
1

On the overall ROC of multistage systems

Le Trung Thanh†, Nguyen Thi Anh Dao⋆,†, Nguyen Linh-Trung†, and Ha Vu Le†

†University of Engineering and Technology, Vietnam National University Hanoi, Vietnam
⋆University of Technology and Logistics, Bac Ninh, Vietnam

Abstract—The receiver operating characteristic (ROC) curve
is a useful tool to evaluate the performance of classifiers, and
is widely used in signal detection, pattern recognition and
machine learning. For complex object classification, multiple
single classifiers are often used and they are concatenated
into a multistage classification system. Thus, it is necessary to
obtain the overal ROC curve, because the ROC curves of the
individual classifiers are not useful for the overall system since it
has multi-level decision thresholds. In this paper, a systematic
approach was introduced for measuring the performance of
multistage systems via estimating the overall ROC curve. Two
new ROC models sharing the same properties of classical ROC
curves were proposed, inspired by the Gaussian and logistic
distributions. The models were then experimented on a recently
introduced multistage system for epileptic spike classification
from electroencephalogram data. Experimental results indicated
that the proposed ROC models can be used for multistage
classification systems.

Index Terms—ROC, multistage system, multiple-decision
threshold, epileptic spike, EEG.

I. INTRODUCTION

Multistage systems composed of concatenated classifiers

(a.k.a. detectors in signal processing) often provide better pre-

diction, in comparison with single classifiers, probably because

they accumulate the advantages of multiple algorithms. For ex-

ample, in medical diagnosis, multistage systems are often used

in detecting/classifying abnormal patterns in brain electrical

activities [1], [2]. In natural language processing, multistage

systems have also been successfully applied for recognition of

emotional expression [3], [4]. Recently, in machine learning,

the “trendy” deep learning models are fundamentally based on

multistage architectures [5].

Multistage classification systems can be categorized into

three main types: reject classifiers [6], cascade classifiers [7],

and hierarchical classifiers [8]. In this paper, we are interested

in the cascade classifiers. Among various methods to evaluate

the performance of a classifier are the confusion matrix and

the receiver operating characteristic (ROC) curve [9].

A confusion matrix may cover several common performance

criteria, including accuracy, sensitivity, specificity, precision,

and so forth. The ROC curve, which is a graphical plot pre-

senting the range of probable predictions obtained by varying

a decision threshold [10], is usually more efficient. One of

the key advantages of the ROC curve over the confusion

matrix is that it is insensitive to skew class distribution and

misclassification costs. Thus, ROC-based analysis has become

a useful tool to evaluate the performance of classifiers in

various fields, including medical diagnosis [11].

Fig. 1: A muti-stage classification system composed of k

stages aimed at finding positive points (+1) out of the dataset.

Different approaches to estimating the ROC curve have been

investigated, whether being non-parametric [12], [13], semi-

parametric [14], [15], or parametric [16], [17]. A summarized

ROC (SROC) curve was also proposed for meta-analysis,

which has the same properties as the ROC. However, the

cost/benefit points of SROC are not obtained by varying the

decision threshold as in the ROC. We refer readers to [18]–

[20] for further details on SROC.

Although the ROC curve provides a good measure of perfor-

mance for a single classifier, it is not clear how the individual

ROC curves can be used to evaluate the overall classification

performance of a multistage classifier. There have not been

many studies in this work so far. For example, Hill et al.

[21] provided an approach based on Boolean rules which uses

the Kronecker product of classification results obtained from

each individual classifiers to compute the joint and conditional

performance matrices and hence the overall ROC of multiple

classification systems. However, the approach is not useful in

cases of multistage classifiers trained to classify a particular

object without knowing the individual ROC of each classifiers.

This motivates us to look for a fully or partially new way to

evaluate the performance of the multistage classifiers.

In this work, we present our analysis of the ROC curve for

a type of multistage classification systems aimed at detecting

“positive” data points, as shown in Fig 1. Specifically, in each

stage, the individual classifier focuses only on positive points

(+1) which are then fed to the next stage. As the result, the

number of negative points (-1) will be decreased gradually

through the stages of the system. The contribution of the paper

is three-fold: 1) providing the range of probable prediction,

(2) introducing two new ROC models, and 3) experimenting

the proposed ROC models on a recently introduced multistage

system for epileptic spike classification from electroencephalo-

gram data.

The paper is organized as follows. Our proposed ROC
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models are presented in Section II. Experiments and results

are shown in Section III, and Section IV concludes the paper.

II. THEORY

A. ROC on multistage classification systems

In single classifiers, the ROC curve for binary classification

is a plot comprised of cost/benefit points (1 − SPEθ, SENθ)

providing the range of probable prediction, where

Sensitivity: SENθ =
TP

TP + FN
, (1)

Specificity: SPEθ =
TN

FP + TN
. (2)

Above, TP and FP denote the number of correctly and in-

correctly identified samples, TN and FN denote the correctly

and incorrectly rejected samples, respectively. The ROC curve

increases from 0 to 1, because the two evaluation metrics, SEN
and (1−SPE), have to increase or decrease together when the

decision threshold θ is varied (the higher the threshold, the

lower the sensitivity and the higher the specificity, as shown

in Fig 2).

FP

TN

TP

FN

Negative Positive

Threshold 

Fig. 2: The decision threshold θ allows us to separate the

measurable space into two sub-spaces representing two classes

of the dataset.

The notion of the ROC curve of such a single classifier as

above can also be generalized to the overall ROC curve of a

multistage classification system, for the same purpose of eval-

uating the performance of the system. In other words, the true

positive rate (TPR) and the false positive rate (FPR), which

are respectively equivalent to SEN and 1− SPE, are needed

to draw the overall ROC curve. In this case, the TPR and FPR

are determined by several thresholds with different prediction

distributions. This then gives rise to another problem: the TPR

and FPR may not change together in such a way that leads to a

non-increasing ROC curve. Therefore, the overall ROC curve

may not be suitable for cost-and-benefit analysis. We propose

a new method to estimate the overall ROC curve, which is

composed of two steps: 1) determining the range of probable

prediction and 2) fitting the ROC model.

B. Determining the range of probable prediction

Theorem 1. The probable cost/benefit points of the multistage

classification system come from the different stage decision

thresholds.

Proof.

Assume that we have a dataset X = X0∪X1 with X0∩X1 =
{∅}. X0 represents the first class including N0 data points,

while the second class is provided by X1 with N1 points. Let

N = N1 + N0. We would like to separate the entire dataset

into two clusters. Without loss of generality, let’s denote X1

be positive (+1) set that we are interested in and the negative

set (−1) is X0.

A multistage classification system, A, is then formed from

the k individual classifiers, Ai as A = A1 ◦ A2 ◦ ... ◦ Ak,

where each Ai is associated with a decision threshold θi.

Denote by (Ei,Fi) the measurable space which is called

image of the data space X via the transform Ai.

Ai : X → Ei.

1) Stage 1: A1

For all xi ∈ X, taking the transform A1 of the point

corresponding to θ1 yields

yi = A1(xi|θ1) = sign(A1(xi)− θ1). (3)

Let Y = {y1, y2, ..., yN} be the set of outcomes of X via A1.

Let us define

XTP,θ1 = {xi|xi ∈ X1, yi = 1, 1 ≤ i ≤ N }
XFP,θ1 = {xi|xi ∈ X0, yi = 1, 1 ≤ i ≤ N }
XFN,θ1 = {xi|xi ∈ X1, yi = −1, 1 ≤ i ≤ N }
XTN,θ1 = {xi|xi ∈ X0, yi = −1, 1 ≤ i ≤ N }

If we assume that Y1,θ1 = {xi|yi = 1, 1 ≤ i ≤ N}
represents “positive” results follows the probability density

distribution f1(t) in the measurable space E1 and Y0,θ1 =
{xi|yi = −1, 1 ≤ i ≤ N} is considered as the “negative”

with the probability density distribution f0(t), (as shown in

Fig 2), then the following properties can be obtained:

X = Y1,θ1 ∪Y0,θ1 and Y1,θ1 ∩Y0,θ1 = {∅},
Y1,θ1 = XTP,θ1 ∪ XFP,θ1 ,

Y0,θ1 = XFN,θ1 ∪ XTN,θ1 .

The number of true positive and false positive points are

computed as

TP1 = N1

∫ sup(θ1)

θ1

f1(t)dt (4)

FP1 = N0

∫ sup(θ1)

θ1

f0(t)dt (5)

The set Y1,θ1 = XTP,θ1 ∪ XFP,θ1 , represented by the right

subspace in Fig. 2), is then fed to the second stage, A2.

2) Stage 2: A2.

The input of stage 2 is the set of instances predicted

as “positive” Y1,θ1 . Then, similarly, we also obtain a new
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probable “positive” set Y1,θ2 = XTP,θ2 ∪ XFP,θ2 in which the

new values of TP and FP are updated by

TP2 = TP1

∫ sup(θ2)

θ2

f3(t2)dt2

= N1

∫ sup(θ1)

θ1

f1(t1)dt1

∫ sup(θ2)

θ2

f3(t2)dt2 (6)

FP2 = FP1

∫ sup(θ2)

θ2

f2(t2)dt2

= N0

∫ sup(θ1)

θ1

f0(t1)dt1

∫ sup(θ2)

θ2

f2(t2)dt2 (7)

The set is then fed to the next stage, A3.

3) Stage K: Ak.
From the obtained set of possible positive points from the

stage Ak−1: Y1,θk−1
, we have

TPk = TPk−1

∫ sup(θk)

θk

f2k−1(tk)dtk

= N1

∫

θ1

∫

θ2

· · ·

∫

θk

f1(t1)f3(t2). · · · f2k−1(tk) dt1dt2...dtk

(8)

FPk = FPk−1

∫ sup(θk)

θk

f2k−2(tk)dtk

= N1

∫

θ1

∫

θ2

...

∫

θk

f0(t1)f2(t2)...f2k−2(tk) dt1dt2...dtk

(9)

Thus, the TPR and FPR are given by

TPR(θ1, θ2, ..., θk) =
TPk

N1

=

∫

θ1

∫

θ2

...

∫

θk

f1(t1)f3(t2)...f2k−1(tk) dt1dt2...dtk (10)

FPR(θ1, θ2, ..., θk) =
FPk

N0

=

∫

θ1

∫

θ2

...

∫

θk

f0(t1)f2(t2)...f2k−2(tk) dt1dt2...dtk (11)

Recalling that fi(t) is a probability density distribution,

hence
∫ sup(t)

inf(t)

fi(t)dt = 1, (12)

and variables {t1, t2, ..., tk} are independent, we then have

lim
(θ1,θ2,...,θk)→(sup(θ1),sup(θ2),...,sup(θk))

TPR(θ1, θ2, ..., θk) = 0

lim
(θ1,θ2,...,θk)→(sup(θ1),sup(θ2),...,sup(θk))

FPR(θ1, θ2, ..., θk) = 0

lim
(θ1,θ2,...,θk)→(inf θ1),inf(θ2),...,inf(θk))

TPR(θ1, θ2, ..., θk) = 1

lim
(θ1,θ2,...,θk)→(inf(θ1),inf(θ2),...,inf(θk))

FPR(θ1, θ2, ..., θk) = 1

C. Fitting the ROC curve

As mentioned above, we may not directly produce the over-

all ROC curve for the multistage classification system from

the set of probable cost/benefit points. It is therefore needed

to estimate an increasing function presenting the overall ROC

curve. This leads to the following optimization problem:

minimize
f

N
∑

i=1

distance(f, Pi)

subject to f : [0, 1] → [0, 1]

∀u1, u2 ∈ [0, 1],

f(u2) ≥ f(u1) ⇔ u2 ≥ u1.

(13)

where Pi(SENi, 1 − SPEi) represents a cost/benefit point in

the measurable space.

Since the individual ROC curve is usually a nonlinear

function except the case of the random effect model, we are

interested in mapping the ROC space into a new vector space

via a nonlinear transform h : R2 → R
2 in order to fit the

ROC model using a common linear regression method. This

leads to a new form of problem (13) which can be solved

more easiliy in the (D,S) space by linear least-square or robust

regression [22]:

D = a S+b (14)

minimize
a,b

N
∑

i=1

(

Di −a Si −b
)2
, (15)

where (Di, Si) is the image of Pi under the transform h.

After that, the estimated ROC curve representing the trade-

off between TPR and FPR can easily be generated.

We investigate two types of distribution for this task,

including the Gaussian distribution,

f(x) =
1√
2πσ2

e−
(x−m)2

2σ2 , (16)

and the logistic distribution,

f(x) =
e−

x−m

σ

σ
(

1 + e−
x−m

σ

)2 . (17)

These attempts are motivated by the fact that the error

distribution tends to converge to the Gaussian distribution,

thanks to the central limit theorem. Therefore, the cost/benefit

points {Pi} in the ROC space follow a straight line in the

(D,S) space (see Fig. 4). Also, as seen in Fig. 3, the standard

logistic distribution is close to the Gaussian distribution.

Taking the inverse CDF of the logistic and Gaussian dis-

tributions, namely logit and probit functions respectively, we

have

logit(x) = ln
( x

1− x

)

, (18)

probit(x) =
√
2erf−1(2x− 1), (19)

where the Gaussian error function is defined by

erf(x) =
2√
π

∫ x

0

e−t2dt.

To draw a common line, as shown in Fig. 4, the relationship
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Fig. 4: Comparing inverse CDF of standard logistic distribution

and normal distribution.

between the two functions is obtained as

logit(x) ≈ 2
√
2√
π

probit(x), ∀x ∈ [0, 1]. (20)

Consequently, the method based on the logistic function

should be considered. If the measurement follows the lo-

gistic distribution, the results tend to be similar to that of

the method based on the Gaussian distribution. This method

was employed to combine independent studies of diagnostic

clinical testing [18]–[20]. In a nutshell, the two methods can

be summarized as follows:

1) Method 1: Gaussian distribution-based:

Define

D =
4√
π

erf−1(2 SEN−1)− 4√
π

erf−1(1− 2SPE), (21)

S =
4√
π

erf−1(2 SEN−1) +
4√
π

erf−1(1− 2SPE). (22)

Combining the above resuls with Eq. (14) yields the estimated
ROC curve in the ROC space

SEN =
1

2
+

1

2
erf

(

1 + a

1− a
erf

−1(1− 2SPE) +
b
√
π

4(1− a)

)

. (23)

The area under the estimated ROC curve (AUC) is then
given by

AUC =
1

2
+

1

2

∫ 1

0

erf

(

1 + a

1− a
erf

−1(1− x) +
b
√
π

4(1− a)

)

dx. (24)

2) Method 2: Logistic distribution-based:

Define

D = ln

(

SEN

1− SEN

)

− ln

(

1− SPE

SPE

)

, (25)

S = ln

(

SEN

1− SEN

)

+ ln

(

1− SPE

SPE

)

. (26)

We obtain another estimate of the ROC curve

SEN =
1

1 + e−b/(1−a)

(

1− SPE

SPE

)(1+a)/(1−a)
. (27)

The AUC is then computed as

AUC =

∫ 1

0

1

1 + e−b/(1−a)

(

1− x

x

)(1+a)/(1−a)
dx. (28)

III. EXPERIMENTS

A. A Multistage Epileptic Spike Classification System

1) Epileptic spikes:

Epilepsy is a chronic disorder of the nervous system in the

brain, characterized by epileptic seizures which are due to ab-

normal and excessive discharges of nerve cells. The diagnosis

of epilepsy is typically based on observation of the seizure

onset and the underlying cause. Electroencephalogram (EEG)

is one of the most accessible tools supporting this observation.

From the EEG recordings, one can detect and classify the

specific signal patterns representing the body status. Doctors

usually inspect the EEG recordings on a computer screen and

look for epileptic spikes, which are abnormal patterns of the

brain electrical activity. This conventional manual process is

not only very tedious and time-consuming, but also subjective

since it depends on the expertise and experience of the doctors.

Thus, accurate automatic classification of epileptic spikes is

desirable.

The EEG data used in our experiments were recorded at

the Signals and Systems Laboratory, using the international

standard 10-20 system with 19 channels and the sampling rate

of 256Hz. The measurements were carried out on 17 patients

aged from 6 to 18 years. The training set is composed of

recordings from 12 patients, while data from remaining five

patients are used for testing, as shown in Tab. I.

2) The Classification System:

The structure of this multistage spike classification system is

shown in Fig. 5. It processes input EEG recordings in four

main steps as follows

• Pre-processing: The system first detects all peaks in the

EEG signal, then identifies and removes small peaks,

whose amplitude and duration are less than 20ms and
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Fig. 5: The multistage system for epileptic spike detection.

TABLE I: EEG Dataset

Training Set Testing Set

Case Duration Spikes Case Duration Spikes

1 23m57s 8 1 11m24s 16

2 22m25s 635 2 27m13s 1

3 11m24s 6 3 16m16s 351

4 19m21s 8 4 5m31s 12

5 22m0s 4 5 27m37s 19

6 17m49s 22 6 27m37s 9

7 15m26s 2

8 22m58s 11

9 20m14s 8

10 18m53s 5

11 14m32s 324

12 17m7s 2

2µV, respectively. After that, for each remaining signif-

icant peak, six spike features characterizing durations,

amplitudes, and slopes are extracted. These features are

then used as inputs for three independent perceptrons

which will classify the peaks into two groups: non-spikes

and possible spikes.

• Feature Extraction: The possible spikes are decomposed

by a continuous wavelet transform. The transformed

signal corresponding to each scale is then used to cal-

culate seven wavelet features. A feature vector of 35

components for each possible spike, comprised of wavelet

features of the wavelet scales from 4th to 8th, is created

and used as an input value for classification stage.

• Classification: Feature vectors representing possible

spikes are fed into a classification model producing a

binary class label as its output. The spike score values

are in the range [0, 1]. A peak is labeled as a spike when

its corresponding output score is higher than a certain

threshold defined by the model. This stage uses the

TABLE II: The classification results

Case Spikes TP FP FN TN SEN(%) SPE(%)

1 16 14 6262 2 30609 87.5 83.01

2 1 1 839 0 6135 100 87.97

3 351 323 4034 28 32004 92.02 88.8

4 12 12 3391 0 21539 100 86.4

5 19 18 3126 1 10107 94.74 76.37

6 9 9 3674 0 10543 100 74.16

Artificial Neural Network (ANN) learning model which

calculates the probability of a test vector to be assigned

to an epileptic spike class.

• Expert System: Finally, in order to enhance the accuracy

of classification, we applies an heuristic that there are at

most two spikes in a duration of 150-350ms to eliminate

the pseudo spikes which are located near an epileptic

spike.

We refer readers to [23] for more details.

B. Experimental Results

Results obtained from our experiments with test data are

presented in Tab. II and plotted in Fig. 6. Tab. II provides

quantitative statistics of the best spike classification results.

As seen from the results, SEN of the system is always high

(> 87.5%), while the SPE varies from patient to patient but

is still reasonably good, with value varying from 74.16% to

88.8%. Fig. 6 shows the range of probable results of the

classification by varying two decision thresholds of the ANN

and the expert system. We also wish to draw an ROC curve

characterizing the systems’s performance. Unfortunately, the

cost/benefit points do not follow an increasing function as in

the interval [0, 1] as the classical ROC curve should do, that

make using it inappropriate.

Then, our proposed models are used to estimate the ROC

curve. The estimated ROCs are shown in the Fig. 7 and their

parameters are shown in Tab. III. The two estimated ROCs
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Fig. 6: The cost/benefit points in 2D ROC space.

TABLE III: Results on ROC estimation

Method a b AUC Error

Gaussian-based 0.24 3.8 0.9490 0.0157

Logistic-based 0.1 3.9 0.9376 0.0093

always follow the cost/benefit points in ROC space. Both ROC

estimation methods yield similar results with reasonable errors

(< 0.02) and AUC ≈ 0.94. The logistic distribution-based

method seems to be flatter while Gausssian distribution-based

method gives higher AUC, but the difference is insignificant.

IV. CONCLUSION

We propose a new approach to evaluating the performance

of multistage classification systems with two new ROC estima-

tion models. The models respectively use Gaussian and logistic

distributions to fit the ROC curve, motivated by the standard

distribution of errors in detection and estimation theory. The

proposed methods have been validated by mathematical means

as well as by experiments with an automatic epileptic spike

classification system using data from real patients. Experimen-

tal results, though still preliminary, indicate the great potential

of our proposed approach.
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