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available by using monitors, the misinformation Propagation time
and the budget for placing monitors are restricted, and proved
it is NP-Hardness. At the same time, we also suggest two greedy
algorithms to solve the problem. Experimental results show the
dominant advantages of the algorithms in comparison with other
commonly used algorithms.

I INTRODUCTION

Information propagation’ models are the bases for research-
ing how to limit the effects of misinformation. There are many
different types of proposed diffusion models such as: threshold
models [2], [3], cascading models [4], epidemic models [5],
competitive influence diffusion models [6], especially the two
models independent cascading (IC) model and linear threshold
(LT) model proposed by Kempe [2] are being wildly utilized
(11, [71, (81, [9], [10], [15].

Recently, there have been various “approaches to the re-
search of misinformation on online social networks (OSN).
Qazvinian [11) and Kwwon [12] identified misinformation and
rumors. T.D. Nguyen [7] researched the problem of identifying
the k most suspected users from the set of victims who
are already influenced by the misinformation. To restrain the
misinformation propagation, some authors suggested choosing
a few initial nodes to inject good information and spread it
on the same network to convince other users [13], [14], [15),
where different many informatjon propagation models such as:
multi-campaign independent cascade model [13], competitive
activation model [14], independent cascading model and linear
threshold mode] [15] are used.

In particular, Zhang (1] suggested a research on determining
the smallest set of nodes for placing monitors with the
given misinformation emitting sources and the vulnerable r
node needing protection so the probability of misinformation
activating the r node’ is within the allowed threshold. In here,
the authors used IC model and the nodes on which monitors
are placed could obstruct misinformation emitted from them
with the same monitor expenses on each node.

In this article, we used the LT model to examine the
problem of foreknowing the source of misinformation S and
the cost c(u) to place monitors on each respective node wu.
The node w when activated with misinformation causes a
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damage r(u), find the set of nodes I to place monitors so that

the total installation cost does not exceed the given budget

B with the expectation that the number of nodes activated

with misinformation after 4 spread steps is minimal.  After

proving our problem is NP-Hardness, we introduce two greedy .
algorithms for this problem. Experimental results show that the

suggested greedy algorithms are more effective than the two

baseline algorithms Max Degree and Random,

The rest of this article js organized as follows. A sum-
mary of linear threshold model and a presentation using the
equivalent live-arc graph model are displayed following the
Introduction. Section 3 defines the problem of minimizing
the spread of misinformation (MSM) and assesses its level of
hardness. In Section 4, we present the two greedy algorithms
to solve the MSM problem. The result of the experiment is
given in Section 5. The last part concerns itself with conclusion
and future work.

II. DIFFUSION MODEL

Foremost, we would like to give a summary introduction on

the spread of information through the linear threshold model,

for more details see [2], [16].

A. Linear threshold model

We model a social network as a directed graph G = (V, E),
where V' is a finite set of vertices or nodesand ECV x Vv
is the set of arcs or directed edges connecting pairs of nodes,
VI = n,|E| = m. A node represents an individual in the
social network, while an arc e = (u,v) in E represents the
relationship between individuals and v respectively. For each
node v € V, we denote by N “(v) the set of in-neighbors of
v.

Active node and inactive node. The process of spreading
information from the source set S to other nodes on OSNs
develops through discrete time steps ¢ = 0, 1, 2, .... Each node
v € V has two possible states, active and inactive. In each time
step ¢, node v is active if v js a misinformation-emitting node
in S or v receives misinformation from other active neighbors,
really accepts it and continues to share and propagate it to
other nodes; otherwise, node v js inactive. Denote by S, € V
the set of active nodes at time t, obviously Sy = S,

Influence weight. Every arc (u,v) € E is associated with an
influence weight w(u,v) € [0, 1], indicating the influence of
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information from user u on user v, The weights are normalized
such that for al satisfies:

> wluw) <1 )
uEN""('U)
Threshold valye. Depending on the characteristics of the

are updated during the Spread
knowledge of the individuals’ internal thresholds.

Linear thresholg Propagation. At each time step ¢, every

node v in inactive state will be activated if the weighted sum
of its active neighbors exceeds its threshold [ meaning:

Z w(u,v) > 9, 2

ueNin (v)

active

where Nt (v) is the set of active in-neighbors of 4,

If the initial informatjon source set § s foreknown, the
process of information Propagation follows discrete time steps
as follows:

* At step ¢ =0, we have: the active set is the source set

Sy =8,

» Atstep ¢ > 1, every inactivate node v will be activated
if its weighted sum of its active in-neighbors exceeds 6,.,
meaning Eq. 2 is satisfied. Once a node Is activated, it
Stays active in the next Propagation steps,

o The diffusion process ends when no extra node is acti-

B. Model equivalence

Chen [16] showed that the LT model js equivalent to ljve-
arc graph model with proportional arc selection, which means
the active sets {St}, are the same in both models. Later on,

In' the LT mode, given a socia] graph G = (V, E) and the
influence weights w(.) on all arcs, we select a random live-arc
8raph G, = (V, Eg +) such that for each node v € V, at most
one incoming arc of y is selected with probability plu,v) =
w(u,v), and no arc js selected as a live arc with probability
1 —EHE,V,-,.“,) p(u, v). The selection of the incoming arc of
is independent of the selection of incoming arcs of other nodes
and is called live-arc, the rest js called blocked-are, Therefore,
G is a graph with node set V and arc set containing live-arc,

Graph G, selection probability. Let g denote the set of
all possible live-arc graphs of G = (, E), and let Pr(Gyp)
denote the probability that G L is selected from among all live-
arc graphs in G, we have:

Pr(Gy) = Hp(”) 3)
veV
where
_ Jp(uv) = w(u, v)
)= { UE Nin(y) P(u, )

If Ju: (u,v) € Eq,
Otherwise

Estimating the number of activated nodes. Denote by o(S)
the expected number of activated nodes caused by misinforma-
tion source $ once the Propagation process ends ang R(Gy, S)
is the reachable set of nodes from set S in live-arc graph G .
a(S) can be determined by the equation;:

o(5)= 3" Pr(GL)IRG,. 5)| @)

GLeg

correspondent user believes in thig information wil] cause
damages quantified by r(u) > 0. Since it is harg to estimate
the exact amount of damages for each node; in this problem
We assume the amount of damage of 4 nodes are the
same. Denoted by D(S) is the €xpected amount of damages
integrated from active nodes caused by the misinformation
source set S throughout the Propagation process. Therefore,
D(S) is proportional to ¢(8) shor as damages cauged by
Source 5. Without loss of generalization, assume r(u) = 1 for
all active nodes v, thep D(S) coincides with a(S), meaning:

PE) =a(8)= 3 Pr(c,)Rr(c,, S )
Greg
However, subsequenlly we still use the term damage to refer
to both of these quantities.

L1. PROBLEM STATEMENT AND HARDNESS
A. Problem Statement

Consider an OSN presented with a directed graph G =
(V,E) with LT model as above and the original misinfor-
mation source §. Here, we are concerned with the problem
of preventing misinformation from spreading ‘in d time steps
(deadline constraint), if we do not prevent thijg early then
the number of activated users wil] rise rapidly due to the
rapid speed of the spread. , In various
situations arises the problem of preventing the spread before
a specific point time, For example, before major political
events, opposing Organizations and individuals usually dis-
perse misinformation o social networks with the intention of
baffling those events. Therefore, it is compulsory prevent that
information from Spreading throughout the social networks
with the view to assuring the success of those events.

Denote by Ry(Gy. S) the set of reachable nodes from § in
graph Gp, after ¢ spread steps or d time steps. The shortest
distance of aJ paths from node set § to a node v in graph
G is denoted by d, (S, v) (if no such Path exists, we define
de, (S,v) = 0o, and if v € 5 then dg, (S, v) = 0), we have:

R([(GL, S) = {‘U eV } (l(;L (S, 1/) < d} (6)

Then, from Eq. 5 we determine the damage DF caused by
misinformation source S after ¢ spread steps using Eq. 7:

Di= Y PrGLIRAG,,S)| )
GLeg )



Suppose, we cannot interfere with source S but we can place
monitors on other nodes to limit misinformation propagation,
The monitors suggested by Zhang [1] are used to prevent
misinformation from spreading from S to the given nodes
needing protecting.

Monitor. Monitor is a content-filter system that detects mis-
information from users (nodes) placed to prevent the share and
propagation of misinformation from this users. The placing
of monitor on node v is equivalent to removing the node
and its adjacent edges from graph G and requires ¢(u) cost
respectively.

We consider the problem of finding the node set I to place
monitors such that the installation budget does not exceed the
given budget B with minimal damages after d spread steps of
propagating misinformation.

Let G(I) be the sub-graph of G after removing the node set
I and the set of it adjacent e¢dges. Then, the damages caused
by source S on graph G after placing monitors on the node
set I are equal to those caused by source S on graph G(I).

Denote by G(Z) the set of all possible live-arc graphs of
G(I) and call DS(I) the damage function caused by source
S after d spread steps when the monitors are placed on node
set 1. Then, from Eq. 7 we have:

Dil)= 3 Pr(CL)|RiGL.S)| )

G'LEG(I)

With the process misinformation propagation by the LT
model, the problem of Minimizing the Spread of Misinfor-
mation on OSNs is stated as follows,

Definition 1 (Minimizing the Spread of Misinformation -
MSM). Given a social graph G = (V, E) under the LT model.
S CV is the source of misinformation. Each node u € V has
a cost c(u) > 0 to place the monitors and damage r(u) = 1
when activated by misinformation, with limited budget B > 0
and the given number of misinformation spread stepsd € Z.,
the objective of the problem is to Jfind the node set I C V' \ S
to place monitors with the total cost not exceeding budget B,
>uer €(u) < B to minimize the function D3 (I).

The MSM problem can.be shortened as: Find set Icvy
S to minimize the function D¥(I) with the condition that

Ywerc(u) < B.

B. Hardness

In this part, we show that the problem MSM is NP-Hardness
by reducing it from the decision version of Set Cover problem
defined as follows,

The decision version of Set Cover problem. Given a universe
U of m elements, Y = {e1.eq, ....€m}, and a collection S of
n subsets of the universe set, S = {S1, S, .-»Su }, such that
U; Si = U. Given a positive integer k& < n, the question is
there a collection of at most & of these subsets whose union
equals U.

Theorem 1. The MSM problem is NP-Hardness.

Proof. To prove that the MSM problem is NP-Hardness, first
we construct a reduction from a known NP-Complete problem
which is decision version of Set Cover problem. Next, we
prove the equivalence between the instances of MSM problem
and decision version of Set Cover problem.

Consider the decision version of MSM problem: Given a
social graph G = (V,E) under the LT model. S cVis
the source of misinformation. Each node u € V has a cost
c(u) > 0 to place the monitors and damage r(u) = 1 when
activated by misinformation, with limited budget B > 0 and

the given number of misinformation spread steps d € Zy,

there exists or not node set I ¢ V \ S to place monitors with
D wer c(w) < B, such that DI(I) < t, where t is a positive
integer.

Reduction. Given an instance Isc ={U,S, k} of the deci-
sion version of Set Cover problem, we construct an instance
Zyusy = {G,w(u,v),0,,S. c(u). r(u), d, B.t} of the MSM
problem as follows.

» For each set S; € S, we construct a source node of
misinformation s; € S and a node u;, connecting these
two nodes with a directed edge (si,u;) with weight
w(s;, u;) = 1, activated threshold Oy, = 1.

+ For each element ¢j € U, we construct a node v,. If
€j € Si, we build a directed edge of (ui.v5) with an
influence weight w(u;,v;) = ﬁ, where d(v;) is

the in-degree of v;, the activated threshold 0y, = 1.

» Damage done on each node activated by misinformation

is r(ui) =r(v;)=1(i=1.n,j= 1.m).
 The cost of placing monitors on each node c(uy)

Il

cluz) = ... = c(up) = Le(v) =c(ws) = ... = c(vm) =
+o0
=t w(i. ;) = yd.v)
1 U P o
uo
§1 .J_,HT —
\ . ‘t:‘". vz
"
! u \ o
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-
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Fig. 1. Reduction from the decision version of Set Cover
problem to the MSM problem

The reduction is illustrated in Fig. 1. Finally, put B = k,
d=2t=n—k It is €asy to see that the reduction is
implemented in polynomial time of 7. ] .

We now will prove the two instances Isc ={U,S, k} and
Tusm = {G,w(u,v),8,,S, c(u),r(u),d, B, t} are equivalent

to each other.
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Suppose that the instance ZIsc has the solution S’ with
IS1 < k and it can cover all the elements of . By
the above-mentioned reduction, we choose the node set
I = {u;|S; € §'} to place the monitors, Then, we have
>ouer €(wi) < k= B. Because S’ covers all the elements of
U, all nodes v; (j = 1..m) are adjacent to at least one node
u; € I. Thus, when placing a monitor on the set | we have
ZuzeN:;L‘“,,,:(vJ) wlug,v;) < 1= ¢, therefore no node v; is
activated. The nodes w; ¢ I and are directly adjacent to the
nodes in .S will be activated, so we have DIi(I)=n -k

Conversely, suppose the instance Zarsa has the solution of
the node set for placing monitors I C V\ § with ¥ i eln) =
B =k such that D§(I) < n — k. By the above-mentioned
reduction, we determine the set §' = {Si | ui € I}. Then, we
have |S'| = k. Because o(v;) =+00 > B (j = 1..m), then it
is impossible to place monitors on nodes vj (j =1..m). Thus
the set T can only consist of u; (¢ =1.n). Besides, the fact
that D (1) < n—k proves the nodes v; (j = 1..m) cannot be
activated by misinformation. Thence, each node v; is adjacent
to at least one node w; € I. In other words, the set S’ covers
the entire elements of set I/, O

IV. THE SUGGESTED ALGORITHMS

Regarding the problem of information propagation, ones can
use the baseline algorithms Max Degree and Random to find
a good enough solution. These two baseline algorithms are
commonly used to evaluate the effectiveness in comparison
with newly suggested algorithms [1], [2], [ 1, [15].

Denote by Ni.(S) the set of nodes with distance no greater
than £ starting from the misinformation source set S in graph
G. When k = 1, Ni.(S) is the out-neighbors of S. To prevent
the propagation of misinformation after d time steps then the
nodes chosen to place monitors need to be in set N4(S) as
well.

In this article, we propose two greedy algorithms for the
MSM problem, the first one is based on the characteristics
of the function f(I) (given by Eq. 9) measuring the damage
reduction level after determining the node set J for placing
monitors; the second algorithm use the function of a(v) (given
by Eq. 10) measuring the increment of F(I)-over a cost unit
when adding a new node v to set J.

Damage-reducing function. For each set | C Ny(S5), we
define the damage-reducing function f{) as:

) =Di®) - Di(1) = D - D3 (1) ®

implicitly. DF () = DS,

fI)'s value-increasing function over one cost unit. With
each given set 7, function a(v) measures the increment of
f(I) over a cost unit when adding a new node v € Ny(S) to
set 1, determined by:

= JQu{e}) - )
a(v) = o)

(10)

A. Greedy algorithm based on damage-reducing function

The goal of the MSM problem is to minimize misinforma-
tion propagation, which means minimizing the value of the
function D3 (1), equivalently, maximizing damage reduction,
or, maximizing f(I). Therefore, we can use the f(I) as a
substituting objective function in the MSM problem. This
algorithm works on gradually supplementing the set J using
the greedy method.

Idea of the algorithm. Initialize I = (), then repeat the act of
choosing the node v € N,(5) so that the function FIu{v})is
maximal. If the current total cost of monitor placing does not
exceed budget threshold B then add v to J » on the contrary,
stop the algorithm and return the set J as the result. This
process ends when the total cost of monitor placing for the
set [ exceeds the given budget B or when all the elements
in Ny(S) have been checked. The details of the algorithm are
shown in Algorithm 1 pseudo-code.

Algorithm 1. Greedy algorithm based on function f(7I)

Input : G = (V.E), w(u,v),d, B, the misinformation source set S.
Output: Nodes set I is the solution to the MSM problem.
begin : ’
I —
N — Ny(5);
C 0
while (C < B) and (N #0) do
W argmax, e n f(I U {v}); /Use Eq. 9 1o caleulate f)
il C'+ ¢(u) < B then
1 —1U{u});
L C — C+ c(u);
N — N\ {u}:
Return I:
end

In the worst case, Algorithm 1 executes maximally n?
iterations of calculating the value of the function f(I), where
n1 = |Ny(S)|. However, in order to calculate the value of
f(I), we need to calculate the expected number of nodes
activated by misinformation after d spread steps. Computing
exactly the expected number of nodes activated by misinforma-
tion is #P-Hard [16], [17]. To resolve this problem, Wei Chen
[16], [17] used the Monte Carlo simulations of the diffusion
process to estimate the expected number of activated nodes.
The estimation of the value of DZ(I) using the Monte Carlo
method is presented in Algorithm 2.

Algorithm 2. The algorithm to estimate the value of the function ‘Df(l)

Input : G = (V, E), w(u, v), the misinformation source set S. the node set I
for placing monitors. .
Output: The estimated value of the function Dj(I).
begin
Graph G(I) obtaincd after removing the node set J from graph G:
count — 0;
for j =11 R do
Simulating the misinformation propagation process from the source set
S on graph G(I);
ftq < the number of activated nodes after d spread steps;
count «— count + Ty
Return count/R;
end

Given seed set S, we can sifnulate the randomized diffusion
process with seed set .S for R times. Each time, we count the



number of activated nodes after d spread steps, and then take
the average of these counts over the I? times. We can increase
R 1o get arbitrarily high accuracy in our estimate of D3 ([).

Hence, in the worst case, Algorithm 1 runs in time O(n3R).
with ny = |Ny(S)| and R is the number of simulations.

B. Greedy algorithm based on the f)s value-increasing
Sunction 3 ‘

Previously, Algorithm 1 is based on the idea of picking out
the nodes yielding maximum damage reduction to add to the
node set needing to be placed with monitors. However, in this
section, we propose another algorithm based on picking out
the nodes yielding maximum damage reduction but the cost
expensed is considered.

Idea of the algorithm. Initialize [ = 0, then repeat the act
of choosing the node » ¢ Ny4(S) so that the function a(v) is
maximal. If the current total cost of monitor placing does not
exceed budget threshold B then add v to I, on the contrary,
stop the algorithm and return the set [ as the result. This
process ends when the total cost of monitor placing for the
set I exceeds the given budget B or when all the elements
in Ny(S) have been checked. The details of the algorithm are
shown in Algorithm 3 pseudo-code.

In the worst case, Algorithm 3 runs in time O(n?R), with
Ny = |Ng(S)| and R is the number of simulations.

Algorithm 3. Greedy algorithm based on function «r(v)

Input : G = (V, E), w(u.v),d, B, the misinformation source sct .S,
Output: Nodes set 1 is the solution to the MSM problem.
begin

I 0

N — Ny(S);

C— 0

while (é‘ < B) and (N # 0) do
; U u{v)) - fuy)
alv) = ——21 77 V7V
c(v)
a(r)

U — argmax, ey a(v);
if C + c(u) < B then
I— 10U {u};
C —C +clu);
N — N\ {u}:
Return 7;

Ve € N; //Use Eq. 10 to calculate

end

V. EXPERIMENT AND EVALUATION

To evaluate the effectiveness of the two proposed algo-
rithms, we conducted experiments on real-world networks
and compared with the baseline algorithms Max Degree and
Random. These two baseline algorithms are commonly used
in experiments to compare with suggested algorithms [1], [2],
[8], [15].

Max Degree Algorithm is performed by selecting the
highest-degree nodes to place monitors while the Random
algorithm is performed by randomly selecting nodes to place
monitors.

Comparing the effectiveness in decreasing the number of
nodes activated by misinformation with variable budget B,
B = {10, 25, 35,50, 70, 110} and the variable size of the set
S, |S] = {5.10, 15, 20, 25}

The influence weight w(u, v) in the LT model is setup as
follows: Each edge incoming the node v has the influence
weight of 1/d(v) where d(v) is the in-degree of v. This means
all edges make the same contribution to activating the node
v and the sum of influence weights of the edges incoming
the node v is 1. The cost of monitor placing on each node
is randomly chosen in [1.0,3.0]. Moreover, in all algorithms
that use the Monter-Carlo method, the number of simulations
is set to 10000.

A. Dataset .
We use three real-world networks that are commonly uti-

lized in the research on information diffusion, including the
Email, CollegeMsg, and Gnutella whose descriptions can be
found in the provided references [18]. The statistics of these

datasets are summarized in Table 1.

TABLE I: Statistics of Three Real Networks

Dataset Type Nodes Edges Avg. Degree
Email Directed 986 332,334 252
CollegeMsg  Directed 1,899 59,835 10.6
Gnutella Directed 6,301 20,777 3.2

B. Experimental Results

Impact of buget. Fig. 2 shows the total damages caused
by misinformation after placing monitor on the node set I
by Algorithm 1, Algorithm 3, Max Degree algorithm and
Random algorithm in the case that budget B changes, B =
{10, 25, 35, 50, 70, 110}, d = 6, and the misinformation source
set is randomly initialized with the size of [S| = 10. Under
all circumstances, Algorithm 1 and Algorithm 3 yielded more
desirable results than the remaining algorithms. The damage
reduction is from 1.017 times to 3.478 times higher in com-
parison with Max Degree algorithm. Especially in Fig. 2(a)
when B = 10, Algorithm | and Algorithm 3 prove to be 3.478
and 2.87 times, respectively, more effective compared to Max
Degree algorithm. In Fig. 2(c), when B = 10, Algorithm | and
Algorithm 3 prove to be 3.052 and 3.028 times, respectively,
more effective compared to the Max Degree algorithm.

Impact of sources. Fig. 3 presents the damage reduction
before and after placing monitors on node I by Algorithm
| and Algorithm 3 as well as the baseline algorithms Max
Degree and Random when the size of source S changes, |S| =
{5,10,15,20,25}, d = 5, with a fixed budget of B = 25. We
can see that, in all scenarios, Algorithm | and Algorithm 3
are more effectual than the two baseline algorithms. In Fig.
3(a) when [S| = 5, Algorithm 1 proves 2.563 times more
elfective than Max Degree algorithm. In Fig. 3(c), once |S] =
20, Algorithm 1 proves 3.98 times more effective than Max
Degree algorithm.

In general, Algorithm 1 is almost as effective as Algorithm
3 on the three datasets.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we consider the MSM problem of determin-
ing the optimal position for placing monitors with a view to
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minimizing the propagation of misinformation on OSNs in d
spread steps on a limited budget for the installation of mon-
itors. Besides proving MSM is NP-Hardness, we suggested
two greedy algorithms based on the damage-reducing func-
tion f(I) and the f(I)’s value-increasing function over one
monitors-placing cost unit. The result of the experiment shows
that the suggested algorithms are better than the baseline
algorithms Max Degree and Random. In the future, we will
expand the problem to the case in which each node activated
with misinformation causes different damages and, at the
same time, consider the problem on various other information
propagation models.
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