
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tjit20

Download by: [183.80.27.214] Date: 26 November 2017, At: 20:35

Journal of Information and Telecommunication

ISSN: 2475-1839 (Print) 2475-1847 (Online) Journal homepage: http://www.tandfonline.com/loi/tjit20

Speeding up and enhancing a large-scale
fingerprint identification system on GPU

Hong Hai Le, Ngoc Hoa Nguyen & Tri-Thanh Nguyen

To cite this article: Hong Hai Le, Ngoc Hoa Nguyen & Tri-Thanh Nguyen (2017): Speeding up
and enhancing a large-scale fingerprint identification system on GPU, Journal of Information and
Telecommunication, DOI: 10.1080/24751839.2017.1404712

To link to this article:  https://doi.org/10.1080/24751839.2017.1404712

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 26 Nov 2017.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tjit20
http://www.tandfonline.com/loi/tjit20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/24751839.2017.1404712
https://doi.org/10.1080/24751839.2017.1404712
http://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/24751839.2017.1404712
http://www.tandfonline.com/doi/mlt/10.1080/24751839.2017.1404712
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2017.1404712&domain=pdf&date_stamp=2017-11-26
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2017.1404712&domain=pdf&date_stamp=2017-11-26


Speeding up and enhancing a large-scale fingerprint
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ABSTRACT
Fingerprint identification is one of the most common biometric
feature problems which is used in many applications. Although
state-of-the-art algorithms are very accurate, the need for fast
processing a big database of millions of fingerprints is highly
demanding. In this paper, we propose to adapt the fingerprint
matching algorithm based on Minutia Cylinder-Code on Graphics
Processing Units to speed up the matching. Another contribution
of this paper is to add a consolidation stage after matching to
enhance the precision. The experimental results on a GTX-680 and
K40 tesla devices with standard data-sets prove that the proposed
algorithm can be comparable with the state-of-the-art approach,
and is suitable for a real-time identification application.
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1. Introduction

Fingerprint matching is the task of estimating the degree of similarity between two given
fingerprint images (hereafter called fingerprint, for short). Current solutions to this
problem can be classified into three types: correlation-based, minutiae-based, and ridge
feature-based matching, of which the minutiae-based matching is the most popular
approach thanks to its accuracy as stated in Fingerprint Verification Competitions (FVC)
(Cappelli, Maio, Maltoni, Wayman, & Jain, 2006). A minutia is the point where a ridge con-
tinuity breaks, and it is typically represented as a triplet (x, y, u), where x and y are
the coordinates of the point and θ is the ridge direction at that point. The similarity of
the two given fingerprints with minutiae-based matching approach is proportional to
the number of matched minutiae pairs in them. Figure 1 illustrates the matched minutiae
of two fingerprints.

The state-of-the-art matching algorithm Minutia Cylinder-Code (MCC) (Cappelli, Ferrara,
& Maltoni, 2010) has the best accuracy; however, its matching speed is not good enough
to apply in a real application which has a large database of millions of fingerprints, e.g. the
database of civil identification systems (Unique Identification Authority of India, 2012).
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There are two popular methods to increase the speed of fingerprint identification:

. Reducing the number of fingerprints for comparisons by filtering, i.e. fingerprint classi-
fication (Cappelli & Maio, 2004; Hong, Min, Cho, & Cho, 2008), pre-filtering using index-
ing techniques (Cappelli, Ferrara, and Maltoni (2011; Bhanu & Tan, 2001). A fingerprint is
only compared again the fingerprints of the same class.

. Parallelizing the matching algorithm (Cappelli, Ferrara, & Maltoni, 2015; Gutierrez, Lastra,
Herrera, & Benitez, 2014; Peralta, Triguero, Sanchez-Reillo, Herrera, & Benitez, 2014).

Graphic cards with general purpose graphics processing units (GPGPUs, hereafter called
GPU for short) are a new parallel architecture which have been proven to be very
useful for accelerating the processing speed of computationally intensive algorithms.
These devices include thousands of processing units; thus, they provide massive par-
allel calculations and have been applied successfully in many fields such as artificial
intelligence (Krizhevsky, Sutskever, & Hinton, 2012; Zhang, Yi, Wei, & Zhuang, 2014),
simulation (Friedrichs et al., 2009), bioinformatics (Schatz, Trapnell, Delcher, & Varsh-
ney, 2007), as well as fingerprint matching (Cappelli et al., 2015; Gutierrez et al.,
2014). In this paper, we propose a novel approach to adapt/parallelize the MCC algor-
ithm to GPU devices.

In addition, two minutia pairs between the two given fingerprints can be locally
matched; however, it is not guaranteed to be globally matched. It is incorrect to use the
minutiae, which are only locally matched, to estimate the similarity degree of the two
given fingerprints. Another contribution of this paper is to parallelize the consolidation
step to the MCC algorithm to ensure that the minutiae are globally matched before esti-
mating the global similarity. The experiments on the standard fingerprint database indi-
cate that our proposal helps to decrease the error rate.

The contribution of this paper includes:

. Propose a novel parallelization method of MCC algorithm (cf. Section 4.1)

. Parallelize the consolidation stage to enhance the precision (cf. Section 4.2)

Figure 1. The matched minutia pairs between two fingerprints.
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This paper was improved from Le, Nguyen, and Nguyen (2016a, 2016b), in which the
parallelization strategies are clearly discussed in detail; further experiments with a new
GPU device were carried out to confirm the correctness of the proposed solution.

The rest of the paper is organized as follows. Section 2 reviews the MCC algorithm.
Section 3 briefly describes the GPU architecture and programming model. Section 4
describes the state-of-the-art approach. Section 5 describes our adapted MCC algorithm
on GPU devices. Section 6 analyses the experimental results on the open databases.
The final section gives the conclusions and future directions.

2. Introduction to MCC-based matching algorithm

2.1. Fingerprint identification problem

From an existing database of N fingerprints (maybe accompanied with personal infor-
mation having fingerprints in the database), given a new (unknown) fingerprint, the
task of fingerprint identification is to find out the matched ones in the database, i.e.
find the match score or similarity between the new fingerprint with everyone in the data-
base. Two fingerprints are deemed to be matched if their match score (or similarity) is
greater or equal a predefined threshold.

2.2. Minutia Cylinder-Code

Given a minutia m represented as {xm, ym, um}, its local structure in MCC is defined as a
cylinder having the centre at the coordinate {xm, ym}, the radius R, and the height 2π.
Each cylinder is divided into Ns × Ns × Nd cells as shown in

Figure 2, where Ns is the resolution of the discretized 2D space around minutia m
(Ns × Ns) and Nd is the height of the cylinder (i.e. 2π). From this cylinder, it is possible to
find its neighbouring minutiae of which the information used to form the characteristics
of this minutia is the position (Chikkerur, Cartwright, & Govindaraju, 2006; Medina-Pérez,
García-Borroto, Gutierrez-Rodriguez, & Altamirano-Robles, 2011), ridge (Feng, Ouyang, &
Cai, 2006; Wang, Li, & Niu, 2007), orientation (Qi, Yang, & Wang, 2005; Tico & Kuosmanen,
2003), or a combination of these (Feng, 2008).

The local structures are invariant to the fingerprint rotation and translation. Therefore, it
allows to match two fingerprints with different rotation and translation. The local structure
matching allows to quickly find pairs of minutiae that can be matched locally and can be
the candidate for aligning between the two fingerprints.

The contribution of each minutia mt to a cell (of the cylinder corresponding to a
given minutia mi) depends both on spatial information (how much mt is close to
the centre of the cell) and directional information (how much the directional difference
between mt and mi , is similar to the directional difference associated to the section
where the cell lies). In other words, the value of a cell represents the likelihood of
finding minutiae that are close to the cell and have directional difference with
respect to mi .

With a negligible loss of accuracy, the cylinder ci of the minutiami can be simply treated
as a single feature vector, and each element of the feature vector can be represented as
one bit (Cappelli et al., 2010).
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In order to compare two given fingerprints, most minutiae-based matching algorithms
consist of two steps: the first step performs a local structure matching followed by a
global step, i.e. calculate the aggregated similarity based on the locally matched minutiae.
Recently, an MCC-based matching algorithm (Cappelli et al., 2010) shows a good perform-
ance in terms of both accuracy and speed.

2.3. Similarity score calculation

Let vi and vj be the (cylinder) bit vectors of minutiae mi andmj , correspondingly, a simple
but effective similarity sim(.) between the two minutiae is defined as (Cappelli et al., 2010):

sim(mi , mj) = 1− ||vi ⊕ vj||
||vi|| + ||vj|| if d(mi , mj) ≤ tu,

0 otherwise,

⎧⎨
⎩ (1)

where

. ⊕ represents the bitwise XOR operator,

. ||.|| represents the Euclidean norm,

. d(mi , mj) is the angle difference (i.e. ui , uj) of the two minutiaemi andmj . The formula is
d(mi , mj) = dw(ui , uj) = min(|ui − u j |, 360− |ui − u j |).

. tu is the acceptable threshold.

Figure 2. The local structure of a minutia represented in MCC (Gutierrez et al., 2014).
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Given two fingerprints T1 and TQ, a local matching is performed on every pair of cylin-
ders, and the results are stored in a matrix. In order to aggregate the similarity score s of
the two fingerprints, there are two strategies:

. Local Similarity Sort (LSS) technique sorts the scores of the matrix and computes the
average of the top nP highest scores.

. A more accurate but less efficient similarity measure is the Local Similarity Sort with Dis-
tortion-Tolerant Relaxation (LSS-DTR). LSS-DTR adds a consolidation stage to LSS in
order to obtain a score that modifies the local similarities to hold at the global level.
Figure 3 shows the steps to calculate similarity score s using LSS, where s is the
average of the top nP values chosen from the similarity matrix.

2.4. MCC-based matching algorithm

From a database T of N fingerprints in the format of minutia templates, i.e.
T = {T1, . . . , TN}, given an unknown query template Tq, the first step (local matching)
MCC matching algorithm is to calculate similarity matrix between each minutia pairs of
Ti and Tq. In the second step, i.e. global score estimation, the similarity score Si is calculated
from the average of top nP values of the similarity matrices (LSS approach). In step 3,
S = {S1, S2, .., SN} is used to determine which templates in the database are the matches
of the query. Figure 4 demonstrates the calculating steps of the MCC algorithm. The

Figure 3. Similarity score computing process using LSS (Cappelli et al., 2015).
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most time-consuming step is Step 1, i.e. estimating the similarity scores; thus, this is where
parallelization is applied. The pseudo-code of the algorithm is described in Algorithm 1,
where S[] is the matched score array and maxValue[] is the maximum matched score of
each minutia in Tq with other minutiae in the other fingerprint Ti . Since only top nP
values of the similarity matrix are used to calculate the global score, the array
maxValue[] is used instead of a matrix.

ALGORITHM 1 The sequential MCC-based fingerprint matching algorithm with CPU.

Sequential fingerprint identification on CPU

Input: The template set T
The query template Tq
Output: The possibly matched templates from T

1. Let S[] be an array of size N; //Similarity score set
2. Load the template set T = {T1, . . . , TN} into the main memory;//Done only once
3. Let Tq be the query template;
4. For i = 1 to N//N is the number of templates in the database

//Step 1: local minutia matching
5. Let maxValue[] be an array of size Tq .length;//The similarity of matched pairs
6. For j = 1 to Ti .length // Ti .length is the number of minutiae of Ti
7. Let m[j] be the jth minutia of the query fingerprint Ti ;
8. maxValue[j] = 0;
9. For k = 1 to Tq.length // Tq .length is the number of minutiae of Tq
10. Let m[k] be the kth minutia of the template Tq ;
11. If d(m[j], m[k]) ≤ tu
12. tempScore = sim(m[j], m[k]);
13. maxValue[j] = max(maxValue[j], tempScore);
14. End If
15. End For
16. End For

//Step 2: Similarity estimation
17. S[i] = ∑Tq .length

t=1 (maxValue[t])/Tq.length
18. End For

//Step 3: Find and return the match from the score set S[]

Figure 4. Fingerprint identification processing steps based on MCC (Cappelli et al., 2015).
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Note that, the matched score of two fingerprints is calculated based on the array
maxValue[], i.e. local matching scores. Step 3 is not mentioned in detail, since it is not
the point for parallelization.

3. The parallelism of GPU

NVIDIA introduces the compute unified device architecture (CUDA), one of the two
common frameworks for developing applications on their GPU devices (the other fra-
mework is OpenCL1). With CUDA, applications written in C/C++ running on the CPU (of
the hosted machine) can call to execute parallel codes called kernels (written in C) on
NVIDIA GPUs. The physical architecture of CUDA-enabled GPUs consists of a set of
Streaming Multiprocessors (SM), each containing 32 cores following single instruction,
multiple data (SIMD) scheme. The architecture of NVIDIA GPU device is depicted in
Figure 5.

Threads are the instances of a kernel (i.e. run the same code), and each processes a
different dataset (i.e. SIMD). Threads are grouped into blocks. All threads of the same

Figure 5. NVIDIA GPU architecture (Luebke et al., 2006).
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block are executed on the same SM and share the limited memory resources of that multi-
processor. The maximum number of threads in a block cannot be too large (1024 for the
GPU device used in this work). However, a kernel can be executed by multiple, equally
sized blocks, forming a grid: the total number of threads is then equal to the number of
blocks times the number of threads per block. Each SM schedules and executes threads
in groups of maximum 32 parallel threads (i.e. the maximum number of cores in an SM)
called warps. A warp executes one common instruction at a time, so full efficiency is rea-
lized when all 32 threads of a warp synchronize their execution path. If threads of the same
warp take different paths (due to flow control instructions), they have to wait for each
other. It is important to make GPU threads extremely lightweight.

CUDA threads have access to various memory types (Figure 4): each thread has its
registers, which are the fastest memory, and its private local memory (which is slower);
each block has a small shared memory, accessible to all threads of the block and with
the same lifetime of the block; all threads have access to the global memory: the
largest memory and slowest memory type, which is accessible by all threads of all
blocks, so it is used for communication between different blocks and with the host
(the program running on CPU). When a warp executes an instruction that accesses
global memory, it coalesces the memory accesses of the threads within the warp
into one or more of these memory transactions. Therefore, a very important optimiz-
ation in CUDA is ensuring that global memory accesses are as much coalesced as
possible.

A CUDA program includes two parts: one is the kernel running in parallel on the GPU
device following SIMD paradigm; the other running on CPU acts as a coordinator, i.e. pre-
pares the data, sends the data to the GPU device, calls the kernels, and retrieves the results
from the GPU.

4. Cappelli’s parallelizing approach

The pseudo-code of Cappelli’s parallelizing approach is listed in Algorithm 2, which
includes three GPU kernels:

. The first kernel ComputeLMC is responsible for building the lookup table for identifying
whether two minutiae mi , mj (in two fingerprints) have the angle difference less than a
threshold, i.e. d(mi , mj) ≤ tu (cf. 1). This strategy helps to avoid if branch in the SIMD
model, thus improving the performance.

. The second kernel Step-1 computes the similarity of minutiae pairs, i.e. a minutia of the
query Tq and another one of a Ti . To follow the SIMD model, each thread in a block is
responsible for calculating the similarity between a minutia of a Ti with all minutiae of

Tq. There are DB1 threads in a block and
NC
DB1

⌈ ⌉
blocks in this kernel. In the experiments,

DB1 is set to 192.
. The third kernel Step-2 computes the similarity between Tq and all Ti in T. Each thread

calculates the similarity of (Tq, Ti) pair. To make all the threads have an equal task, the
author considered only w top (highest) scores of matched cylinders of (Tq, Ti). The
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bucket B [ NN×w is used to store these highest scores. There are DB2 threads in a block

and
N
DB2

⌈ ⌉
blocks in this kernel. In the experiments, DB2 is set to 64.

ALGORITHM 2 Cappelli’s parallel algorithm on GPU

Parallel fingerprint identification on GPU
1. Load the template set T = {T1, . . . , TN} into GPU;//Done only once
2. Reset bucket matrix B [ NN×w ; //Set matrix cell’s value to 0
3. Load the query template Tq ;
4. Initialize S in GPU
5. Let NC = ∑

i Cylinder(T1) ;
6. Call ComputeLMC kernel (z threads per block, 1 block);

7. Call Step-1 kernel (DB1 threads per block,
NC
DB1

⌈ ⌉
block);

8. Call Step-2 kernel (DB2 threads per block,
N
DB2

⌈ ⌉
block);

9. Copy S from GPU memory to RAM for finding the possible matches

5. The proposed approach

5.1. Adapting MCC matching algorithm to GPU

5.1.1. Strategy 1: maximize the active threads
The primary goal in writing a kernel to run on a GPU is to maximize the active 32 threads in
a warp. Since the number of minutiae in a fingerprint is variable, to avoid divergence
between threads in the warps, several approaches suggest to mainly divide the MCC
matching algorithm into two separate kernel GPU calls (Cappelli et al., 2015; Gutierrez
et al., 2014). The first kernel GPU call is to calculate all similarity matrices. The second
call is to calculate the global scores from similarity matrices. When dividing the algorithm
into separating calls, it is necessary to transfer data between kernel calls. Meanwhile, some
advantages of the GPU architecture like shared memory are not utilized. Cappelli et al.
(2015) use a very careful design to adapt the algorithm and an ad hoc technique to trans-
late the similarity matrix to have a fixed size.

From our investigation on the FVC 2002 fingerprint databases (Cappelli et al., 2006), the
average number of minutiae of each fingerprint is 30, and the average number of matches
for a genuine matching is only 6. Thus, the first optimization strategy, we propose to use 32
minutiae for each fingerprint which is enough for the matching process in order to fit well
on a GPU block. However, we carefully select 32 minutiae (from fingerprints having more
than 32 minutiae) as follows:

. All existing minutiae are used to generate cylinders, so the MCC bit vectors of cylinders
are not affected in comparison with the case of using all minutiae.

. From the fact that, the more bit 1 the vector (of a minutia) has, the more neighbouring
minutiae it has. Minutiae having the cylinder with a small number of 1 tend to be the
outlines of a fingerprint. We sort the cylinder vectors in the decreasing order of number
of bit 1 (in the vector), and then select the top 32 minutiae.
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Since some fingerprints have more than 32 minutiae, we have to accept an increase in
error rate. However, this is acceptable as detailed in the next section.

In our approach, all the similarity matrices in Figure 5 have the same size 32 × 32. We set
the number of threads per block to be 32, i.e. equal the maximum number of threads per
warp (or per SM). Then we use one GPU block to calculate the similarity (i.e. using LSS)
between a template Tk and the query Tq. This is the key difference between our approach
and Cappelli’s. In Step 1, each thread of the block is responsible for calculating a column in
the similarity matrix and finding the maximum value in that column. In Step 2, the first
thread of the block calculates the global similarity from the average of maximum values
found from 32 threads of the block.

5.1.2. Strategy 2: exploit the shared memory
Since the sharedmemory space is faster than global memory, we exploit it to store the results
in each block. Table 1 lists the data structures and variables along with its memory type.

5.1.3. Strategy 3: pre-compute costly functions
Since a minutia is represented by a triple (x, y, u), where (x, y) is its coordinate in integers
and the ridge u is represented in degree, it is possible to pre-compute cosine and sine
functions with the range of 0 ≤ u ≤ 360. Though these functions accept only radian
values, a simple mapping from degree to radian is used before calling the functions.
Square root function is needed in some calculations (cf. Section 4.2) and we found out
the range of the input (i.e. from 0 to 1281); thus, it is possible to calculate the square
root of these values.

Consequently, time-consuming functions (e.g. manipulate real numbers) like square
root, cosine, and sine can be pre-computed and stored in an array. Later, we just
lookup the result instead of calling the function. These details are not mentioned clearly
in Algorithm 3 for simplicity.

5.1.4. Strategy 4: void branching instructions
The branching statement like if in the kernel will make the threads to take different
branches; thus, the SIMD model does not work well. The statement ‘If d(mj , mk) ≤ tu … ’
in line 11 in Algorithm 1 will be removed as follows: we pre-compute d(mj , mk) and
store the results in a list of arrays, i.e. for each u (in degree instead of radian)
(0 ≤ u ≤ 360), find all the minutiae mk of the query template Tq satisfying d(mj , mk).
Thus, given a new minutiamj with the angle u, the list of minutiae of Tq satisfying the con-
straint is readily available. Lines 10–13 in Algorithm 2 demonstrate this method.

Table 1. Data structures.
Name Type Note

T Array[N ] The template set T = {T1, T2, .., TN } (global memory)
bidx Int Block index, each block process a template T [bidx ]
S Array[N ] Store the matching score of the templates (global memory)
tidx Int The thread index within each block
maxMatching Array[32] Store the maximum number of globally matched minutia pairs between two templates

(shared memory)
maxValue Array[32] Store the maximum matched scores for each minutia (shared memory)
maxIndex Array[32] Store the index of the matched minutiae (shared memory)
gridDim.x Int The system’s variable that stores the grid size

10 H. H. LE ET AL.
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5.2. Enhancing the precision with consolidation stage

The simplest consolidation approach uses the local matched minutiae pair having the
maximum similarity value in order to align the fingerprint T and Tq for the consolidation
stage.

Let (mi1, mi2) and (m′
j1, m

′
j2) be two minutia pairs to be verified. Let [Dx, Dy] be

the translation between two minutiae m′
j1 and mi1. Let u be the angle to rotate m′

j1 to
mi1. Let m′′

j2 be the mapped point from m′
j2 using translation [Dx, Dy], and rotation u.

Let (x′′j2, y
′′
j2, u

′′
j2) and (xi2, yi2, ui2) be the triplets of m′′

j2 and mi2. Then x′′j2 and y′′j2 are
calculated as:

x′′ j2
y′′ j2

[ ]
= cos u − sin u

sin u cos u

[ ]
x′ j2
y′ j2

[ ]
+ Dx

Dy

[ ]
.

The two minutia pairs are deemed to be globally matched if they satisfy following
constraints:

. The spatial distance between the two minutiae does not exceed a threshold ts, i.e.
d(m′′

j2, mi2) =






























(x′′ j2 − xi2)

2 + (y′′ j2 − yi2)
2

√
≤ ts, where d(m′′

j2, mi2) is the spatial distance
between m′′

j2 and mi2.
. The directional difference between the two minutiae does not exceed a threshold tu, i.e.

u(m′′
j2, mi2) = min(|(u′′j2 + u) − ui2|, 360− |(u′′j2 + u)− ui2| ≤ tu).

Figure 6 demonstrates the step of translation and rotation to compare the two minutia
pairs. The two parameters ts and tu represent the tolerance window, and their value can be
determined by experiments. For example, in TK algorithm (Tico & Kuosmanen, 2003), the
distance threshold ts = 12 and the angle threshold tu = π/6 brought in a good performance.

The transformation on the minutiae pair having maximum similarity value may not be
the best transformation at the global level. Several authors have adopted multiple candi-
date transformations for the alignments. Finally, the transformation that maximizes the
number of consolidation stage minutiae pairs will be chosen. For instance, Medina-
Pérez et al. (2011) reduced the number of local matching minutiae pairs by for each
minutia p and minutia q, selecting only minutia that maximizes their similarity values,
then perform the transformation for each minutiae pair in the reduced set. Feng (2008)
sorted minutiae pairs by descending similarity values and chose top n minutia pairs for

Figure 6. Global checking of the match between to minutia pairs (Maltoni, Maio, Jain, & Prabhakar,
2009).
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the transformation. Normally, these approaches allow to get better accuracy than that of
the single transformation approach. In our approach, we compare all local matched pairs
of minutiae between two fingerprints to calculate the global similarity.

5.3. The proposed algorithm

The data structures and variables used in our algorithm are listed in Table 1.

The pseudo-code of our algorithm is described in Algorithm 2.

ALGORITHM 3 Our proposed parallelized algorithm
Parallel fingerprint identification on GPU

/***CPU code***/
1. Initialize S[] be an array of size N on GPU; //Similarity score set
2. Load the template set T = {T1, . . . , TN} into GPU; //Do once only
3. Load Tq into GPU; //Do for every query
4. Enumerate the minutiae of each Ti [ T satisfied d(mq , mk ) ≤ tu , where mq and mk are minutiae of Tq and Ti ,

correspondingly.
/***Kernel code (running on GPU), call for each query Tq***/
//Step 1: local minutia matching

5. While bidx , N
6. //Each thread tidx processes a minutia of T [bidx ], thus, no for loop is needed
7. Let m[tidx ] be the tthidx minutia of the query fingerprint T [bidx ];
8. For k = 1 to number of minutiae of Tq satisfied d(mtidx , mk ) ≤ tu
9. tempScore = sim(mtidx , mk );
10. maxValue[tidx ] = max(maxValue[tidx ], tempScore) ;
11. If tempScore == maxValue[tidx ]
12. maxIndex[tidx ] = k;
13. End if
14. End For
15. __syncthreads();

//Step 2.1: Consolidation stage
16. maxMatching[tidx ] = 0;
17. For i = 1 to 32
18. If i <> tidx and ((m[tidx ], m[i]) pair of T [bidx ] matches (m[maxIndex[tidx ]], m[maxIndex[i]]) pair of Tq) //c.f. Section

4.2
19. maxMatching[tidx ]++;
20. End if
21. End for
22. __syncthreads();

//Step 2.2: Similarity estimation
23. atomicMax(maxMatches, maxMatching[tidx ]);
24. If (tidx == 0) //This is the first thread in a block, calculate the global score
25. S[bidx ] = maxMatches/32
26. End if
27. bidx+= gridDim.x; //Jump to next chunk of template set T
28. End while

/***CPU code***/
29. Copy S from GPU to the main memory;
30. //Step 3: Find the matches from the score set S[]

The syncthreads() function in lines 15 and 23 are the barriers for all the threads of the
block, i.e. all the threads in the block must finish running the code above the call to
syncthreads(). This function ensures the results of all the threads of the block are avail-

able for aggregation.
The function atomicMax(maxMatches, maxMatching[tidx ]) performs maxMatches

= max(maxMatches, maxMatching[tidx]) while ensuring the critical section due to the
race condition caused by multiple concurrent threads within the same block. Note that
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the matched score of the two fingerprints is calculated based on the variablemaxMatches,
i.e. the consolidation results. Thus, it is different from that in Algorithm 1.

5.4. The complexity of the proposed algorithm

From the above text, some discussions about our algorithm are:

. No modification to the original MCC matching algorithm is added, thus the complexity
of our algorithm is intact.

. The reduction the number of minutiae of each fingerprint to 32 to fit the GPU architec-
ture reduces the search space, thus the matching will be quicker for fingerprints having
more than 32 minutiae in comparison with the original algorithm.

. The main reason to speed up the matching is the parallelization method as mentioned
in Sections 4.1–4.3.

6. Experimental results

In this paper, the problem of processing fingerprints with different size is out of scope. In
order to evaluate our proposed approaches, we used the FVC 2002 fingerprint database,
which contains equal-sized fingerprints, for the experiments. The tool by Medina-Pérez,
Loyola-González, Gutierrez-Rodríguez, García-Borroto, and Altamirano-Robles (2014) was
used for minutiae extraction and MCC cylinder creation process. Some parameter values
in Section 4.2 are the same as those of Tico and Kuosmanen (2003), i.e. ts = 12 and the
angle threshold tu = π/6. The generated MCC templates of fingerprints were stored on
the disk for the experiments. The experiments were carried out on CentOS 7.1 operating
system with CUDA 7.5. The configuration of GPU devices is listed in Table 2, where Testla
C2075 is the device used in Cappelli et al. (2015).

For evaluating the accuracy of the proposed algorithm, the result of the proposed
algorithm is compared with the result of the MCC baseline algorithm in which all minutiae
are used for the matching process. Table 3 shows the error rate of different algorithms,
where WCS and WOCS stand for ‘with consolidation stage’, ‘without consolidation
stage’, correspondingly. Without the consolidation stage, the action of selecting 32

Table 3. Experimental results on DB1 of FVC 2002 (the smaller error rate, the better performance).
Algorithm EER FMR 100 FMR 1000 FMR Zero

MCC baseline 1.64% 2.10% 3.89% 4.85%
Our algorithm WOCS 1.76% 2.29% 4.32% 5.46%
Our algorithm WCS 1.34% 1.68% 3.23% 4.03%

Table 2. NVIDIA CPU configuration.
Feature GTX 680 Tesla K40 Tesla C2075

CUDA cores 1536 2888 448
Base clock (MHz) 1006 745 1150
Standard memory 2GB 12GB 6GB
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minutiae for matching increases the equal error rate (EER), otherwise it decreases the EER
to be lower than the original algorithm.

For evaluating the speed of the proposed algorithm, we carried out all the experiments
on an NVIDIA GeForce GTX 680 with 1536 CUDA cores, Kepler Architecture, and 2GB of
memory. The FVC 2002 database was scaled to different sizes (ranging from 10,000 to
200,000) to study how the GPU-based algorithm scaled with the database size. Ten finger-
prints were randomly selected to be identified. Table 4 shows the results of experiments
with different database sizes, where KMPS stands for ‘kilo (thousand) match per second’.

At larger template set sizes, the throughput of the proposed algorithm is stable at 8.5 and
9.8 million matches per second on GTX 680 and Tesla, no scalability issues were found pro-
viding that the fingerprint templates can be stored on the GPU’s memory. Our results are
higher than those reported in Gutierrez et al. (2014), which gains 55.7 KMPS on the same
GeForce GTX 680 device. In addition, these results are comparable to state-of-the-art result
(Cappelli et al., 2015), which gains 9 million matches per second on Tesla C2075 GPU.

7. Conclusions and future work

This paper proposed a novel method to adapt MCC-based fingerprint matching to GPU. After
using all minutiae for calculating cylinders, top 32 minutiae having the biggest number of
neighbours are selected (to fit a GPU block) for matching. A consolidation stage step was
added to the algorithm to enhance the accuracy. The speed of the proposed algorithm is com-
parable with the results of the state-of-the-art published algorithm. The proposed approach
can be easily scaled-up to be able running in a real-time system. Thus, it is possible to
implement a large-scale fingerprint identification system on inexpensive hardware.

One possible direction in the future is to apply a mixed parallel model with multiple
machines with a message passing interface model, each of which has multiple GPU
cards to process large fingerprint data-sets for real situations.

Note

1. See https://developer.nvidia.com/opencl
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