
Efficient Binary Arithmetic Encoder for HEVC

with Multiple Bypass Bin Processing

Quang-Linh Nguyen, Dinh-Lam Tran, Duy-Hieu Bui, Duc-Tho Mai, Xuan-Tu Tran

SISLAB, VNU University of Engineering and Technology (VNU-UET),

144 Xuan Thuy road, Cau Giay district, Hanoi, Vietnam

Email: nqlinh.95@gmail.com, tutx@vnu.edu.vn

Abstract — The increasing amount of digital video with

supreme quality requires more efficient compression. As the

complexity of video coding algorithm is rising, there are more

demands for hardware accelerators and customized hardware.

Context-based Adaptive Binary Arithmetic Coding (CABAC) is

the only entropy coding method adopted in the latest video

compression standard, High Efficiency Video Coding (HEVC).

Binary Arithmetic Encoder (BAE) is an essential component in

CABAC, where the compression process happens. Because of the

high data dependency and sequential coding characteristic, it is

challenging to parallelize BAE. In this work, we proposed a low-

cost and high-throughput hardware architecture for one core of

BAE in HEVC. Our 4-stage pipelined BAE architecture is

capable of processing one regular bin and up to 4 bypass bins per

clock cycle with 30% reduction in terms of area when compared

with the designs for one-core CABAC architecture. The design

can compress an average of 1.4 bins per cycle. It achieves a

throughput of 1 Gbin/s at the maximum operating frequency of

810 MHz with the area of 2.2 kGEs and the power consumption

of 2.0 mW in Nangate 45nm technology.

Keywords — HEVC, CABAC, entropy coding, Binary

Arithmetic Encoder

I. INTRODUCTION

Digital video has occupied a large share of digital content.
In a recent report [1], Cisco forecasted that online video would
be responsible for four-fifths of global Internet traffic. This
drives the academia and industries to raise the effectiveness of
video compression. In this effort, High Efficiency Video
Coding (HEVC), introduced by Joint Collaborative Team on
Video Coding (JCT-VC), promises 50% bit rate savings
compared to the previous standard of H.264/AVC for the same
video quality. The standard particularly focuses on two key
issues: higher video resolution and increased use of parallel
processing architectures [2].

Context-based Adaptive Binary Arithmetic Coding
(CABAC) [3] is responsible for entropy coding in HEVC. Each
type of its input accompanies with contexts and these contexts
need to be updated frequently to adapt to the coding process.
CABAC is the slowest part in HEVC because it contains strong
data dependency and serial bit processing. Parallelism has been
explored to improve the throughput of CABAC in HEVC.
HEVC introduced parallelism on frames, slices, or waveform
levels to realize high speed in the software version. However,

in hardware implementation, using several entropy encoders
leads to high hardware cost and high memory footprint.
Furthermore, Binary Arithmetic Encoder (BAE) is the main
bottleneck in CABAC because it contains bit serial processing
of binary data. In this paper, we focus on optimizing this
critical module to reduce the hardware cost and improving the
throughput.

Recently, there is a large number of works focusing on
optimizing the performance of BAE in HEVC. Most of works
use the 4-stage pipeline architecture to break BAE into multiple
steps with local data dependencies. One way to speed up
CABAC is to use many pipelined BAE cores to process
multiple bins such as in [13], [12] and [15]; however, this leads
to high occupied area and long critical path. It is also possible
to use 3 custom cores for 3 types of bins as in [11], but this
increases gate count due to the lack of hardware sharing.

In this paper, we propose a 4-stage pipelined architecture
for one unified core BAE which is able to process all types of
bins at high throughput. In addition, our proposed architecture
can process a packet of 4 bypass bins in one clock cycle with
the same datapath. Data processing order is reorganized to
reduce the critical path for both regular bin and bypass bin. To
save the hardware area, we merge the processing of multiple
bypass bins with the common path of the regular bins.
Implementation results show that our architecture can achieve
the speed of 1Gbin/s at the working frequency of 810 MHz
with the hardware cost of 2.2 KGEs. At this speed, it is
possible to process an 8k videos at high profile in HEVC.

The rest of the paper is organized as followed. Section II
introduces briefly about the CABAC algorithm. Section III
discusses the multiple-bypass-bin processing technique.
Section IV gives details about our proposed hardware
architecture for BAE. The implementation result is presented in
Section V. Finally, Section VI concludes the paper.

II. CABAC OVERVIEW

Context-based Adaptive Binary Arithmetic Coding is a

tool for entropy coding first adopted in H.264/AVC and

continuously used in the latest standard HEVC [6]. It is

utilized at the last step of video encoding when it will encode

the outputs of the previous stages such as quantized transform

coefficients, prediction modes, motion vectors, intra prediction

direction, which are called syntax elements (SEs). SE

describes how the video can be reconstructed at the decoder.

CABAC encoding process includes three main steps:
binarization, context modeling, and binary arithmetic encoding
as described in Fig. 1. In the first step, syntax elements are
mapped to binary symbols (bins). Context modeler provides
the estimated probability of bins. Finally, binary arithmetic
encoder compresses bins to bits based on the context model
using the provided probability.

Fig. 1. CABAC encoder block diagram.

Binary arithmetic coding is an extension of arithmetic
coding [5] that is used for binary data. As the source data
contains only two symbols, there is no need of a statistical
structure for the data. The frequency of appearance is recorded
after a symbol is coded. The symbol with the probability of at
least 0.5 is called Most Probable Symbol (MPS) and the other
one is Least Probable Symbol (LPS).

The input of BAE is categorized into three types: regular
bin, bypass bin, and terminate bin. Each has a different coding
process. While encoding process for regular bin is rather
standard, there is no need for a probability model when coding
bypass bin and context model is non-adaptive in the case of
terminate bin.

A. Binary Arithmetic Encoder

Regular bin coding is the main activity of BAE. Therefore,
for hardware implementation, we made some rearrangements
to the bypass bin and terminate bin encoding process so that
they fit in the main process.

The internal state of arithmetic coding is expressed by two
parameters: Range (the current interval range) and Low (the
lower bound of this range). The provided context information
includes the probability state index pState and the value of
MPS valMPS.

The process has four main steps and its flow chart is
presented in Fig. 2. In the first step, the current interval is
divided according to the given probability estimation. The
interval subdivision is performed in a multiplier-free fashion,
as the range of LPS is selected from a look-up table. MPS
range is the result of a subtraction of LPS range from Range.
Then, Low and Range are updated according to the type of
symbol, MPS or LPS. MPS corresponds to the lower part of the
interval range part of the interval range while LPS corresponds
to the higher one. The update of probability state is performed
in the third step. The last step is the renormalization of Range
and Low.

Since there is a limited number of bits to represent Range
and Low, they need to be scaled up to guarantee the precision.
Most significant bits (MSBs) of Low will be outputted during
the renormalization process. Renormalization happens when
Range is below the threshold value, 256. After each round, a
bit can be generated or accumulated. Accumulated outstanding
bits will be resolved when a bit is produced next time. The loop
will be iterated until Range exceeds 256.

Fig. 2. Flow chart of encoding a regular bin [6].

As context update can be delegated to Context Modeler, the
binary arithmetic encoding process can be arranged in four
stages according to the order of the updates of Range, Low and
outstanding bit count.

B. State-of-the-art

The trend of designing hardware for CABAC started in
2003 when it was first introduced for H.264 standard by Marpe
et al. [3]. Most of the works were focus on architecture for
Binary Arithmetic Encoder (BAE) because this is the
bottleneck of the whole CABAC module.

One of the first to attempt to process multiple bins is Osorio
et al. in [7]. They implemented 2-stage pipelined BAE with
dual-symbol encoding and optimized processing for bypass
bin, which resulted in 1.9 – 2.3 bins/cycle. Zheng et al. in [8]
proposed 4-stage pipelined CABAC with 3-stage pipelined
BAE that yielded throughput of 1 bin/cycle. Tian et al. in [9]
presented three-stage pipelined BAE, one stage for
renormalization and two for bit packing. There were three
customized submodules used to encode regular bin, bypass bin
and terminate bin. Chen et al. in [10] designed a dual-core 6-
stage pipelined BAE, which gave an average throughput of
2.37 bins/cycle.

As new advanced semiconductor technologies have
significantly reduced latency and enabled higher clock rate,

Binary Arith. Encoder

Binarizer

Context
Modeler

Regular coding
engine

Bypass coding
engine

regular

bypass

bin, pState Coded
bitstream

Bin value for context model update

Syntax
element

bins

rLPS=LUT(pState, range[7:6])
rMPS = Range - rLPS

valBin != valMPS?

Range = rLPS
Low = Low + rMPS

pState!= 0?

valMPS = !valMPS

pState = LUT(pState)

Renormalization

Range = rMPS

pState = LUT(pState)

Renormalization

YES No

No

YES

more designs for BAE in HEVC utilized many-core
architectures to maximize BAE’s throughput. Pham et al. in
[11] used each custom core to encode each type of bins, which
processes 1 bin per cycle. Jo et al. in [12] presented 2 parallel
4-stage pipelined BAE cores to boost the performance. They
adopted a LUT for generating bitstream to reduce the
operational time involved. Zhou’s work in [13] is considered as
the state-of-the-art architecture for BAE. They implemented 4
parallel pipelined multi-bin BAE cores, which can encode up to
4 regular bins per cycle. The proposed optimizations including
bypass bin splitting, pre-normalization, hybrid path coverage,
and look-ahead rLPS remarkably reduced the critical path
delay of BAE. However, the usage of many BAE cores can
lead to high occupied area. In this work, we propose a low-cost
solution that balances performance, power and cost.

III. MULTIPLE-BYPASS-BIN PROCESSING

For bypass bins, the two bin values, 0 and 1, are
equiprobable. Thus, there is no need of a context model to
encode bypass bin. Without using probability models, bypass
coding engine considerably reduces the coding complexity
compared to the regular coding engine. It can be extended to
process multiple bins at the same time.

The procedure to encode bypass bins is shown in Fig. 3.
The bin with value binVal = 1 is assigned to the upper part of
the range, binVal = 0 to the lower one. Contrary to regular bin
coding, in bypass mode, Low is first rescaled. Then it is added
by the value of Range when a ‘1’ is coded, equivalent to the
update of Low in case of MPS in regular mode. Because the
ranges of LPS and MPS are equalized and are half of Range,
the updated Range equals to the old one and renormalization
happens for just one round. Range is kept unchanged and Low
is increase by a constant amount of Range only when bit ‘1’ is
being coded. This leads to the possibility to implement a
multiple-bypass-bin coding engine.

As stated in [4], one of the techniques used to improve the
throughput of CABAC in HEVC is grouping bypass coded
bins. Bins are reorganized in the fashion that bypass bins are
grouped together in order to increase the possibility that
multiple bins are processed per cycle. Thus, the ability to
encoding several bypass bins in a cycle would yield a
significant rise in throughput. In addition, bypass bins occupy a
noticeable share in the total number of bins, ranging from 20%
to 30% of all bins [13]. Our architecture supports encoding of a
group of 4 bypass bins in one clock cycle. The group of bypass
bins is described using EPbits and EPlen. EPbits is a string of
up to 4 bypass bins and EPlen indicates the number of bins in
EPbits.

In bypass mode, renormalized Low when coding one
bypass bin is computed as follows:

renormLow = Range × binVal + oldLow << 1

The first term is Range when the bin is ‘1’ and 0 when it is
‘0’. For the next bypass bin, Range remains the same and Low
is doubled. Therefore, to encode a group of bypass bins, the
term is the multiplication of Range and EPbits. In our design,
the formula for multiple-bypass-bin processing is:

renormLow = Range × EPbits + oldLow << EPlen

With the ability to encode many bypass bins, our BAE core
only takes an additional multiplier compared to the normal
core. Furthermore, we also unified the datapath for processing
regular bins and bypass bins to calculate the Low value.

Fig. 3. Flow chart of encoding bypass bin[6].

IV. PROPOSED ARCHITECTURE

At Binary Arithmetic Encoder (BAE), bins are encoded
serially. Since the probability model and the internal state of
arithmetic coding (Range and Low) should be maintained and
updated before coding the next bin, a strong correlation exists
between adjacent bins. Therefore, the incoming bin could not
be correctly coded until all the necessary computing and
updating process for the previous one is completed. This makes
BAE rather challenging to parallelize. However, it is possible
to break the process down into separate steps which could be
pipelined to speed up the coding process. In our proposed
architecture, we propose a four-stage pipelined architecture
with considerations to maximize the performance and also
reduce the occupied area. The area is reduced by passing
minimum data through each pipeline stage while the
performance is maximized by retiming in different stages. Our
proposed architecture also supports to process multiple bypass
bins in one clock cycle.

Figure 4 shows our proposed 4-stage pipelined architecture
for BAE. To enable multiple-bypass-bin processing, the inputs
to our architecture are encapsulated into packets. Each packet
could be a regular/terminate bin or a group of bypass bins. The
functions of each stage are:

Low = Low << 1

valBin != 0?

Low = Low + Range

Low >= 1024?

PutBit(1)

Low = Low - 1024

YES No

No YES

Low < 512?

Low = Low – 512
bitOutStanding++

Done

PutBit(1)

PutBit(1)PutBit(0)

YES
No

• Stage 1: Packet information extraction and rLPS look-
up

• Stage 2: Range renormalization and pre-multiple
bypass bin multiplication.

• Stage 3: Low renormalization and outstanding bit
look-up

• Stage 4: Coded bit construction and calculation of the
number of valid coded bits

The detailed implementation of these stages is described in
the following subsections.

Fig. 4. Our proposed BAE architecture.

A. Packaet information extraction and rLPS look-up

The input of this stage is a 10-bit packet from the context
modeler with a specific format for each type of bins. There are
3 types of bins: regular bin, terminate bin, and bypass bin. In
our architecture, regular bins and terminate bins have the same
data path and they are considered as one type of bins (regular
bin). To enable the possibility to process multiple bypass bins,
we grouped up to 4 bypass bins together. Therefore, each input
packet can be encapsulated as a regular bin or a group of
bypass bins as illustrated in Fig. 5. A bypass packet can contain
up to 4 bypass bins, while a normal packet carries only one bin.
Depending on 2-bit mode, the packet analyzer will extract the
corresponding signals to pass through the rest of the coding
process.

For regular/terminal bin processing, some previous works
such as in [13] and [15] proposed to do rLPS and rLPS
renormalization in this stage. However, to reduce the number
of pipelined registers, we chose to pass only control signals and
look up four LPS ranges (rLPS) in this stage. rLPS
renormalization and the number of shifted bits will be pushed

to the second stage to reduce the total number of registers and
to save the combinational logics because at the second stage,
we have enough information to decide which rLPS will be used
for the coding process.

Fig. 5. Packet format for different bin types supported in our architecture.

B. Range renormalization and pre-multiple bypass bin

multiplication

Fig. 6 shows the datapath for stage 2. Stage 2 contains two
main steps: range renormalization and pre-multiple bypass
multiplication for bypass bin processing in stage 3. The input to
range normalization process is an rLPS value selected from
four rLPSs look-up in stage 1. This value is selected based on
two bits of the previously renormalized range. The area is
saved by doing renormalization for only one correct LPS. If
renormalization is done in stage 1, it is hard to know which
LPS will be used, and all four renormalized LPSs have to be
passed through the stage 2. rLPS is renormalized by using a
shifter with the number of bit shifted is looked-up using the
correct rLPS. The correct rLPS is also used for calculating the
rangeMPS. The output to stage 3 is the value of rMPS which is
the pre-multiplication results (incEP) for a bypass packet; zero
for a most probable symbol bin; or rangeMPS in case of a least
probable symbol bin. The range register is updated with the
renormalized value of MPS or LPS for regular bins, while it
keeps its value in case of bypass bins.

Fig. 6. Range renormalization and pre-multiple bypass bin multiplication

architecture.

In our proposed architecture, in this stage, we chose to
unify the datapath for bypass bins and regular bins so that the
next stage does not need to have two different datapath for two
different types of bins. The pre-multiplied value for bypass bin
processing is sent to stage 3 through the rMPS. In stage 3, the
normalization of Low value is done using a single adder.

rLPSs

rLPS
Table

state

EPLen mode EPBitsisMPS

Packet analyser

/ 10

InputPacket

ra
n

ge

rMPS nShift bypass

Renorm. rLPS

Renorm. rMPS

M
P

SSh
ift

LP
SSh

ift
LU

T range

Lo
w

nShift2OSCnt

Renorm.
low Least Significant

Zero (LSZ) LUT

bypass

Shifter

Shifted renormLow

Encoded bit
generator

Valid-bit length
calculator

Number of valid bitsCoded bits

Stage 1
Stage 2

Stage 3
Stage

 4

/ 8

/ 8

/ 8
/ 3 / 2 / 4

/
9 / 13

9
/

/ 13

/ 2

/ 7 / 3 / 3

/ 37 / 6

/ 2/ 3 / 4

/
3

0 incEP
incEP

mode valBin State valMPs

9 8 7 6 5 4 3 2 1 0

mode EPBits EPLen ‘0’

9 8 7 6 5 4 3 2 1 0

(a) Packet format for regular/terminate bins

(b) Packet format for multiple bypass bins

ren
o

rm
M

P
S

renormLPS

/ 8

LPSShift LUT

Barrel shifter

rLPS
/ 8−

rMPS

0 <<1

rangeMPS
/
5

range

rLPSs

/ 4

/
9 / 13

EPBits

/ 9

/
9

/ 13

/
9

9
/

/
2

incEP

incEP

C. Low rernormalization and oustanding bit look-up

Low renormalization and outstanding bit look-up are done
in stage 3. In this stage, the area is saved by unifying the
datapath for bypass bins and regular bin; sending only 7-bit of
the renormalized low which are necessary for the coded bit
construction; and by preparing the outstanding bit value in
stage 3. Instead of sending all 17 bits of renormalized Low
value to the next stage, we only have to send 7-bits of then
shifted Low value and 3 bits of outstanding bit counter
(OSCnt).

Fig. 7. Low rernormalization and oustanding bit look-up.

The datapath for stage 3 is presented in Fig. 7. In the bypass
bin processing, Low value is shifted before being added with
rMPS, while in regular bin processing, the results of the
addition of Low value and rMPS is shifted to form the
renormalized Low. The Low register is updated with 10 bit out
of 17-bit of renormalized Low. 7 upper bits of renormalized
Low are used to decide the most significant bit (MSB) of Low.

In conventional BAE architecture, the outstanding bit
counter is often calculated in the last stage, however, in our
architecture, to send only 7-bit of the renormalized low to the
next stage, we chose to look up the outstanding bit counter in
advance. This path is the critical path in our design.

D. Coded bit construction and calculation of the number of

valid coded bits

The last stage in our proposed architecture is shown in Fig.
8. Based on the normalized Low value, the coded bits are
constructed using inversion, mask with padding zero using
barrel shifters. The first bit of renormalized Low value is
concatenated with its inversion to form a 38-bit value. It is then
ANDed with a mask to keep only the resolved outstanding bits.
Finally, the resolved bits are ORed with the remaining bits
constructed from the last 6 bits of the renormalized Low value.

The number of resolved outstanding bits is calculated based
on the number of confirmed output bits bitCnt and the number
of the resolved outstanding bits. If there are no determined
output bits, no outstanding bits are resolved and all of them are
accumulated into AccOSCnt register. Otherwise, outstanding
bits from the previous cycle are confirmed and the number of
accumulated outstanding bits equals to OSCnt.

Fig. 8. Stage 4 (Bitstream Generator) architecture.

V. IMPLEMENTATION RESULT

Our hardware design was implemented in VHDL. We
tested our BAE architecture under several test cases. All-intra
or low-delay configurations with the quantization parameter of
22 and 37 were configured in the reference software HEVC
Test Model version 16.12 as described in TABLE I. With the
ability to process at most 4 bypass bins in a clock cycle, our
design achieved the performance of 1.4 bins per cycle in
average depending on the number of grouped bypass bins. Our
proposed architecture was synthesized with Synopsys Design
Compiler using NANGATE 45 nm technology. Our
architecture has the total gate count of 2.2 kGEs at 810 MHz
with power dissipation of 2.0 mW.

TABLE I. PERFORMANCE UNDER DIFFERENT TEST CASES

Configuration QP Bins per cycle

All intra
22 1.56

37 1.25

Low delay
22 1.56

37 1.24

Average 1.4

A comparison of our work with others’ works is shown in
TABLE II. It is clear from this table that our work achieves
the smallest occupied area when compared with the other
designs with one-core BAE architecture in [11], [12], [16].
Our proposed architecture has about 30% reduction in area
even with multiple bypass bin processing. Furthermore, our
design has 20% less power consumption in comparison with
4-core BAE architecture designed for low power in [15] at the
same throughput. In terms of throughput, our design at its
maximum working frequency achieves 1Gbin/s. This means
that our design is capable of encoding in real-time a video
conforming to the main profile level 6.2 of high tier [6], which
equivalent to an 8K video.

VI. CONCLUSION

Binary Arithmetic Encoder is the most crucial component
of CABAC because of its serial bit-based processing and its
internal data dependencies. In this work, we proposed a low-
cost and high throughput 4-stage pipelined Binary Arithmetic

R
en

o
rm

. Lo
w

rMPS

Barrel Shifter

+

Barrel Shifter

Barrel Shifter

Shifted renormLow

nShift

nShift

nShift

Low

/ 7

[9:3]

Set low MSB/
10

/ 13

/
17

/
3

/
3

Least Significant
Zero (LSD) LUT

OSCnt

[16:9]

/ 3

/
10

bypass

bypass

Valid-bit length calculatorEncoded Bit generator

Shifted renormLow[6]

Bit concatenation

inv

Barrel shifter

Barrel shifter

Shifted renormLow[5:0]

Resolved
OS bit maskResolved

OS

nShift2 OSCnt

−

AccOSCnt

+

0

+ Resolved OS

Coded bits
Number of valid bits

/ 6

/ 37

/
38

/
38

/ 38

/
38

/ 38

B
it

C
n

t

Encoder for HEVC CABAC using one-core architecture with
multiple-bypass-bin processing. Our architecture can process
one regular bin or up to 4 bypass bins in one clock cycle. Our
proposed design was successfully implemented using Nangate
45nm technology library with the maximum operating
frequency of 810MHz. At this frequency, our design can
process 1 Gbins/s, which met the requirement of real-time
processing of 8K resolution video. By reorganizing different
steps in the pipeline and by retiming technique, our architecture
can save 30% of area in comparison with other one-core
architectures; and 20% improvement in power consumption
even when compared with 4-core architectures designed for
low-power consumption.

REFERENCES

[1] Cisco, "White paper: Cisco VNI Forecast and Methodology, 2015-
2020," 2016.

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, "Overview of the
High Efficiency Video Coding (HEVC) Standard," IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, 2012.

[3] D. Marpe, H. Schwarz and T. Wiegand, "Context-Based Adaptive
Binary Arithmetic Coding in the H.264/AVC Video Compression
Standard," IEEE Transactions on Circuits and Systems for Video
Technology, 2003.

[4] V. Sze and M. Budagavi, "High Throughput CABAC Entropy Coding in
HEVC," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, 2012.

[5] G. G. Langdon, "An introduction to arithmetic coding," IBM Jounal of
Research and Development, 1984.

[6] ITU-T, Recommendation ITU-T H.265 High efficiency video coding,
ITU, 2013.

[7] R. R. Osorio and J. D. Bruguera, "High-Throughput Architecture for
H.264/AVC CABAC Compression System," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 16, no. 11, 2006.

[8] W. Zheng, D.-X. Li, B. Shi, H.-S. Le and M. Zhang, "Efficient Pipelined
CABAC Encoding Architecture," IEEE Transactions on Consumer
Electronics, vol. 54, no. 2, 2008.

[9] X. Tian, T. M. Le and Y. Lian, Entropy Coders of the H.264/AVC
Standard: Algorithms and VLSI Architectures, Springer, 2011.

[10] J.-W. Chen, L.-C. Wu, P.-S. Liu and Y.-L. Lin, "A High-throughput
Fully Hardwired CABAC Encoder for QFHD H.264/AVC Main Profile
Video," IEEE Transactions on Consumer Electronics, vol. 56, no. 4,
2010.

[11] D. H. Pham, J. Moon, D. Kim and S. Le, "Hardware Implementation of
HEVC CABAC Binary Arithmetic Encoder," Journal of IKEEE, vol. 18,
no. 4, 2014.

[12] H. Jo, G. D. A.N and K. Ryoo, "Hardware Architecture of CABAC
Binary Arithmetic Encoder for HEVC Encoder," Advanced Science and
Technology Letters, vol. 141, 2016.

[13] D. Zhou, J. Zhou, W. Fei and S. Goto, "Ultra-high-throughput VLSI
Architecture of H.265/HEVC CABAC Encoder for UHDTV
Applications," IEEE Transactions on Circuits and Systems for Video
Technology, 2015.

[14] D. Marpe, G. Marten and H. L. Cycon, "A Fast Renormalization
Technique for H.264/MPEG4-AVC Arithmetic Coding," 14th European
Signal Processing Conference, 2006.

[15] F. L. L. Ramos, J. Goebel, B. Zatt, M. Porto and S. Bampi, "Low-Power
Hardware Design for the HEVC Binary Arithmetic Encoder Targeting
8K Videos," Symposium on Integrated Circuits and Systems Design
(SBCCI), 2016.

[16] B. Peng, D. Ding, X. Zhu and L. Yu, "A Hardware CABAC Encoder for
HEVC," in IEEE International Symposium on Circuits and Systems,
2013.

TABLE II. COMPARISON WITH OTHER WORKS

 Peng2013 [16] Zhou2014 [13] Pham2014 [11] Jo2016 [12] Ramos2016 [15] Our work

Bins per cycle 1.18 4.37 1 1 1.99 4 1.4

Clock frequency (MHz) 357 420 180 1530 1110 280 810

Technology process (nm) 130 90 180 65 65 45 45

Throughput (Mbin/s) 421 1836 180 1530 2219 1120 1134

Gate count (K gates) 24.95 7.98 3.96 3.17 5.68 9.95 2.2

Power consumption (mW) - - 2.88 - - 2.49 2.0

