
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2017) 28–34

Comparative Performance Evaluation of Web Servers

Van Nam Nguyen∗

Department of Networking and Computer Communications,
Faculty of Information Technology,

VNU University of Engineering and Technology,
E3 Building, 144 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

Abstract

This paper surveys the fundamental software designs of high performance web servers that are widely used today
for communication networks. Given the fast growing demands of the Internet and wide-ranging intranets, it is
essential to fully and deeply understand which factors that mainly affect the web servers and how these systems
can be designed to satisfy a maximum number of requests per second from multiple users. The paper presents
empirical analysis of several popular web servers including Apache, NodeJS and NginX to precisely figure out
the trade-off between different software designs to tackle the performance bottleneck and resource consuming
problems.

Keywords: Web server performance, performance, bottleneck, load balancing

1. Introduction

Most websites work under the support of web
servers that usually include both hardware and
software. The hardware resource of a web
server consists of CPU, RAM, disks and Internet
communication line. The software architecture
of a web server provides a web server service
to conduct how a user access to the data files
stored in the web server through HTTP protocol.
Popular web server services are Apache, NodeJS
and NginX. Much more than that, web servers
also support application services such as PHP,
Python, Java, database management services like
MySQL, PostgreSQL, security services such as
iptables, ufw and many other necessary services.

As the number of Internet user rapidly
increases recently, the web servers need to serve
millions requests per second from multiple users.
This requires web servers to be upgraded in both
hardware platform and software architecture.
Hardware upgrade is costly. Meanwhile, software

∗ Corresponding author. Email: van.nam@vnu.edu.vn

architecture of a web server faces two main
challenges: performance bottleneck and resource
consuming. In the former case, either the request
handler of a web server service does not catch
up the request arrivals, or the clients do not
received as fast as possible the responses from
web servers. If buffering and caching are used,
these may consume large memory. If multiple
request handlers are used, this may requires more
CPU for managing handlers.

Recently, three preferable architectures
of web server service are processed-based,
thread-based and event-based. The first two
architectures rely on concurrent threads and/or
callback processes. Usually, the I/O such as
socket or memory is blocked during request
handling by a thread/process. Therefore, the
resource consuming, in this case, is linearly
increased according to the increasing number of
threads/processes. Moreover, a context switching
can be used to manage the processes and this
may result in more CPU time waste. The third
is, reversely, a nonlinear architecture which is

28



V.N Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2017) 28–34 29

based on event handling. Events may be emitted
from sockets as, for instance, a new connection
is established, from the I/O notifications, or
even inside the event handlers. This design is
much more flexible than the others with non-
blocking I/O and asynchronous request handling.
However, the event-based implementation is
clearly more complicated than the process-based
and thread-based. This paper aims to precisely
point out the trade-off of the above server
architectures using empirical analysis from three
widely used web server service Apache, NodeJS
and NginX.

The rest of the paper is organized as
follows:the second section introduces three
fundamental server architectures. The third
section presents the popular web server
implementations including Apache, NodeJS
and NginX. In the fourth section, we figure out
the performance evaluation and analysis. The
fifth section presents additional discussions.
The six section summarizes the related works.
Finally, the last section concludes our works.

2. Fundamental Server Service Designs

Currently, concurrency strategies used in web
servers relies on process-based, thread-based and
event-based architectures [1, 2].

2.1. Process-based Architecture

In process-based architecture (Fig.??), a main
server process creates copies of itself to child
process (preforking). The child processes handle
the requests independently. This strategy ensure
the stability of the system in such a case that
one destroyed process does not affect the other
ones. However, each child process occupies a
separate memory space. The memory usage, in
this case, is linearly proportional to the number of
child processes. Moreover, the operating system
needs to spend additional CPU time for switching
between the child processes (context switching).
The inter-process communication is also difficult
due to the separation of child processes.

Fig. 1: Thread-based Architecture

2.2. Thread-based Architecture

In thread-based architecture (Fig.1), a
dispatcher thread queues new connections of
a socket. Request handler threads execute the
connections received from the dispatcher queue.
Since the thread pool contains the maximum
number of threads, certain handlers may be
idle and other’s busy in case of not enough
connections available in the queue. The threads
can share memory, I/O operations and socket
cause they are part of the same process. Thus,
there is no context switching in this case.
However, bad interactions on the same data
and/or variables between threads may cause the
whole system down.

2.3. Event-based Architecture

Fig. 2: Event-based Architecture

In event-driven architecture, a single process
single threaded event loop executes multiple
connections using non-blocking I/O mechanisms.
Events are generated in different sources
including the socket, the I/O operations or inside
the event handler as there is a significant change
in data or states. The event handler does not poll
the event sources. Instead, events are pushed to
the event loop as notifications. The event-based
architecture can dis-burden the performance



30 V.N Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2017) 28–34

bottleneck in case of high connection load thanks
to its asynchronous communication. However,
it is unable to carry out the non-blocking I/O
operations in single process single threaded event
handler.

3. High Performance Web Server Design

Today, most of high performance web server
designs implement hybrid architectures. Apache
provides flexible process-based and thread-based
architecture. NodeJS successfully integrates
event-based and thread-based. Meanwhile NginX
is a powerful multi-process and event-driven
architecture. In 2017, Apache and NginX account
for more than 84% of the web server market
share. NodeJS ranks at the seventh in this list
but this is raising thanks to increasing real time
applications.

3.1. Apache Web Server

Apache [3] is a free and open source Unix-
based web server developed by Apache Software
Foundation. In 2017, Apache accounts for
more than 48% of the web server market
share. Apache is lightweight, fully featured
and more powerful than other Unix-based
web servers. Apache’s design is thread-
based where a main process (Multi-Processing
Modules-MPM) is called at start-up and preforks
child processes/threads (module) to concurrently
handle requests. Apache can act as multi-
threaded, multi-process model or both and this
can be specified by MPM. httpd is the core
module in Apache which implements HTTP
request/response processing.

3.2. NodeJS

NodeJS [4] is a single-threaded server-side
JavaScript environment developed by Ryan
Dahl in 2009. NodeJS can act as a web
server service thanks to its built-in library for
HTTP communication. With scalable event-
based architecture, NodeJS can achieve high
concurrency level. Although, NodeJS also uses
multiple threads for non blocking I/O operations.
Lots of main modules in NodeJS are written in

Javascript and executed by Google V8 Javascript
Engine. Thus, the whole codepath of NodeJS
is asynchronous and non-blocking. This is
why NodeJS is applied in most of real time
applications.

3.3. NginX

NginX [5] is a free, open source and high
performance web server developed by Igor
Sysoev and then by NginX Inc. in 2004. In 2017,
NginX ranks at the second (36%) of web server
popularity after Apache. NginX uses also multi-
process to efficiently profit available hardware
resources. A master process is called at the
startup along with cache loader to load disk-based
cache in to memory and cache manager to control
memory usage. This design aims to reduce
context switching affects in multi-processes
architecture. Depending on the workload,
the master process balances load to a number
of worker processes for simultaneous request
handling. All worker processes implement
single threaded event loop with asynchronous
communication and non-blocking I/O operations.

4. Performance Evaluation

We evaluate the performance of three web
server services under two aspects: performance
bottleneck and resource consuming. The first
problem arises due to the high concurrency level
of requests. The second is caused by high arrival
rate.

4.1. Environnement

The experimentation is implemented in four
servers: one for testing and the three others for
web server services. The testing server consists
of 12 2.6 GHz CPU cores and 4GB RAM. Each
web server contains 4 CPU cores and 4GB RAM.
The servers are connected through a Ethernet
network with 118 GB/s downstream and 90GB/s
upstream.



V.N Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2017) 28–34 31

4.2. Workload

We aim to generate high traffic load in term of
concurrency and intensity using Apache Bench
and Tsung. While Apache Bench can generate
up to 20,000 concurrent requests. We can
also get 40,000 requests/s with Tsung. In
our experimentation, Apache Bench is used to
benchmark the concurrency level of the web
servers. We gradually create increasing number
of concurrent connections with Apache Bench
and measure the throughput, response time and
error ratio of the web servers. In the other side,
Tsung generates six millions requests to evaluate
the resource consummation of the servers. We
also observe the throughput, response time and
bandwidth of the servers.

4.3. Tuning

The web servers can be configured for better
performance in different load environments.
Apache can act as prefork, worker or event
model. In the prefork model, the MPM prefork
a configurable number of process to handle
requests in parallel. Since the processes are
independent, the model is appropriate to web
sites with unrelated requests. The worker
model is a hybrid thread-bassed and process-
based architecture. In this configuration, a
process can create many threads for request
handling. This configuration is applicable for
high concurrent requests. The third model
provides a mechanism to manage the processes
and threads for performance optimization using
event notifications.

NginX can work either with one process and
a single threaded event loop or with many
processes. However, NodeJS runs only with an
event loop. For fair comparison, in this paper,
we evaluate Apache prefork, NodeJS and NginX
with one process.

4.4. Experimental results

We conduct two separate experiments, one
with Apache Bench and the other with Tsung.

4.4.1. Concurrency level
In the first experiment, we carry out 20

continuous tests for each servers. The number of
concurrent requests increases from 200 to 4000,
step 200 for Apache, from 400 to 8000, step 400
for NodeJS and from 1000 to 20000, step 1000
for NginX. We choose a timeout of 15s for the
response time of the requests.

Fig. 3: Apache Concurrency Level

The Fig. 3 shows the evolution of throughput,
response time and number of timeout requests
for Apache with different concurrency level.
We can see that at 2800 concurrent requests,
the Apache server does not respond. At that
time, the response time and the error ratio burst
suddenly. The throughput is recorded at nearly
4100 requests per second.

Fig. 4: NodeJS Concurrency Level

NodeJS, in this case, explodes better



32 V.N Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2017) 28–34

performance than Apache. Effectively, at
the concurrency level of higher than 5600
requests, NodeJS responds unstably but does not
shutdown immediately. Its average throughput
also reaches nearly 4300 requests per second
(Fig. 4).

Fig. 5: NginX Concurrency Level

NginX achieves the best performance among
the three tested servers. NginX can adapt stably
to up to 8000 simultaneous requests. The
server can unreliably serves up to the Apache
concurrency level limit (20,000 requests). The
average throughput over the experimental time is
also above 7000 requests per second.

The above experimental results confirm that
the event-based architecture used in NodeJS and
NginX contributes for their higher concurrency
levels. Effectively, in this architecture, the
concurrent requests are asynchronously handled
by only a single-threaded event-loop. Meanwhile,
Apache prefork which is process-based is more
vulnerable to the performance bottleneck. This
is because as the number of concurrent requests
gradually increases, more and more processes are
forked in Apache. Each process is associated
certain memory space and will spend certain
CPU time while processing requests. Given a
limited memory and CPU, the Apache server
will not have enough memory space for handling
and will go down immediately at a low level of
concurrency.

4.4.2. Resource Usage Efficiency
In this experiment, we use Tsung to generate

6,000,000 requests to evaluate the resource usage
efficiency of the servers. We also compare
the evolution of the throughput, latency and the
bandwidth of the web servers.

In Fig. 6, we show the evolution of average
response time of Apache and NginX over the
testing time along the total number of generated
requests. We can see that average response time
of NginX (about 0.44ms) is lower than a half of
that in Apache server (approximately 1ms). This
is even 100 times smaller than that of NodeJS
(nearly 40ms). This implies that the request
processing in NginX consumes less CPU time
than in Apache and in NodeJS.

Fig. 6: Latency comparison

Moreover, over the time, NginX (Fig. 7)
has always much higher throughput (about 4400
requests per second) than that of Apache (nearly
3800 requests per second) and of NodeJS (about
160 requests per second). This means that NginX
has the most efficient memory management
mechanism. In fact, NginX has cache loader
which can allocate enough memory space to
cache incoming requests and outgoing responses.
Moreover, the cache manager in NginX is able
to release the allocated memory in time as the
requests have been processed or the responses
have been transmitted to the clients.

Apache is based on MPM for memory
management. MPM can fork an enough number
of processes for request handling and kills the



V.N Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2017) 28–34 33

Fig. 7: Throughput comparison

unused process immediately. Note that each
process is assign a memory space as forked.
This mechanism, clearly, contributes to memory
saving for Apache. Compared to NodeJS without
any memory management mechanism, Apache
uses the memory more efficiently.

Fig. 8: Bandwidth comparison

NodeJS does not waste CPU time for context
switching as in Apache prefork thanks to its
event-based architecture. However, in such a
high load, the context switching time is too small
compared to the request processing time. While
Apache can caches the requests and balances
the request load through certain processes for
request handling in parallel. NodeJS relies
only on the event-handler which consumes as
much as possible the CPU time for request
processing. In other words, the event-handler
in this case is overloaded. NginX has also an
event-handler as in NodeJS. However, its caching

mechanism can balance the load over the time
before entering to the event-loop. Fig.8 shows
the bandwidth comparison which highlights once
more the resource usage efficiency of three web
servers.

5. Discussion

The two above expriments reveal many
different performance aspects of the fundamental
server architecture as well as of the three hybrid
designs Apache, NodeJS and NginX. Firstly, we
find that event-based architecture can serve more
concurrent requests than the process-based or
thread-based one. However, in the long running
at the low level of concurrency, the process-
based and thread-based can process requests
much faster than the event-based. Secondly, the
hybrid design of process-based and event-based
(as in NginX) can produce better performance
than those between process-based and thread-
based (as in Apache) or between event-based and
thread-based (in NodeJS). This is because the
event-based and process-based can complement
the trade-off to each other. Thirdly, we find
that a load balancer is necessary for mult-process
and multi-thread architectures. Meanwhile, a
scheduler makes the event-driven architecture to
work better. NginX has both a load balancer
and a scheduler while there is also a load
balancing mechanism in Apache. Finally, a
good memory management strategy contributes
considerably to the web servers’ performance
(NginX over Apache and NodeJS). Note that the
memory management can only be implemented
using events.

6. Related Work

In literature, many works have been presented
to evaluate the performance of web server designs
and implementations. In [1], the authors compare
the performance between event-driven, thread-
based and pipeline-based architectures. They also
find that the event-based and the pipeline-based
can achieve up to 18% higher throughput than
the thread-based. However, they do not concern



34 V.N Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2017) 28–34

about the concurrency level of the architectures.
In [2], the author finds that NginX, Apache,
Cherokee are the best web servers for dynamic
web pages. Meanwhile, Lighttpd and Cherokee
are the best for static contents. However, the
paper does not aware of the testing with high
volume of load.

7. Conclusions

In this paper, we survey the fundamental
architectures and popular implementations of
web servers. We classify the architectures of the
web server service in to three categories process-
based, thread-based and event-based. Then we
analyze that popular web server implementations
does not relies on only one architecture. Apache
is hybrid design of process-based and thread-
based. NodeJS combines event-based and thread-
based. NginX is a mix of process-based and
event-based.

We also evaluate the performance of web
server implementations in term of performance
bottle neck and resource usage efficiency. Two
experiments have been conducted using Apache
Bench and Tsung with very high load. The
experimental results show that NginX can achieve
up to 42% and up to 200% higher level of
concurrency than NodeJS and Apache prefork,
respectively. The results also reveal that NginX
can get up to 16% higher throughput than Apache
in the long run with high volume of load. The

response time of NginX also two times smaller
than that of Apache.

We conclude that the hybrid design of
process-based and event-based can explode better
performance than the others. Besides, the
performance of the web servers is considerably
improved with a good memory mechanism.

Acknowledgments

We thank to Dr. Nguyen Dai Tho, University
of Engineering and Technologies, VNU Hanoi for
his useful reviewing.

References

[1] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, D. R.
Cheriton, Comparing the performance of web server
architectures, SIGOPS Oper. Syst. Rev. 41 (3) (2007)
231–243. doi:10.1145/1272998.1273021.
URL http://doi.acm.org/10.1145/1272998.1273021

[2] A. Hidalgo Barea, Analysis and evaluation of high
performance web servers.

[3] R. Scoular, R. R. Scoular, Apache: The Definitive
Guide, Third Edition, 3rd Edition, O’Reilly Media, Inc.,
2002.

[4] A. Low, J. Siu, I. Ho, G. Liu, Introduction to node.js, in:
Proceedings of 24th Annual International Conference
on Computer Science and Software Engineering,
CASCON ’14, IBM Corp., Riverton, NJ, USA, 2014,
pp. 283–284.
URL http://dl.acm.org/citation.cfm?id=2735522.2735554

[5] W. Reese, Nginx: The high-performance web server
and reverse proxy, Linux J. 2008 (173).
URL http://dl.acm.org/citation.cfm?id=1412202.1412204


