 34062.00 34062.00 0.00 585.17 34062 0.033 

B2–20–100–100–5–250 29405.00 29413.40 242.04 7200.69 29405.00 29410.30 28.81 732.45 29412 78.155 

B2–20–100–100–6–250 25960.00 25960.10 0.09 7120.46 25960.00 25960.10 0.09 495.59 25960 0.06 

B2–20–100–100–8–250 22082.00 22141.10 873.49 7054.38 22082.00 22104.10 1139.69 577.58 22082 168.606 

C1–1–25–75–4–250 6161.00 6161.00 0.00 20.14 6161.00 6161.00 0.00 125.19 6161 0.004 

C1–1–25–75–5–250 6161.00 6161.00 0.00 20.66 6161.00 6161.00 0.00 124.07 6161 0.004 

C1–1–25–75–6–250 6161.00 6161.00 0.00 20.31 6161.00 6161.00 0.00 125.08 6161 0.004 

C1–1–25–75–8–250 6161.00 6161.00 0.00 20.60 6161.00 6161.00 0.00 124.63 6161 0.004 

C1–1–50–50–4–250 11372.00 11372.00 0.00 62.26 11372.00 11372.00 0.00 191.35 11372 0.028 

C1–1–50–50–5–250 990 0.0 0 990 0.0 0 0.00 61.32 990 0.0 0 990 0.0 0 0.00 195.98 9900 0.013 

C1–1–50–50–6–250 9895.00 9895.00 0.00 63.67 9895.00 9895.00 0.00 193.51 9895 0.017 

C1–1–50–50–8–250 8699.00 8699.00 0.00 62.41 8699.00 8699.00 0.00 188.30 8699 0.007 

C1–10–50–50–4–250 18212.00 18212.00 0.00 142.03 18212.00 18212.00 0.00 244.49 18212 0.025 

C1–10–50–50–5–250 16362.00 16362.00 0.00 154.07 16362.00 16362.00 0.00 249.33 16362 0.043 

C1–10–50–50–6–250 14749.00 14749.00 0.00 154.93 14749.00 14749.00 0.00 229.26 14749 0.017 

C1–10–50–50–8–250 12394.00 12396.00 36.00 146.19 12394.00 12394.00 0.00 229.63 12394 0.043 

C1–5–25–75–4–250 9898.00 9898.00 0.00 17.84 9898.00 9898.00 0.00 137.43 9898 0.011 

C1–5–25–75–5–250 9707.00 9707.00 0.00 18.58 9707.00 9707.00 0.00 138.98 9707 0.004 

C1–5–25–75–6–250 9321.00 9321.00 0.00 19.18 9321.00 9321.00 0.00 139.40 9324 0.004 

C1–5–25–75–8–250 7474.00 7474.00 0.00 18.92 7474.00 7474.00 0.00 133.53 7474 0.004 

D1–1–25–75–4–250 7671.00 7671.00 0.00 12.08 7671.00 7671.00 0.00 131.65 7671 0.020 

D1–1–25–75–5–250 7465.00 7465.00 0.00 12.08 7465.00 7465.00 0.00 130.17 7465 0.022 

D1–1–25–75–6–250 6651.00 6651.00 0.00 11.95 6651.00 6651.00 0.00 130.27 6651 0.015 

D1–1–25–75–8–250 6651.00 6651.00 0.00 11.62 6651.00 6651.00 0.00 128.79 6651 0.014 

D1–1–50–50–4–250 11606.00 11606.00 0.00 83.26 11606.00 11606.00 0.00 185.36 11606 0.021 

D1–1–50–50–5–250 10770.00 10770.00 0.00 71.20 10770.00 10770.00 0.00 185.08 10770 0.263 

D1–1–50–50–6–250 10525.00 10571.50 5045.25 73.46 10525.00 10525.00 0.00 189.46 10525 0.026 

D1–1–50–50–8–250 9361.00 9361.00 0.00 78.67 9361.00 9361.00 0.00 185.13 9361 0.028 

D1–10–50–50–4–250 20982.00 20982.00 0.00 229.02 20982.00 20982.00 0.00 225.78 20982 0.038 

D1–10–50–50–5–250 18576.00 18576.00 0.00 195.16 18576.00 18576.00 0.00 221.79 18576 0.164 

D1–10–50–50–6–250 16330.00 16330.00 0.00 184.65 16330.00 16330.00 0.00 207.83 16330 0.011 

D1–10–50–50–8–250 14204.00 14204.00 0.00 222.76 14204.00 14204.00 0.00 206.66 14204 0.008 

D1–5–25–75–4–250 11820.00 11820.00 0.00 17.88 11820.00 11820.00 0.00 145.57 11820 0.013 

D1–5–25–75–5–250 10982.00 10982.00 0.00 18.07 10982.00 10982.00 0.00 143.53 10982 0.016 

D1–5–25–75–6–250 9669.00 9669.00 0.00 17.09 9669.00 9669.00 0.00 146.51 9669 0.018 

D1–5–25–75–8–250 820 0.0 0 820 0.0 0 0.00 18.58 820 0.0 0 820 0.0 0 0.00 141.31 8200 0.020 
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Table A.7 

Computational results of experiments on general m -CTP problem 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

A1–1–25–75–4–250 12182.00 12182.00 0.00 6.58 12182.00 12182.00 0.00 134.14 

A1–1–25–75–4–500 12182.00 12182.00 0.00 6.96 12182.00 12182.00 0.00 135.02 

A1–1–25–75–5–250 12182.00 12182.00 0.00 6.64 12182.00 12182.00 0.00 134.21 

A1–1–25–75–5–500 12182.00 12182.00 0.00 7.07 12182.00 12182.00 0.00 134.94 

A1–1–25–75–6–250 12182.00 12182.00 0.00 6.68 12182.00 12182.00 0.00 132.93 

A1–1–25–75–6–500 12182.00 12182.00 0.00 6.97 12182.00 12182.00 0.00 133.71 

A1–1–25–75–8–250 12182.00 12182.00 0.00 6.54 12182.00 12182.00 0.00 133.07 

A1–1–25–75–8–500 12182.00 12182.00 0.00 6.98 12182.00 12182.00 0.00 134.16 

A1–1–50–50–4–250 12685.00 12685.00 0.00 76.49 12685.00 12685.00 0.00 205.99 

A1–1–50–50–4–500 10271.00 10271.00 0.00 82.85 10271.00 10271.00 0.00 196.79 

A1–1–50–50–5–250 12685.00 12685.00 0.00 79.87 12685.00 12685.00 0.00 211.29 

A1–1–50–50–5–500 9220.00 9220.00 0.00 82.90 9220.00 9220.00 0.00 199.59 

A1–1–50–50–6–250 12685.00 12685.00 0.00 82.36 12685.00 12685.00 0.00 210.81 

A1–1–50–50–6–500 9220.00 9220.00 0.00 88.54 9220.00 9220.00 0.00 200.18 

A1–1–50–50–8–250 12685.00 12685.00 0.00 78.89 12685.00 12685.00 0.00 211.14 

A1–1–50–50–8–500 9220.00 9220.00 0.00 86.94 9220.00 9220.00 0.00 201.19 

A1–10–50–50–4–250 18241.00 18241.00 0.00 237.75 18241.00 18241.00 0.00 237.91 

A1–10–50–50–4–500 18241.00 18241.00 0.00 245.59 18241.00 18241.00 0.00 246.62 

A1–10–50–50–5–250 15440.00 15440.00 0.00 231.24 15440.00 15440.00 0.00 241.16 

A1–10–50–50–5–500 15440.00 15440.00 0.00 232.61 15440.00 15440.00 0.00 248.56 

A1–10–50–50–6–250 14916.00 14916.00 0.00 259.38 14916.00 14916.00 0.00 240.56 

A1–10–50–50–6–500 14550.00 14550.00 0.00 253.00 14550.00 14550.00 0.00 238.27 

A1–10–50–50–8–250 14206.00 14206.00 0.00 247.15 14206.00 14206.00 0.00 230.36 

A1–10–50–50–8–500 14206.00 14206.00 0.00 244.55 14206.00 14206.00 0.00 232.57 

A1–5–25–75–4–250 15194.00 15194.00 0.00 17.04 15194.00 15194.00 0.00 131.26 

A1–5–25–75–4–500 12558.00 12558.00 0.00 16.26 12558.00 12558.00 0.00 132.40 

A1–5–25–75–5–250 15194.00 15194.00 0.00 16.14 15194.00 15194.00 0.00 131.71 

A1–5–25–75–5–500 12558.00 12558.00 0.00 16.54 12558.00 12558.00 0.00 132.33 

A1–5–25–75–6–250 15194.00 15194.00 0.00 16.60 15194.00 15194.00 0.00 131.29 

A1–5–25–75–6–500 12558.00 12558.00 0.00 16.10 12558.00 12558.00 0.00 131.82 

A1–5–25–75–8–250 15194.00 15194.00 0.00 15.59 15194.00 15194.00 0.00 131.31 

A1–5–25–75–8–500 12558.00 12558.00 0.00 16.32 12558.00 12558.00 0.00 132.29 

A2–1–100–100–4–250 12701.00 12821.70 43636.01 284.86 12701.00 12701.00 0.00 418.57 

A2–1–100–100–4–500 11885.00 11885.00 0.00 285.28 11885.00 11885.00 0.00 357.83 

A2–1–100–100–5–250 10618.00 10877.40 79299.24 302.70 10618.00 10618.00 0.00 299.43 

A2–1–100–100–5–500 10234.00 10332.90 3353.69 285.80 10234.00 10234.00 0.00 300.45 

A2–1–100–100–6–250 10186.00 10356.50 96114.45 291.33 10186.00 10186.00 0.00 275.04 

A2–1–100–100–6–500 10 020.0 0 10 020.0 0 0.00 291.31 10 020.0 0 10 020.0 0 0.00 326.75 

A2–1–100–100–8–250 9931.00 10820.70 243389.21 280.15 9924.00 9924.00 0.00 268.52 

A2–1–100–100–8–500 9924.00 9924.10 0.09 283.13 9924.00 9924.00 0.00 278.32 

A2–1–50–150–4–250 12039.00 12039.00 0.00 89.66 12039.00 12039.00 0.00 221.65 

A2–1–50–150–4–500 11612.00 11612.00 0.00 92.97 11612.00 11612.00 0.00 219.94 

A2–1–50–150–5–250 11024.00 11024.00 0.00 86.55 11024.00 11024.00 0.00 218.28 

A2–1–50–150–5–500 11024.00 11024.00 0.00 86.67 11024.00 11024.00 0.00 221.18 

A2–1–50–150–6–250 11022.00 11022.00 0.00 92.62 11022.00 11022.00 0.00 226.92 

A2–1–50–150–6–500 11022.00 11022.00 0.00 87.38 11022.00 11022.00 0.00 238.22 

A2–1–50–150–8–250 11022.00 11022.00 0.00 89.32 11022.00 11022.00 0.00 246.18 

A2–1–50–150–8–500 11022.00 11022.00 0.00 86.30 11022.00 11022.00 0.00 241.44 

A2–10–50–150–4–250 17083.00 17083.00 0.00 144.45 17083.00 17083.00 0.00 274.00 

A2–10–50–150–4–500 17083.00 17083.00 0.00 143.50 17083.00 17083.00 0.00 272.82 

A2–10–50–150–5–250 14977.00 14977.00 0.00 161.69 14977.00 14977.00 0.00 245.67 

A2–10–50–150–5–500 14977.00 14977.00 0.00 152.06 14977.00 14977.00 0.00 264.62 

A2–10–50–150–6–250 14370.00 14370.00 0.00 163.17 14370.00 14370.00 0.00 258.32 

A2–10–50–150–6–500 13894.00 13894.00 0.00 158.60 13894.00 13894.00 0.00 256.96 

A2–10–50–150–8–250 14370.00 14370.00 0.00 166.00 14370.00 14370.00 0.00 251.24 

A2–10–50–150–8–500 12179.00 12179.00 0.00 175.52 12179.00 12179.00 0.00 255.50 

A2–20–100–100–4–250 26663.00 26687.30 72.81 2807.51 26649.00 26688.60 1760.24 563.47 

A2–20–100–100–4–500 26594.00 26597.00 9.00 2696.12 26594.00 26598.90 216.09 439.30 

A2–20–100–100–5–250 23521.00 23533.50 156.25 2998.41 23521.00 23536.00 150.00 550.10 

A2–20–100–100–5–500 23419.00 23419.00 0.00 2696.58 23419.00 23419.40 1.44 402.30 

A2–20–100–100–6–250 21636.00 21646.80 986.16 3172.32 21623.00 21727.40 1211.04 536.90 

A2–20–100–100–6–500 20966.00 20966.00 0.00 3031.94 20966.00 20966.00 0.00 448.47 

A2–20–100–100–8–250 19346.00 19362.60 61.44 3381.31 19346.00 19347.50 7.65 553.09 

A2–20–100–100–8–500 18458.00 18458.40 1.44 3234.43 18458.00 18458.00 0.00 463.11 

B1–1–25–75–4–250 7146.00 7146.00 0.00 26.13 7146.00 7146.00 0.00 130.50 

B1–1–25–75–4–500 7146.00 7146.00 0.00 30.18 7146.00 7146.00 0.00 130.11 

B1–1–25–75–5–250 7114.00 7114.00 0.00 30.44 7114.00 7114.00 0.00 130.78 

B1–1–25–75–5–500 6901.00 6901.00 0.00 30.28 6901.00 6901.00 0.00 129.33 

B1–1–25–75–6–250 7114.00 7114.00 0.00 27.89 7114.00 7114.00 0.00 131.15 

B1–1–25–75–6–500 6450.00 6450.00 0.00 25.43 6450.00 6450.00 0.00 128.52 

B1–1–25–75–8–250 7114.00 7114.00 0.00 29.47 7114.00 7114.00 0.00 131.27 

B1–1–25–75–8–500 6450.00 6450.00 0.00 22.98 6450.00 6450.00 0.00 128.71 

B1–1–50–50–4–250 10107.00 10107.00 0.00 61.92 10107.00 10107.00 0.00 191.45 

( continued on next page ) 
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Table A.7 ( continued ) 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

B1–1–50–50–4–500 10107.00 10107.00 0.00 62.30 10107.00 10107.00 0.00 190.11 

B1–1–50–50–5–250 9723.00 9723.00 0.00 68.05 9723.00 9723.00 0.00 189.47 

B1–1–50–50–5–500 9723.00 9723.00 0.00 63.02 9723.00 9723.00 0.00 189.60 

B1–1–50–50–6–250 9382.00 9382.00 0.00 65.74 9382.00 9382.00 0.00 188.43 

B1–1–50–50–6–500 9382.00 9382.00 0.00 61.81 9382.00 9382.00 0.00 190.09 

B1–1–50–50–8–250 9234.00 9246.50 681.25 62.08 9234.00 9238.00 4.00 214.72 

B1–1–50–50–8–500 9234.00 9238.00 9.00 62.45 9234.00 9237.50 5.25 208.23 

B1–10–50–50–4–250 15209.00 15209.00 0.00 150.12 15209.00 15209.00 0.00 230.55 

B1–10–50–50–4–500 15209.00 15209.00 0.00 152.21 15209.00 15209.00 0.00 226.57 

B1–10–50–50–5–250 13535.00 13535.00 0.00 170.19 13535.00 13535.00 0.00 217.53 

B1–10–50–50–5–500 13535.00 13535.00 0.00 162.57 13535.00 13535.00 0.00 217.91 

B1–10–50–50–6–250 12067.00 12067.00 0.00 164.59 12067.00 12067.00 0.00 209.35 

B1–10–50–50–6–500 12067.00 12067.00 0.00 161.64 12067.00 12067.00 0.00 208.17 

B1–10–50–50–8–250 10344.00 10344.00 0.00 158.95 10344.00 10344.00 0.00 210.21 

B1–10–50–50–8–500 10344.00 10344.00 0.00 156.39 10344.00 10344.00 0.00 206.45 

B1–5–25–75–4–250 9465.00 9465.00 0.00 19.12 9465.00 9465.00 0.00 139.19 

B1–5–25–75–4–500 9465.00 9465.00 0.00 17.78 9465.00 9465.00 0.00 139.34 

B1–5–25–75–5–250 9460.00 9460.00 0.00 18.86 9460.00 9460.00 0.00 139.44 

B1–5–25–75–5–500 9460.00 9460.00 0.00 19.23 9460.00 9460.00 0.00 139.86 

B1–5–25–75–6–250 9460.00 9460.00 0.00 19.16 9460.00 9460.00 0.00 138.51 

B1–5–25–75–6–500 9460.00 9460.00 0.00 17.91 9460.00 9460.00 0.00 139.41 

B1–5–25–75–8–250 9460.00 9460.00 0.00 18.06 9460.00 9460.00 0.00 138.30 

B1–5–25–75–8–500 9460.00 9460.00 0.00 18.74 9460.00 9460.00 0.00 138.66 

B2–1–100–100–4–250 18650.00 18716.20 489.16 1182.89 18650.00 18650.00 0.00 338.53 

B2–1–100–100–4–500 18650.00 18664.60 852.64 1174.24 18650.00 18650.00 0.00 334.75 

B2–1–100–100–5–250 16572.00 16572.00 0.00 1258.55 16572.00 16572.00 0.00 428.94 

B2–1–100–100–5–500 16325.00 16455.70 13940.41 1255.83 16325.00 16325.00 0.00 476.51 

B2–1–100–100–6–250 15452.00 15452.00 0.00 1194.33 15452.00 15452.00 0.00 405.14 

B2–1–100–100–6–500 15010.00 15066.80 2586.76 1189.59 15010.00 15010.00 0.00 397.56 

B2–1–100–100–8–250 15312.00 15312.00 0.00 1366.38 15312.00 15312.00 0.00 421.01 

B2–1–100–100–8–500 13292.00 13341.80 3764.16 1385.83 13292.00 13292.00 0.00 344.94 

B2–1–50–150–4–250 11175.00 11175.00 0.00 88.47 11175.00 11175.00 0.00 249.81 

B2–1–50–150–4–500 11175.00 11175.00 0.00 89.54 11175.00 11175.00 0.00 228.28 

B2–1–50–150–5–250 10585.00 10585.00 0.00 89.71 10585.00 10585.00 0.00 226.42 

B2–1–50–150–5–500 10585.00 10585.00 0.00 91.42 10585.00 10585.00 0.00 227.81 

B2–1–50–150–6–250 9799.00 9799.00 0.00 93.01 9799.00 9799.00 0.00 231.43 

B2–1–50–150–6–500 9799.00 9799.00 0.00 96.80 9799.00 9799.00 0.00 243.82 

B2–1–50–150–8–250 9362.00 9373.50 1190.25 94.68 9362.00 9362.00 0.00 239.02 

B2–1–50–150–8–500 9362.00 9362.00 0.00 97.00 9362.00 9362.00 0.00 241.34 

B2–10–50–150–4–250 16667.00 16667.00 0.00 229.51 16667.00 16667.00 0.00 253.07 

B2–10–50–150–4–500 16667.00 16667.00 0.00 230.63 16667.00 16667.00 0.00 245.05 

B2–10–50–150–5–250 14188.00 14188.00 0.00 250.89 14188.00 14188.00 0.00 237.95 

B2–10–50–150–5–500 14188.00 14188.00 0.00 234.70 14188.00 14188.00 0.00 235.58 

B2–10–50–150–6–250 12954.00 12954.00 0.00 238.72 12954.00 12954.00 0.00 235.55 

B2–10–50–150–6–500 12954.00 12954.00 0.00 221.54 12954.00 12954.00 0.00 234.99 

B2–10–50–150–8–250 11495.00 11495.00 0.00 231.97 11495.00 11495.00 0.00 233.41 

B2–10–50–150–8–500 11495.00 11495.00 0.00 240.50 11495.00 11495.00 0.00 232.57 

B2–20–100–100–4–250 34062.00 34084.10 791.49 8015.92 34062.00 34062.00 0.00 537.93 

B2–20–100–100–4–500 34062.00 34069.70 25.41 7814.01 34062.00 34062.00 0.00 539.23 

B2–20–100–100–5–250 29405.00 29413.40 179.04 8502.01 29405.00 29412.20 71.76 716.95 

B2–20–100–100–5–500 29405.00 29426.20 270.96 8390.54 29405.00 29409.10 11.29 688.94 

B2–20–100–100–6–250 25960.00 25960.20 0.16 8983.15 25960.00 25960.10 0.09 531.65 

B2–20–100–100–6–500 25960.00 25960.00 0.00 8355.50 25960.00 25960.30 0.21 519.32 

B2–20–100–100–8–250 22086.00 22143.80 490.56 9206.32 22082.00 22118.50 1332.25 632.76 

B2–20–100–100–8–500 22082.00 22140.90 877.69 9720.07 22082.00 22111.30 1287.81 570.66 

C1–1–25–75–4–250 7420.00 7420.00 0.00 20.96 7420.00 7420.00 0.00 126.37 

C1–1–25–75–4–500 7420.00 7420.00 0.00 20.88 7420.00 7420.00 0.00 126.53 

C1–1–25–75–5–250 7420.00 7420.00 0.00 21.29 7420.00 7420.00 0.00 126.86 

C1–1–25–75–5–500 7420.00 7420.00 0.00 20.82 7420.00 7420.00 0.00 126.68 

C1–1–25–75–6–250 7420.00 7420.00 0.00 18.65 7420.00 7420.00 0.00 127.18 

C1–1–25–75–6–500 7420.00 7420.00 0.00 20.92 7420.00 7420.00 0.00 127.71 

C1–1–25–75–8–250 7420.00 7420.00 0.00 20.82 7420.00 7420.00 0.00 127.36 

C1–1–25–75–8–500 7420.00 7420.00 0.00 20.37 7420.00 7420.00 0.00 128.50 

C1–1–50–50–4–250 11372.00 11372.00 0.00 65.07 11372.00 11372.00 0.00 193.31 

C1–1–50–50–4–500 11372.00 11372.00 0.00 64.30 11372.00 11372.00 0.00 194.10 

C1–1–50–50–5–250 990 0.0 0 990 0.0 0 0.00 66.49 990 0.0 0 990 0.0 0 0.00 195.96 

C1–1–50–50–5–500 990 0.0 0 990 0.0 0 0.00 66.27 990 0.0 0 990 0.0 0 0.00 193.65 

C1–1–50–50–6–250 9895.00 9895.00 0.00 67.76 9895.00 9895.00 0.00 194.36 

C1–1–50–50–6–500 9895.00 9895.00 0.00 65.24 9895.00 9895.00 0.00 193.51 

C1–1–50–50–8–250 9895.00 9895.00 0.00 66.27 9895.00 9895.00 0.00 193.64 

C1–1–50–50–8–500 9895.00 9895.00 0.00 66.32 9895.00 9895.00 0.00 195.86 

C1–10–50–50–4–250 18212.00 18212.00 0.00 149.66 18212.00 18212.00 0.00 247.74 

C1–10–50–50–4–500 18212.00 18212.00 0.00 149.94 18212.00 18212.00 0.00 241.64 

C1–10–50–50–5–250 16362.00 16362.00 0.00 161.62 16362.00 16362.00 0.00 251.96 

( continued on next page ) 
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Table A.7 ( continued ) 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

C1–10–50–50–5–500 16362.00 16362.00 0.00 152.77 16362.00 16362.00 0.00 238.97 

C1–10–50–50–6–250 15164.00 15164.00 0.00 156.56 15164.00 15164.00 0.00 223.85 

C1–10–50–50–6–500 14749.00 14749.00 0.00 164.05 14749.00 14749.00 0.00 218.58 

C1–10–50–50–8–250 15164.00 15164.00 0.00 164.92 15164.00 15164.00 0.00 219.00 

C1–10–50–50–8–500 14683.00 14683.00 0.00 184.57 14683.00 14683.00 0.00 258.00 

C1–5–25–75–4–250 11934.00 11934.00 0.00 19.09 11934.00 11934.00 0.00 140.84 

C1–5–25–75–4–500 9898.00 9898.00 0.00 18.47 9898.00 9898.00 0.00 136.65 

C1–5–25–75–5–250 10894.00 10894.00 0.00 18.94 10894.00 10894.00 0.00 140.13 

C1–5–25–75–5–500 9898.00 9898.00 0.00 18.71 9898.00 9898.00 0.00 139.03 

C1–5–25–75–6–250 10779.00 10779.00 0.00 22.59 10779.00 10779.00 0.00 137.15 

C1–5–25–75–6–500 9898.00 9898.00 0.00 17.74 9898.00 9898.00 0.00 139.30 

C1–5–25–75–8–250 10779.00 10779.00 0.00 18.76 10779.00 10779.00 0.00 136.97 

C1–5–25–75–8–500 9898.00 9898.00 0.00 18.99 9898.00 9898.00 0.00 138.08 

D1–1–25–75–4–250 7671.00 7671.00 0.00 14.18 7671.00 7671.00 0.00 130.61 

D1–1–25–75–4–500 7671.00 7671.00 0.00 14.38 7671.00 7671.00 0.00 130.23 

D1–1–25–75–5–250 7671.00 7671.00 0.00 14.09 7671.00 7671.00 0.00 131.24 

D1–1–25–75–5–500 7671.00 7671.00 0.00 14.47 7671.00 7671.00 0.00 130.79 

D1–1–25–75–6–250 7671.00 7671.00 0.00 14.39 7671.00 7671.00 0.00 132.31 

D1–1–25–75–6–500 7671.00 7671.00 0.00 14.19 7671.00 7671.00 0.00 131.01 

D1–1–25–75–8–250 7671.00 7671.00 0.00 14.12 7671.00 7671.00 0.00 132.23 

D1–1–25–75–8–500 7671.00 7671.00 0.00 14.57 7671.00 7671.00 0.00 130.94 

D1–1–50–50–4–250 11606.00 11606.00 0.00 93.21 11606.00 11606.00 0.00 183.60 

D1–1–50–50–4–500 11606.00 11606.00 0.00 90.10 11606.00 11606.00 0.00 181.22 

D1–1–50–50–5–250 11090.00 11090.00 0.00 91.57 11090.00 11090.00 0.00 188.42 

D1–1–50–50–5–500 11090.00 11090.00 0.00 85.93 11090.00 11090.00 0.00 188.02 

D1–1–50–50–6–250 11036.00 11036.60 0.24 87.62 11036.00 11036.10 0.09 242.54 

D1–1–50–50–6–500 11037.00 11037.00 0.00 86.50 11036.00 11036.00 0.00 247.92 

D1–1–50–50–8–250 11037.00 11037.00 0.00 86.98 11036.00 11036.00 0.00 219.19 

D1–1–50–50–8–500 11037.00 11037.00 0.00 85.33 11036.00 11036.00 0.00 226.07 

D1–10–50–50–4–250 21112.00 21112.00 0.00 284.89 21112.00 21112.00 0.00 216.44 

D1–10–50–50–4–500 20982.00 20982.00 0.00 268.39 20982.00 20982.00 0.00 221.48 

D1–10–50–50–5–250 18696.00 18696.00 0.00 261.87 18696.00 18696.00 0.00 232.73 

D1–10–50–50–5–500 18696.00 18696.00 0.00 250.56 18696.00 18696.00 0.00 234.68 

D1–10–50–50–6–250 17059.00 17063.60 27.44 227.90 17059.00 17059.00 0.00 231.87 

D1–10–50–50–6–500 16711.00 16711.00 0.00 219.54 16711.00 16715.50 182.25 315.28 

D1–10–50–50–8–250 16989.00 16990.40 7.84 235.89 16989.00 16989.00 0.00 218.92 

D1–10–50–50–8–500 16341.00 16341.00 0.00 232.51 16341.00 16341.00 0.00 234.01 

D1–5–25–75–4–250 12411.00 12411.00 0.00 20.66 12411.00 12411.00 0.00 152.69 

D1–5–25–75–4–500 12411.00 12411.00 0.00 20.51 12411.00 12411.00 0.00 147.94 

D1–5–25–75–5–250 11432.00 11432.00 0.00 22.18 11432.00 11432.00 0.00 144.95 

D1–5–25–75–5–500 11432.00 11432.00 0.00 22.94 11432.00 11432.00 0.00 145.24 

D1–5–25–75–6–250 11432.00 11432.00 0.00 20.80 11432.00 11432.00 0.00 146.18 

D1–5–25–75–6–500 9669.00 9669.00 0.00 22.16 9669.00 9669.00 0.00 144.58 

D1–5–25–75–8–250 11432.00 11432.00 0.00 20.98 11432.00 11432.00 0.00 144.76 

D1–5–25–75–8–500 9312.00 9312.00 0.00 22.76 9312.00 9312.00 0.00 142.26 

Table A.8 

Computational results of experiments on mm -CTP- p 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

A1–1–25–75–4–250 17774.00 17774.00 0.00 56.77 17774.00 17774.00 0.00 178.34 

A1–1–25–75–5–250 15793.00 15793.00 0.00 61.86 15793.00 15793.00 0.00 177.52 

A1–1–25–75–6–250 14628.00 14628.00 0.00 59.14 14628.00 14628.00 0.00 178.32 

A1–1–25–75–8–250 12590.00 12590.00 0.00 60.39 12590.00 12590.00 0.00 179.16 

A1–1–50–50–4–250 21473.00 21473.00 0.00 860.54 21473.00 21473.00 0.00 283.15 

A1–1–50–50–5–250 18680.00 18680.00 0.00 898.80 18680.00 18680.00 0.00 287.94 

A1–1–50–50–6–250 17481.00 17481.00 0.00 944.39 17481.00 17481.00 0.00 284.99 

A1–1–50–50–8–250 14380.00 14380.00 0.00 965.42 14380.00 14380.00 0.00 278.43 

A1–10–50–50–4–250 25340.00 25340.00 0.00 1165.99 25340.00 25340.00 0.00 298.60 

A1–10–50–50–5–250 21712.00 21712.00 0.00 1133.15 21712.00 21712.00 0.00 309.51 

A1–10–50–50–6–250 20125.00 20125.00 0.00 1144.12 20125.00 20125.00 0.00 300.33 

A1–10–50–50–8–250 17603.00 17603.00 0.00 1253.44 17603.00 17603.00 0.00 308.99 

A1–5–25–75–4–250 13082.00 13082.00 0.00 20.83 13082.00 13082.00 0.00 159.75 

A1–5–25–75–5–250 11969.00 11969.00 0.00 21.74 11969.00 11969.00 0.00 159.81 

A1–5–25–75–6–250 11746.00 11746.00 0.00 21.10 11746.00 11746.00 0.00 162.48 

A1–5–25–75–8–250 9081.00 9081.00 0.00 21.46 9081.00 9081.00 0.00 155.13 

A2–1–100–100–4–250 25051.00 25058.20 60.96 3656.09 25026.00 25033.60 134.84 538.48 

A2–1–100–100–5–250 21626.00 21677.30 292.41 4140.76 21626.00 21669.10 629.89 717.98 

A2–1–100–100–6–250 19119.00 19180.20 7823.96 4026.62 19108.00 19108.00 0.00 565.29 

A2–1–100–100–8–250 16226.00 16241.00 235.80 4051.89 16209.00 16266.40 3803.84 564.42 

A2–1–50–150–4–250 23601.00 23613.60 635.04 798.37 23601.00 23601.00 0.00 533.38 

( continued on next page ) 
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Table A.8 ( continued ) 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

A2–1–50–150–5–250 20439.00 20443.20 158.76 835.08 20439.00 20483.40 3591.84 617.65 

A2–1–50–150–6–250 18410.00 18410.00 0.00 829.21 18410.00 18410.00 0.00 493.03 

A2–1–50–150–8–250 15565.00 15593.30 145.41 768.58 15502.00 15502.00 0.00 371.09 

A2–10–50–150–4–250 25702.00 25712.40 432.64 1072.54 25702.00 25702.00 0.00 380.91 

A2–10–50–150–5–250 21503.00 21503.00 0.00 1046.22 21503.00 21503.00 0.00 369.09 

A2–10–50–150–6–250 20250.00 20250.00 0.00 1126.13 20250.00 20250.00 0.00 353.10 

A2–10–50–150–8–250 16676.00 16676.00 0.00 1091.21 16676.00 16676.00 0.00 354.46 

A2–20–100–100–4–250 38074.00 38104.40 316.04 16115.14 38074.00 38078.60 84.64 704.69 

A2–20–100–100–5–250 32646.00 32680.90 872.09 16736.41 32583.00 32634.20 5179.16 825.72 

A2–20–100–100–6–250 28490.00 28576.00 3811.60 18798.71 28490.00 28490.00 0.00 683.06 

A2–20–100–100–8–250 24615.00 24652.90 555.49 16746.77 24593.00 24605.10 351.09 901.37 

B1–1–25–75–4–250 17417.00 17417.00 0.00 71.63 17417.00 17417.00 0.00 194.08 

B1–1–25–75–5–250 15891.00 15891.00 0.00 77.48 15891.00 15891.00 0.00 183.65 

B1–1–25–75–6–250 14260.00 14260.00 0.00 70.93 14260.00 14260.00 0.00 186.37 

B1–1–25–75–8–250 11538.00 11538.00 0.00 72.92 11538.00 11538.00 0.00 188.12 

B1–1–50–50–4–250 19966.00 19966.00 0.00 555.05 19966.00 19966.00 0.00 280.26 

B1–1–50–50–5–250 17113.00 17179.10 10915.89 573.71 17113.00 17113.00 0.00 328.04 

B1–1–50–50–6–250 15989.00 15999.50 785.45 534.80 15989.00 15989.00 0.00 292.18 

B1–1–50–50–8–250 14027.00 14027.00 0.00 540.37 14027.00 14027.00 0.00 296.37 

B1–10–50–50–4–250 20 075.0 0 20 075.0 0 0.00 735.56 20 075.0 0 20 075.0 0 0.00 277.25 

B1–10–50–50–5–250 17986.00 17986.00 0.00 789.64 17986.00 17986.00 0.00 307.10 

B1–10–50–50–6–250 15924.00 15924.00 0.00 803.43 15924.00 15924.00 0.00 258.94 

B1–10–50–50–8–250 13672.00 13705.60 4515.84 703.80 13672.00 13672.00 0.00 267.91 

B1–5–25–75–4–250 17079.00 17079.00 0.00 54.82 17079.00 17079.00 0.00 201.98 

B1–5–25–75–5–250 15110.00 15110.00 0.00 59.68 15110.00 15110.00 0.00 190.72 

B1–5–25–75–6–250 14707.00 14707.00 0.00 62.32 14707.00 14707.00 0.00 192.43 

B1–5–25–75–8–250 11319.00 11319.00 0.00 60.69 11319.00 11319.00 0.00 194.38 

B2–1–100–100–4–250 40974.00 40993.10 741.69 20287.35 40974.00 41001.50 3025.05 821.72 

B2–1–100–100–5–250 34 84 8.00 34856.30 34.61 21132.51 34 84 8.00 34 84 8.00 0.00 883.70 

B2–1–100–100–6–250 30829.00 30880.10 1715.69 21999.00 30849.00 30894.30 996.81 856.52 

B2–1–100–100–8–250 25804.00 25914.10 3048.29 20826.46 25804.00 25820.00 256.00 993.06 

B2–1–50–150–4–250 23288.00 23288.00 0.00 881.96 23288.00 23288.00 0.00 339.12 

B2–1–50–150–5–250 20 039.0 0 20 039.0 0 0.00 866.44 20 039.0 0 20 039.0 0 0.00 332.39 

B2–1–50–150–6–250 18046.00 18046.00 0.00 891.85 18046.00 18046.00 0.00 345.81 

B2–1–50–150–8–250 15668.00 15668.00 0.00 959.18 15668.00 15668.00 0.00 313.84 

B2–10–50–150–4–250 25967.00 25967.00 0.00 1452.23 25967.00 25967.00 0.00 346.35 

B2–10–50–150–5–250 22359.00 22359.00 0.00 1421.98 22359.00 22359.00 0.00 334.17 

B2–10–50–150–6–250 19792.00 19792.00 0.00 1539.92 19792.00 19792.00 0.00 348.38 

B2–10–50–150–8–250 17106.00 17106.10 0.09 1386.24 17106.00 17106.00 0.00 361.92 

B2–20–100–100–4–250 53590.00 53591.90 32.49 38501.00 53590.00 53590.00 0.00 763.91 

B2–20–100–100–5–250 45209.00 45209.00 0.00 42990.69 45209.00 45213.40 174.24 743.29 

B2–20–100–100–6–250 39184.00 39194.20 560.16 41914.83 39184.00 39184.00 0.00 712.49 

B2–20–100–100–8–250 32513.00 32524.20 1128.96 38976.69 32512.00 32531.00 14 4 4.00 861.18 

C1–1–25–75–4–250 13012.00 13012.00 0.00 31.86 13012.00 13012.00 0.00 160.63 

C1–1–25–75–5–250 11666.00 11666.00 0.00 31.39 11666.00 11666.00 0.00 159.93 

C1–1–25–75–6–250 9820.00 9820.00 0.00 30.00 9820.00 9820.00 0.00 156.82 

C1–1–25–75–8–250 9818.00 9818.00 0.00 31.94 9818.00 9818.00 0.00 159.01 

C1–1–50–50–4–250 20294.00 20294.00 0.00 574.60 20294.00 20294.00 0.00 258.98 

C1–1–50–50–5–250 17378.00 17378.00 0.00 619.47 17378.00 17378.00 0.00 268.75 

C1–1–50–50–6–250 16365.00 16365.00 0.00 636.53 16365.00 16365.00 0.00 265.50 

C1–1–50–50–8–250 1390 0.0 0 1390 0.0 0 0.00 616.37 1390 0.0 0 1390 0.0 0 0.00 260.33 

C1–10–50–50–4–250 26931.00 26931.00 0.00 937.78 26931.00 26931.00 0.00 291.93 

C1–10–50–50–5–250 23544.00 23544.00 0.00 1075.82 23544.00 23544.00 0.00 412.64 

C1–10–50–50–6–250 20818.00 20818.00 0.00 1001.74 20818.00 20818.00 0.00 331.56 

C1–10–50–50–8–250 18154.00 18158.80 34.56 980.82 18154.00 18154.00 0.00 292.64 

C1–5–25–75–4–250 13738.00 13738.00 0.00 35.89 13738.00 13738.00 0.00 168.41 

C1–5–25–75–5–250 13575.00 13575.00 0.00 34.92 13575.00 13575.00 0.00 175.35 

C1–5–25–75–6–250 10826.00 10826.00 0.00 37.02 10826.00 10826.00 0.00 166.63 

C1–5–25–75–8–250 10556.00 10556.00 0.00 34.40 10556.00 10556.00 0.00 168.97 

D1–1–25–75–4–250 18127.00 18127.00 0.00 35.35 18127.00 18127.00 0.00 175.32 

D1–1–25–75–5–250 15972.00 15972.00 0.00 36.79 15972.00 15972.00 0.00 175.92 

D1–1–25–75–6–250 14532.00 14532.00 0.00 39.30 14532.00 14532.00 0.00 175.72 

D1–1–25–75–8–250 1270 0.0 0 1270 0.0 0 0.00 36.71 1270 0.0 0 1270 0.0 0 0.00 174.48 

D1–1–50–50–4–250 23275.00 23275.00 0.00 716.26 23275.00 23275.00 0.00 271.06 

D1–1–50–50–5–250 20402.00 20402.00 0.00 719.32 20402.00 20402.00 0.00 275.12 

D1–1–50–50–6–250 18072.00 18072.00 0.00 741.83 18072.00 18072.00 0.00 257.36 

D1–1–50–50–8–250 14930.00 14930.00 0.00 684.95 14930.00 14930.00 0.00 24 9.6 8 

D1–10–50–50–4–250 30390.00 30390.00 0.00 1407.15 30390.00 30390.00 0.00 308.98 

D1–10–50–50–5–250 26284.00 26284.00 0.00 1509.47 26284.00 26284.00 0.00 331.55 

D1–10–50–50–6–250 23646.00 23646.00 0.00 1433.92 23646.00 23646.00 0.00 304.10 

D1–10–50–50–8–250 19986.00 19986.00 0.00 1404.40 19986.00 19986.00 0.00 323.79 

D1–5–25–75–4–250 18464.00 18464.00 0.00 21.99 18464.00 18464.00 0.00 177.63 

D1–5–25–75–5–250 15767.00 15767.00 0.00 21.86 15767.00 15767.00 0.00 176.24 

D1–5–25–75–6–250 14851.00 14851.00 0.00 21.89 14851.00 14851.00 0.00 180.31 

D1–5–25–75–8–250 12705.00 12705.00 0.00 20.65 12705.00 12705.00 0.00 183.84 
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Table A.9 

Computational results of experiments on mm -CTP 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

A1–1–25–75–4–250 21806.00 21806.00 0.00 56.75 21806.00 21806.00 0.00 275.73 

A1–1–25–75–4–500 20553.00 20553.00 0.00 55.82 20553.00 20553.00 0.00 261.70 

A1–1–25–75–5–250 21282.00 21282.00 0.00 54.08 21282.00 21282.00 0.00 258.66 

A1–1–25–75–5–500 19561.00 19561.00 0.00 59.80 19561.00 19561.00 0.00 273.83 

A1–1–25–75–6–250 20808.00 20808.00 0.00 65.62 20808.00 20808.00 0.00 265.90 

A1–1–25–75–6–500 19012.00 19012.00 0.00 59.87 19012.00 19012.00 0.00 267.62 

A1–1–25–75–8–250 20 0 03.0 0 20 0 03.0 0 0.00 58.43 20 0 03.0 0 20 0 03.0 0 0.00 256.28 

A1–1–25–75–8–500 18563.00 18563.00 0.00 59.57 18563.00 18563.00 0.00 263.53 

A1–1–50–50–4–250 21529.00 21529.00 0.00 836.00 21529.00 21529.00 0.00 416.83 

A1–1–50–50–4–500 21529.00 21529.00 0.00 867.47 21529.00 21529.00 0.00 411.23 

A1–1–50–50–5–250 19762.00 19762.00 0.00 854.81 19762.00 19762.00 0.00 426.87 

A1–1–50–50–5–500 19581.00 19581.00 0.00 950.36 19581.00 19581.00 0.00 425.64 

A1–1–50–50–6–250 18208.00 18216.80 696.96 1023.57 18208.00 18208.00 0.00 435.65 

A1–1–50–50–6–500 17976.00 17976.00 0.00 952.88 17976.00 17976.00 0.00 422.75 

A1–1–50–50–8–250 16941.00 16941.00 0.00 965.86 16941.00 16941.00 0.00 428.45 

A1–1–50–50–8–500 15399.00 15399.00 0.00 985.77 15399.00 15399.00 0.00 414.47 

A1–10–50–50–4–250 25340.00 25340.00 0.00 1137.83 25340.00 25340.00 0.00 432.17 

A1–10–50–50–4–500 25340.00 25340.00 0.00 1146.13 25340.00 25340.00 0.00 439.03 

A1–10–50–50–5–250 22626.00 22786.60 6976.44 1198.89 22626.00 22626.00 0.00 544.12 

A1–10–50–50–5–500 22650.00 22680.60 104.04 1200.45 22626.00 22626.00 0.00 572.30 

A1–10–50–50–6–250 20841.00 20848.90 561.69 1181.82 20841.00 20841.00 0.00 489.82 

A1–10–50–50–6–500 20841.00 20878.50 3598.65 1181.43 20841.00 20841.00 0.00 505.40 

A1–10–50–50–8–250 19420.00 19425.90 313.29 1502.19 19420.00 19420.00 0.00 448.59 

A1–10–50–50–8–500 18136.00 18136.00 0.00 1442.02 18136.00 18136.00 0.00 480.46 

A1–5–25–75–4–250 17657.00 17657.00 0.00 20.72 17657.00 17657.00 0.00 229.80 

A1–5–25–75–4–500 16359.00 16359.00 0.00 20.31 16359.00 16359.00 0.00 239.82 

A1–5–25–75–5–250 17657.00 17657.00 0.00 20.53 17657.00 17657.00 0.00 227.58 

A1–5–25–75–5–500 15861.00 15861.00 0.00 21.09 15861.00 15861.00 0.00 231.91 

A1–5–25–75–6–250 17657.00 17657.00 0.00 21.15 17657.00 17657.00 0.00 228.47 

A1–5–25–75–6–500 15861.00 15861.00 0.00 21.27 15861.00 15861.00 0.00 233.05 

A1–5–25–75–8–250 17657.00 17657.00 0.00 20.42 17657.00 17657.00 0.00 228.97 

A1–5–25–75–8–500 15861.00 15861.00 0.00 20.67 15861.00 15861.00 0.00 233.18 

A2–1–100–100–4–250 25042.00 25065.20 59.96 4064.08 25042.00 25057.00 150.00 836.24 

A2–1–100–100–4–500 25051.00 25058.20 64.16 4132.39 25026.00 25033.60 134.84 767.31 

A2–1–100–100–5–250 22247.00 22539.60 19154.64 4310.79 22225.00 22401.20 41774.56 1059.88 

A2–1–100–100–5–500 2190 0.0 0 21937.20 1811.36 4523.04 2190 0.0 0 21969.60 700.04 985.26 

A2–1–100–100–6–250 20311.00 20818.90 70188.89 4311.42 19867.00 19907.30 3260.01 784.42 

A2–1–100–100–6–500 19372.00 19441.80 1606.76 4609.52 19374.00 19436.20 3977.76 1276.15 

A2–1–100–100–8–250 16720.00 17579.70 335674.01 4593.41 16724.00 16750.70 6416.01 915.19 

A2–1–100–100–8–500 17095.00 17308.40 16817.04 4718.67 16724.00 16724.00 0.00 734.34 

A2–1–50–150–4–250 23601.00 23619.90 833.49 833.83 23601.00 23626.20 952.56 744.91 

A2–1–50–150–4–500 23601.00 23632.50 992.25 855.30 23601.00 23626.20 952.56 713.13 

A2–1–50–150–5–250 20573.00 20576.10 86.49 849.69 20573.00 20573.00 0.00 488.85 

A2–1–50–150–5–500 20573.00 20573.00 0.00 896.83 20573.00 20573.00 0.00 525.43 

A2–1–50–150–6–250 18971.00 19023.20 1787.56 898.65 18971.00 18971.00 0.00 482.62 

A2–1–50–150–6–500 18791.00 18791.00 0.00 925.24 18779.00 18789.80 12.96 553.90 

A2–1–50–150–8–250 16632.00 17347.30 127749.41 863.75 16614.00 16614.00 0.00 485.87 

A2–1–50–150–8–500 15624.00 15838.60 8868.04 995.61 15502.00 15502.00 0.00 466.23 

A2–10–50–150–4–250 25702.00 25712.40 432.64 1129.50 25702.00 25702.00 0.00 537.85 

A2–10–50–150–4–500 25702.00 25728.00 1216.80 1144.89 25702.00 25702.00 0.00 551.62 

A2–10–50–150–5–250 21503.00 21503.00 0.00 1076.68 21503.00 21503.00 0.00 497.11 

A2–10–50–150–5–500 21503.00 21503.00 0.00 1049.79 21503.00 21503.00 0.00 582.18 

A2–10–50–150–6–250 20250.00 20250.00 0.00 1245.77 20250.00 20250.00 0.00 511.71 

A2–10–50–150–6–500 20250.00 20250.00 0.00 1226.91 20250.00 20250.00 0.00 561.45 

A2–10–50–150–8–250 17469.00 17469.00 0.00 1229.00 17469.00 17469.00 0.00 476.54 

A2–10–50–150–8–500 16676.00 16676.00 0.00 1257.36 16676.00 16676.00 0.00 482.76 

A2–20–100–100–4–250 38074.00 38099.20 442.36 18389.65 38074.00 38074.00 0.00 1040.52 

A2–20–100–100–4–500 38074.00 38098.10 296.89 19409.64 38074.00 38078.60 84.64 1003.44 

A2–20–100–100–5–250 32965.00 32994.80 509.76 21065.60 32902.00 32909.80 323.36 1188.38 

A2–20–100–100–5–500 32642.00 32672.90 771.69 19980.46 32583.00 32583.00 0.00 1222.22 

A2–20–100–100–6–250 29204.00 29282.30 1873.21 20956.43 29195.00 29270.60 23231.24 1022.63 

A2–20–100–100–6–500 28490.00 28609.40 3748.04 21706.62 28490.00 28490.00 0.00 1027.93 

A2–20–100–100–8–250 25558.00 25571.70 148.01 21350.77 25547.00 25547.90 7.29 1181.82 

A2–20–100–100–8–500 24629.00 24674.80 1948.36 21310.66 24618.00 24619.80 12.96 1180.46 

B1–1–25–75–4–250 17498.00 17498.00 0.00 93.66 17498.00 17498.00 0.00 284.15 

B1–1–25–75–4–500 17498.00 17498.00 0.00 77.29 17498.00 17498.00 0.00 289.14 

B1–1–25–75–5–250 16016.00 16016.00 0.00 92.93 16016.00 16016.00 0.00 299.77 

B1–1–25–75–5–500 15891.00 15891.00 0.00 89.74 15891.00 15891.00 0.00 270.91 

B1–1–25–75–6–250 15447.00 15450.40 104.04 94.09 15447.00 15447.00 0.00 279.80 

B1–1–25–75–6–500 14260.00 14260.00 0.00 89.22 14260.00 14260.00 0.00 270.71 

B1–1–25–75–8–250 15414.00 15414.00 0.00 93.15 15414.00 15414.00 0.00 288.20 

B1–1–25–75–8–500 13176.00 13176.00 0.00 88.48 13176.00 13176.00 0.00 270.20 

B1–1–50–50–4–250 19966.00 19966.00 0.00 560.83 19966.00 19966.00 0.00 376.11 

B1–1–50–50–4–500 19966.00 19966.00 0.00 566.48 19966.00 19966.00 0.00 393.02 
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Table A.9 ( continued ) 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

B1–1–50–50–5–250 17113.00 17315.70 7108.81 641.37 17113.00 17113.00 0.00 466.63 

B1–1–50–50–5–500 17113.00 17240.50 16256.25 625.33 17113.00 17113.00 0.00 436.24 

B1–1–50–50–6–250 160 0 0.0 0 16030.50 169.05 627.36 15999.00 15999.10 0.09 539.78 

B1–1–50–50–6–500 15989.00 15996.10 221.69 615.54 15989.00 15989.00 0.00 398.64 

B1–1–50–50–8–250 14027.00 14058.60 8987.04 626.09 14027.00 14027.00 0.00 388.30 

B1–1–50–50–8–500 14027.00 14027.00 0.00 693.50 14027.00 14027.00 0.00 399.09 

B1–10–50–50–4–250 20 075.0 0 20 075.0 0 0.00 786.08 20 075.0 0 20 075.0 0 0.00 391.87 

B1–10–50–50–4–500 20 075.0 0 20 077.0 0 36.00 797.22 20 075.0 0 20 075.0 0 0.00 388.82 

B1–10–50–50–5–250 17986.00 17986.40 1.44 830.37 17986.00 17986.00 0.00 416.16 

B1–10–50–50–5–500 17986.00 17986.00 0.00 854.08 17986.00 17986.00 0.00 432.46 

B1–10–50–50–6–250 15924.00 15924.00 0.00 848.42 15924.00 15924.00 0.00 369.12 

B1–10–50–50–6–500 15924.00 15924.00 0.00 886.10 15924.00 15924.00 0.00 372.89 

B1–10–50–50–8–250 13672.00 13672.00 0.00 865.69 13672.00 13672.00 0.00 389.59 

B1–10–50–50–8–500 13672.00 13672.00 0.00 881.17 13672.00 13672.00 0.00 391.43 

B1–5–25–75–4–250 17079.00 17079.00 0.00 60.05 17079.00 17079.00 0.00 289.34 

B1–5–25–75–4–500 17079.00 17079.00 0.00 60.27 17079.00 17079.00 0.00 290.14 

B1–5–25–75–5–250 15110.00 15110.00 0.00 70.42 15110.00 15110.00 0.00 279.87 

B1–5–25–75–5–500 15110.00 15110.00 0.00 61.98 15110.00 15110.00 0.00 278.43 

B1–5–25–75–6–250 14921.00 14933.80 342.96 69.80 14921.00 14921.00 0.00 308.33 

B1–5–25–75–6–500 14707.00 14707.00 0.00 66.18 14707.00 14707.00 0.00 278.53 

B1–5–25–75–8–250 14837.00 14887.40 282.24 68.23 14837.00 14837.00 0.00 316.12 

B1–5–25–75–8–500 14395.00 14395.00 0.00 65.94 14395.00 14395.00 0.00 271.27 

B2–1–100–100–4–250 40974.00 40990.00 448.00 23193.36 40974.00 41013.40 3648.84 1016.86 

B2–1–100–100–4–500 40974.00 40985.00 160.80 23136.23 40974.00 40999.60 2641.44 976.59 

B2–1–100–100–5–250 34 84 8.00 34860.80 120.76 24930.12 34 84 8.00 34862.80 1971.36 945.10 

B2–1–100–100–5–500 34 84 8.00 34862.30 137.01 24963.08 34 84 8.00 34 84 8.00 0.00 1092.92 

B2–1–100–100–6–250 30829.00 30878.50 597.25 25740.75 30849.00 30896.50 2767.45 973.81 

B2–1–100–100–6–500 30829.00 30891.20 1259.36 25583.81 30829.00 30927.20 1668.36 1101.55 

B2–1–100–100–8–250 25871.00 25918.80 703.36 26606.30 25804.00 25899.00 9184.20 1291.55 

B2–1–100–100–8–500 25804.00 25920.10 2829.29 26533.78 25804.00 25852.50 4394.25 1272.65 

B2–1–50–150–4–250 23288.00 23288.00 0.00 985.47 23288.00 23288.00 0.00 478.89 

B2–1–50–150–4–500 23288.00 23288.00 0.00 961.00 23288.00 23288.00 0.00 482.41 

B2–1–50–150–5–250 20 039.0 0 20 039.0 0 0.00 995.30 20 039.0 0 20 039.0 0 0.00 478.53 

B2–1–50–150–5–500 20 039.0 0 20 039.0 0 0.00 966.98 20 039.0 0 20 039.0 0 0.00 471.43 

B2–1–50–150–6–250 18046.00 18046.00 0.00 1012.47 18046.00 18046.00 0.00 460.21 

B2–1–50–150–6–500 18046.00 18046.00 0.00 988.27 18046.00 18046.00 0.00 485.07 

B2–1–50–150–8–250 15668.00 15670.20 43.56 1069.97 15668.00 15668.00 0.00 461.46 

B2–1–50–150–8–500 15668.00 15668.00 0.00 1027.69 15668.00 15668.00 0.00 458.48 

B2–10–50–150–4–250 25967.00 25967.00 0.00 1540.06 25967.00 25967.00 0.00 477.09 

B2–10–50–150–4–500 25967.00 25967.00 0.00 1562.53 25967.00 25967.00 0.00 477.24 

B2–10–50–150–5–250 22359.00 22359.00 0.00 1609.42 22359.00 22359.00 0.00 471.19 

B2–10–50–150–5–500 22359.00 22359.00 0.00 1596.65 22359.00 22359.00 0.00 472.53 

B2–10–50–150–6–250 19792.00 19792.00 0.00 1777.58 19792.00 19792.00 0.00 503.46 

B2–10–50–150–6–500 19792.00 19792.00 0.00 1786.16 19792.00 19792.00 0.00 480.19 

B2–10–50–150–8–250 17106.00 17115.80 134.56 1668.27 17106.00 17106.00 0.00 486.99 

B2–10–50–150–8–500 17106.00 17110.80 92.16 1632.95 17106.00 17106.00 0.00 482.47 

B2–20–100–100–4–250 53590.00 53591.90 32.49 44095.38 53590.00 53590.00 0.00 1015.18 

B2–20–100–100–4–500 53590.00 53591.90 32.49 43115.38 53590.00 53590.00 0.00 1012.73 

B2–20–100–100–5–250 45209.00 45222.80 179.96 49082.43 45209.00 45213.40 174.24 1073.34 

B2–20–100–100–5–500 45209.00 45212.60 51.84 50914.97 45209.00 45209.00 0.00 1049.80 

B2–20–100–100–6–250 39184.00 39230.60 1981.04 51925.36 39184.00 39193.10 745.29 882.57 

B2–20–100–100–6–500 39184.00 39194.60 562.24 52363.99 39184.00 39193.10 745.29 1094.54 

B2–20–100–100–8–250 32610.00 32642.20 970.16 54596.88 32607.00 32616.40 652.84 1363.54 

B2–20–100–100–8–500 32513.00 32526.70 1146.81 55181.70 32512.00 32569.00 2166.00 1220.32 

C1–1–25–75–4–250 13574.00 13574.00 0.00 29.57 13574.00 13574.00 0.00 231.58 

C1–1–25–75–4–500 13012.00 13012.00 0.00 29.39 13012.00 13012.00 0.00 235.05 

C1–1–25–75–5–250 13574.00 13574.00 0.00 28.56 13574.00 13574.00 0.00 233.98 

C1–1–25–75–5–500 13010.00 13010.00 0.00 30.07 13010.00 13010.00 0.00 236.55 

C1–1–25–75–6–250 13574.00 13574.00 0.00 29.25 13574.00 13574.00 0.00 234.54 

C1–1–25–75–6–500 13010.00 13010.00 0.00 29.90 13010.00 13010.00 0.00 233.99 

C1–1–25–75–8–250 13574.00 13574.00 0.00 29.29 13574.00 13574.00 0.00 234.56 

C1–1–25–75–8–500 13010.00 13010.00 0.00 29.38 13010.00 13010.00 0.00 234.15 

C1–1–50–50–4–250 20294.00 20294.00 0.00 603.98 20294.00 20294.00 0.00 379.73 

C1–1–50–50–4–500 20294.00 20294.00 0.00 587.14 20294.00 20294.00 0.00 386.19 

C1–1–50–50–5–250 17378.00 17378.00 0.00 690.86 17378.00 17378.00 0.00 397.29 

C1–1–50–50–5–500 17378.00 17378.00 0.00 661.52 17378.00 17378.00 0.00 399.57 

C1–1–50–50–6–250 16365.00 16365.00 0.00 739.05 16365.00 16365.00 0.00 382.08 

C1–1–50–50–6–500 16365.00 16365.00 0.00 710.37 16365.00 16365.00 0.00 384.23 

C1–1–50–50–8–250 14334.00 14347.60 46.24 774.89 14334.00 14334.00 0.00 379.25 

C1–1–50–50–8–500 14334.00 14339.10 60.69 750.78 14334.00 14334.00 0.00 381.49 

C1–10–50–50–4–250 26931.00 26931.00 0.00 923.63 26931.00 26931.00 0.00 417.08 

C1–10–50–50–4–500 26931.00 26931.00 0.00 937.78 26931.00 26931.00 0.00 414.35 

C1–10–50–50–5–250 23544.00 23544.00 0.00 1039.98 23544.00 23544.00 0.00 519.04 

C1–10–50–50–5–500 23544.00 23544.00 0.00 1080.10 23544.00 23548.90 216.09 482.43 
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Table A.9 ( continued ) 

Data instances GRASP-ELS GA-VLG 

Best Avg. σ 2 Time Best Avg. σ 2 Time 

C1–10–50–50–6–250 20818.00 20818.00 0.00 999.85 20818.00 20818.00 0.00 471.09 

C1–10–50–50–6–500 20818.00 20818.00 0.00 1031.01 20818.00 20818.00 0.00 480.31 

C1–10–50–50–8–250 18748.00 18750.50 43.05 1037.88 18748.00 18748.00 0.00 467.98 

C1–10–50–50–8–500 18154.00 18170.00 133.60 1069.45 18154.00 18154.00 0.00 431.25 

C1–5–25–75–4–250 15028.00 15028.00 0.00 34.59 15028.00 15028.00 0.00 250.06 

C1–5–25–75–4–500 13738.00 13738.00 0.00 35.12 13738.00 13738.00 0.00 243.31 

C1–5–25–75–5–250 13951.00 13951.00 0.00 34.95 13951.00 13951.00 0.00 250.22 

C1–5–25–75–5–500 13646.00 13646.00 0.00 35.26 13646.00 13646.00 0.00 251.17 

C1–5–25–75–6–250 13934.00 13934.00 0.00 35.84 13934.00 13934.00 0.00 250.23 

C1–5–25–75–6–500 13273.00 13273.00 0.00 36.08 13273.00 13273.00 0.00 249.24 

C1–5–25–75–8–250 13934.00 13934.00 0.00 35.18 13934.00 13934.00 0.00 250.17 

C1–5–25–75–8–500 12664.00 12664.00 0.00 37.71 12664.00 12664.00 0.00 24 9.6 8 

D1–1–25–75–4–250 18127.00 18127.00 0.00 40.23 18127.00 18127.00 0.00 257.96 

D1–1–25–75–4–500 18127.00 18127.00 0.00 41.06 18127.00 18127.00 0.00 259.20 

D1–1–25–75–5–250 15972.00 15972.00 0.00 43.44 15972.00 15972.00 0.00 254.18 

D1–1–25–75–5–500 15972.00 15972.00 0.00 44.47 15972.00 15972.00 0.00 256.75 

D1–1–25–75–6–250 15811.00 15811.00 0.00 40.13 15811.00 15811.00 0.00 257.67 

D1–1–25–75–6–500 15811.00 15811.00 0.00 41.21 15811.00 15811.00 0.00 262.81 

D1–1–25–75–8–250 15811.00 15811.00 0.00 41.70 15811.00 15811.00 0.00 257.14 

D1–1–25–75–8–500 15811.00 15811.00 0.00 43.54 15811.00 15811.00 0.00 260.23 

D1–1–50–50–4–250 23275.00 23275.00 0.00 830.87 23275.00 23275.00 0.00 407.66 

D1–1–50–50–4–500 23275.00 23275.00 0.00 824.11 23275.00 23275.00 0.00 398.67 

D1–1–50–50–5–250 20574.00 20574.00 0.00 814.78 20574.00 20574.00 0.00 408.26 

D1–1–50–50–5–500 20402.00 20402.00 0.00 813.52 20402.00 20402.00 0.00 394.40 

D1–1–50–50–6–250 18854.00 18854.00 0.00 910.22 18854.00 18854.00 0.00 380.01 

D1–1–50–50–6–500 18072.00 18072.00 0.00 916.18 18072.00 18072.00 0.00 373.56 

D1–1–50–50–8–250 17056.00 17056.00 0.00 921.68 17056.00 17056.00 0.00 392.02 

D1–1–50–50–8–500 14930.00 14936.70 404.01 1020.60 14930.00 14930.00 0.00 371.29 

D1–10–50–50–4–250 30390.00 30390.00 0.00 1939.51 30390.00 30390.00 0.00 422.12 

D1–10–50–50–4–500 30390.00 30390.00 0.00 1844.94 30390.00 30390.00 0.00 429.72 

D1–10–50–50–5–250 26284.00 26284.00 0.00 2122.53 26284.00 26284.00 0.00 461.95 

D1–10–50–50–5–500 26284.00 26284.00 0.00 2002.74 26284.00 26284.00 0.00 443.68 

D1–10–50–50–6–250 23646.00 23647.50 20.25 2053.15 23646.00 23646.00 0.00 431.83 

D1–10–50–50–6–500 23646.00 23646.00 0.00 1947.01 23646.00 23646.00 0.00 435.04 

D1–10–50–50–8–250 19986.00 19988.60 27.04 2217.45 19986.00 19986.00 0.00 436.62 

D1–10–50–50–8–500 19986.00 19986.00 0.00 2161.55 19986.00 19986.00 0.00 436.41 

D1–5–25–75–4–250 18464.00 18464.00 0.00 25.13 18464.00 18464.00 0.00 256.40 

D1–5–25–75–4–500 18464.00 18464.00 0.00 25.05 18464.00 18464.00 0.00 260.01 

D1–5–25–75–5–250 15767.00 15767.00 0.00 25.34 15767.00 15767.00 0.00 259.66 

D1–5–25–75–5–500 15767.00 15767.00 0.00 24.66 15767.00 15767.00 0.00 259.76 

D1–5–25–75–6–250 15333.00 15333.00 0.00 24.10 15333.00 15333.00 0.00 258.88 

D1–5–25–75–6–500 15333.00 15333.00 0.00 24.12 15333.00 15333.00 0.00 258.06 

D1–5–25–75–8–250 15333.00 15333.00 0.00 25.98 15333.00 15333.00 0.00 258.00 

D1–5–25–75–8–500 15333.00 15333.00 0.00 25.51 15333.00 15333.00 0.00 254.00 

Table A.10 

Computational results of experiments on mm -CTP-o 

Data Instances GRASP-ELS GA-VLG 

Best Save(%) Avg. σ 2 Time Best Save(%) Avg. σ 2 Time 

A1–1–50–50–4–250 18114.00 15.86 18212.30 4937.01 1979.92 17825.00 17.20 17942.20 20069.56 537.28 

A1–1–50–50–4–500 18096.00 15.95 18250.50 5093.85 1971.20 17825.00 17.20 17895.20 12073.76 776.47 

A1–1–50–50–5–250 15904.00 19.52 15955.90 6285.09 2096.74 15904.00 19.52 16143.20 15447.16 820.98 

A1–1–50–50–5–500 15904.00 18.78 16017.90 9519.29 2120.54 15904.00 18.78 16049.10 23563.09 633.34 

A1–1–50–50–6–250 14409.00 20.86 14434.20 1274.76 2230.50 14389.00 20.97 14409.40 101.04 557.82 

A1–1–50–50–6–500 14409.00 19.84 14429.80 974.56 2175.45 14389.00 19.95 14403.40 113.64 672.24 

A1–1–50–50–8–250 12789.00 24.51 12821.10 1175.29 2111.33 12690.00 25.09 12690.90 7.29 643.65 

A1–1–50–50–8–500 12161.00 21.03 12195.00 1245.60 2129.41 12072.00 21.61 12086.30 1674.21 682.76 

B1–1–50–50–4–250 17819.00 10.75 18072.10 7124.89 1386.44 17819.00 10.75 17819.00 0.00 566.62 

B1–1–50–50–4–500 17819.00 10.75 17909.60 15747.24 1385.73 17819.00 10.75 17825.60 392.04 505.28 

B1–1–50–50–5–250 14573.00 14.84 14580.40 394.84 1372.15 14573.00 14.84 14625.00 4056.00 558.62 

B1–1–50–50–5–500 14573.00 14.84 14573.90 0.09 1360.15 14573.00 14.84 14625.00 4056.00 539.55 

B1–1–50–50–6–250 14140.00 11.62 14145.10 60.69 1414.08 13938.00 12.88 14013.30 4819.81 792.10 

B1–1–50–50–6–500 14114.00 11.73 14140.80 124.76 1404.24 13938.00 12.83 14018.40 1651.64 809.27 

B1–1–50–50–8–250 12509.00 10.82 12562.00 1129.40 1421.78 12432.00 11.37 12515.80 13161.36 506.65 

B1–1–50–50–8–500 12546.00 10.56 12574.20 1205.96 1414.26 12432.00 11.37 12528.90 2631.69 589.29 

( continued on next page ) 
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Table A.10 ( continued ) 

Data Instances GRASP-ELS GA-VLG 

Best Save(%) Avg. σ 2 Time Best Save(%) Avg. σ 2 Time 

C1–1–50–50–4–250 18390.00 9.38 18397.20 466.56 1572.46 18390.00 9.38 18390.00 0.00 424.86 

C1–1–50–50–4–500 18390.00 9.38 18390.00 0.00 1581.92 18390.00 9.38 18390.00 0.00 418.84 

C1–1–50–50–5–250 15296.00 11.98 15296.00 0.00 1627.47 15296.00 11.98 15296.00 0.00 384.26 

C1–1–50–50–5–500 15296.00 11.98 15296.00 0.00 1637.14 15296.00 11.98 15296.00 0.00 389.38 

C1–1–50–50–6–250 14736.00 9.95 14769.70 1147.41 1708.93 14735.00 9.96 14740.10 135.29 499.95 

C1–1–50–50–6–500 14735.00 9.96 14774.90 949.89 1697.49 14735.00 9.96 14743.30 438.01 521.45 

C1–1–50–50–8–250 12157.00 15.19 12176.40 879.84 1668.19 12157.00 15.19 12171.60 1489.64 451.22 

C1–1–50–50–8–500 12157.00 15.19 12177.80 672.76 1681.43 12157.00 15.19 12157.00 0.00 562.75 

D1–1–50–50–4–250 21436.00 7.90 21617.10 6332.49 2143.03 21133.00 9.20 21517.70 19687.61 786.96 

D1–1–50–50–4–500 21349.00 8.27 21614.10 17792.29 2158.21 21133.00 9.20 21452.60 26659.84 833.13 

D1–1–50–50–5–250 17742.00 13.76 18098.80 70949.16 2118.07 17742.00 13.76 17742.00 0.00 679.78 

D1–1–50–50–5–500 17861.00 12.45 18311.50 23071.05 2113.70 17742.00 13.04 17742.00 0.00 610.21 

D1–1–50–50–6–250 16618.00 11.86 16626.30 54.21 2262.53 16601.00 11.95 16601.00 0.00 729.16 

D1–1–50–50–6–500 16618.00 8.05 16623.10 48.29 2302.55 16601.00 8.14 16601.10 0.09 690.45 

D1–1–50–50–8–250 13619.00 20.15 13713.10 7767.29 2311.42 13516.00 20.76 13600.30 2911.41 682.25 

D1–1–50–50–8–500 13592.00 8.96 13672.40 4533.04 2339.11 13516.00 9.47 13596.00 1085.40 756.27 

Table A.11 

Computational results of experiments on mm -CTP-wo 

Data instances GRASP-ELS GA-VLG 

Best Save(%) Avg. σ 2 Time Best Save(%) Avg. σ 2 Time 

A1–1–50–50–4–250 20441.00 5.05 20604.90 4040.89 2411.67 20611.00 4.26 20611.00 0.00 4 4 4.01 

A1–1–50–50–4–500 20580.00 4.41 20607.90 86.49 2473.61 20441.00 5.05 20577.00 4624.00 446.47 

A1–1–50–50–5–250 19044.00 3.63 19052.10 7.29 2564.91 190 01.0 0 3.85 19033.30 331.81 742.91 

A1–1–50–50–5–500 19044.00 2.74 19053.70 301.21 2671.02 190 01.0 0 2.96 19035.40 295.84 692.74 

A1–1–50–50–6–250 17163.00 5.74 17463.70 17037.81 2697.42 17134.00 5.90 17134.00 0.00 587.89 

A1–1–50–50–6–500 17154.00 4.57 17205.50 350.85 2795.39 17028.00 5.27 17088.90 5702.89 584.20 

A1–1–50–50–8–250 16121.00 4.84 16253.10 5452.89 2698.12 14937.00 11.83 14943.30 357.21 566.15 

A1–1–50–50–8–500 14762.00 4.14 14797.90 797.29 2787.96 14762.00 4.14 14762.00 0.00 495.33 

B1–1–50–50–4–250 19658.00 1.54 19718.60 1439.24 1607.45 19694.00 1.36 19696.50 6.25 730.03 

B1–1–50–50–4–500 19658.00 1.54 19701.70 1339.61 1573.40 19658.00 1.54 19691.40 127.84 681.74 

B1–1–50–50–5–250 16617.00 2.90 16621.20 11.76 1738.44 16617.00 2.90 16643.20 618.96 538.63 

B1–1–50–50–5–500 16617.00 2.90 16619.10 10.29 1684.00 16617.00 2.90 16632.30 546.21 571.97 

B1–1–50–50–6–250 15477.00 3.27 15635.30 8058.41 1723.57 15452.00 3.42 15547.50 11168.25 789.09 

B1–1–50–50–6–500 15511.00 2.99 15609.90 3290.89 1663.88 15452.00 3.36 15570.50 13755.05 804.42 

B1–1–50–50–8–250 13960.00 0.48 13964.00 28.00 1738.70 13955.00 0.51 13956.70 26.01 714.70 

B1–1–50–50–8–500 13960.00 0.48 13960.40 0.64 1806.76 13955.00 0.51 13967.60 1428.84 660.94 

C1–1–50–50–4–250 19935.00 1.77 19939.60 84.64 1883.51 19935.00 1.77 19935.00 0.00 385.64 

C1–1–50–50–4–500 19935.00 1.77 19939.60 84.64 1835.55 19935.00 1.77 19935.00 0.00 378.30 

C1–1–50–50–5–250 17087.00 1.67 17101.30 1179.21 2136.68 17087.00 1.67 17087.00 0.00 403.92 

C1–1–50–50–5–500 17087.00 1.67 17101.30 1179.21 2029.36 17087.00 1.67 17087.00 0.00 431.07 

C1–1–50–50–6–250 15991.00 2.29 15991.00 0.00 2160.49 15991.00 2.29 15991.00 0.00 362.69 

C1–1–50–50–6–500 15991.00 2.29 15991.00 0.00 2126.22 15991.00 2.29 15991.00 0.00 362.94 

C1–1–50–50–8–250 14189.00 1.01 14209.80 1730.56 2097.25 14189.00 1.01 14189.00 0.00 405.16 

C1–1–50–50–8–500 14189.00 1.01 14189.00 0.00 2109.52 14189.00 1.01 14189.00 0.00 464.11 

D1–1–50–50–4–250 23142.00 0.57 23142.00 0.00 2845.07 23142.00 0.57 23147.30 252.81 628.00 

D1–1–50–50–4–500 23142.00 0.57 23142.00 0.00 2826.01 23142.00 0.57 23150.20 297.76 66 8.4 9 

D1–1–50–50–5–250 20 0 04.0 0 2.77 20 0 09.30 252.81 2947.65 20 0 04.0 0 2.77 20 0 04.0 0 0.00 527.10 

D1–1–50–50–5–500 19880.00 2.56 19891.90 1274.49 2882.18 19880.00 2.56 19904.10 5227.29 668.42 

D1–1–50–50–6–250 18536.00 1.69 18537.10 10.89 3065.27 18536.00 1.69 18536.00 0.00 639.42 

D1–1–50–50–6–500 17990.00 0.45 17990.20 0.36 3109.70 17990.00 0.45 17990.80 0.96 525.99 

D1–1–50–50–8–250 16976.00 0.47 16976.00 0.00 3054.69 16976.00 0.47 16976.00 0.00 477.85 

D1–1–50–50–8–500 14785.00 0.97 14786.50 20.25 3337.60 14785.00 0.97 14785.00 0.00 512.86 
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Each table shows the name of instance (column ‘Data In-

tances’), the best cost (column ‘Best’), average cost (column

Avg.’), variance of cost over 10 runs ( σ 2 ), and total run time in

econds of 10 runs (column ‘Time’) for each instance of three

ethods GRASP-ELS, GA-VLG, and VNS (if available). 
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