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Abstract. In this paper, we investigate a problem of finding smallest
set of nodes to remove from a social network so that influence reduction
of misinformation sources at least given threshold γ, called Targeted Mis-
information Blocking (TMB) problem. We prove that TBM is #P-hard
under LT model. For any parameter ε ∈ (0, γ), we designed Greedy algo-
rithm which return the solution A with the expected influence reduction
greater than γ−ε, and the size of A is within factor 1+ln(γ/ε) of the opti-
mal size. To speed-up Greedy algorithm, we designed an efficient heuristic
algorithm, called STBM algorithm. Experiments were conducted on real-
world networks which showed the effectiveness of proposed algorithms in
term of both effectiveness and efficiency.

Keywords: Misinformation, Information diffusion, Social Network, Ap-
proximation algorithm

1 Introduction

Besides disseminating official information, Online Social Networks (OSNs) are
channels in which also allow spreading misinformation and rumors. In order for
social networks as a channel of reliable information for users, There should be
strategies to again misinformation. Diffusion propagation models are the bases
for studying on and identification source of misinformation and restriction the
spreading misinformation, in which there are two most common models, Lin-
ear Threshold (LT) and Independent Cascade (IC) models [13]. Base on that,
some authors proposed a mathematical approach to detect misinformation or
information sources in the case we known the set of nodes were infected by
misinformation [1, 2]. Recently, there have been various approaches to decon-
taminate misinformation by choosing a set nodes to initialize good information
and spread it on the same network to convince other users recently [4, 3].

In order to block spreading of misinformation on OSNs, an effective solution
is to remove the important nodes from networks [5, 6]. Some authors proposed
place monitor or immunization vaccines strategies on some nodes to limit the
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spread of given misinformation/epidemic sources [2, 7–10]. Placing monitor or
vaccination on a node is equivalent to removing this node from the network dur-
ing propagation process. Zhang et al. formulated the problem of placing monitor
at a set nodes so that information spreading from known sources of misinfor-
mation to protected central nodes no greater than the protection threshold [2].
Zhang et al. [8] have developed vaccination strategies for nodes that limit the
spread of disease on social networks on the IC model. The seminar methods have
also been applied for set of edges and nodes to control propagation at groups
under LT model [9]. Later on, Song et al. [10, 11] study the problem of limiting
misinformation combining time delay on a various of IC model. They also de-
signed heuristic algorithms that outperform the previous algorithms. However,
it is difficult to collect data to establish parameters in their models.

Although previous works considered strategies to limit the spreading mis-
information, but they do not consider the targeted value for preventing misin-
formation, i.e, the number of healthy nodes is greater than a given threshold.
In reality, to make sure the OSNs are reliable, In reality, to ensure the relia-
bility of information on OSNs, we need to limit the spread of misinformation
so that the number of users not infected by misinformation is greater than a
given threshold. Motivated by the phenomenon, in this paper, we investigated
the Targeted Misinformation Blocking (TMB) problem, in which aim to find the
smallest set nodes to remove from the network so that the influence reduce from
known misinformation sources at least given threshold γ under LT model. For
the complexity, we proved that TMB problem is #P-hard. We proposed a Greedy
algorithm which provided a ratio of 1+ln(γ/ε). We further proposed an efficient
heuristic algorithm called STMB which is scalable algorithm for TMB on large-
scale networks. Experiments were performed on real-world social traces of NetS,
AS and NetHEPT datasets show the performance of our proposed algorithms.
In each of the network, we observe that STMB is outperform to the other al-
gorithms in terms of minimizing the size of selected nodes while the runtime is
faster.

Outline of the paper. The rest of the paper is organized as follows. We
first introduce propagation models, problem definition in Sect. 2. We prove the
hardness and complexity in Sect. 3. Sect. 4 presents our proposed algorithms.
The Experimental results on several datasets are in Sect. 5. Finally, we give some
tasks for future work and conclusion in Sect. 6.

2 Model and problem definition

First, we introduce Linear Threshold (LT) (see [13]). Based on this, we then
formal statement of targeted misinformation blocking problem.

2.1 Diffusion Model

Let G = (V,E,w) is a directed graph represents a social network with a node
set V and a directed edge E, |V | = n and |E| = m. Let N−(v) and N+(v)
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are the set of in-neighbors and out-neighbor of node v, respectively. Each di-
rected edge (u, v) ∈ E is associated with an influence weight w(u, v) ∈ [0, 1]
such that

∑
u∈N−(v) w(u, v) ≤ 1. Given a subset S ∈ V, S = {s1, s2, ..., sk} rep-

resents the misinformation sources (as the seed set in IM problem [13]). In LT
model, each node v ∈ V has two possible states, active and inactive and the
influence cascades in G as follow. First, every node v ∈ V uniformly chooses
a threshold θv ∈ [0, 1], which represents the weighted fraction of u’s neighbors
that must be active to activate u. Next the influence propagation happens in
round t = 1, 2, 3... At round 1, we activate nodes in set S, and set all other
nodes inactive. At round t ≥ 1, an inactive node v is activated if weighted
number of its activated neighbors are greater than or equal its threshold, i.e.,∑

in activated neighbors u w(u, v) ≥ θv. Once a node becomes activated, it remains
activated in the process of spreading. The influence propagation ends when no
more nodes can be activated.

2.2 Problem definition

Denote σS(G) is the influence spread of S in G under LT model, i.e, expected
number nodes given activated by S. Kempe et al. [13] show that LT model to be
equivalent to live-edge graph which is constructed by the rules are: (1) for every
v ∈ V , select at most one of its incoming edges at random, such that the edge
(u, v) is selected with probability w(u, v), (2) and no edge is selected with prob-
ability 1−

∑
u∈N(v)

w(u, v). The selected edges are called live and all other edges

are called blocked. By claim 2.1 in [13], we have: σS(G) =
∑
g∈G Pr[g]R(g, S),

where G is set of sample graphs generated from G according live-edge model with
a probability denoted by Pr[g] and R(g, S) denotes the set of nodes reachable
from S in g. The influence spread from S when remove A is the influence spread
of S in induce graph G[V \A], denoted by σS(G \A). We aim to removing A to
maximum the influence reduction from S defined as, hG(A) = σS(G)−σS(G\A).
For convenience, we simplify the symbol hG(.) by h(.) due to G is constant. In
this paper, we consider Targeted Misinformation Blocking (TMB) which is de-
fined as follows:

Definition 1 (TBM). Let G = (V,E,w) is a directed graph represents a social
network. Given a set of misinformation source S = {s1, s2, . . . , sk}, S ∈ V and
integer number γ ≤ |V |, find a set A ⊂ V \S of the smallest size nodes to remove
form G such that the expected influence reduction, h(A) at least γ.

3 Complexity

In this section, we show that TMB problem is #P-hard. Note that a #P problem
is at least as hard as the corresponding NP problem.

Theorem 1. TMB problem is #P-hard in LT model

Proof. To proved TMB is #P-hard, we reduce from s-t paths which is known
#P-hard defined as follow:
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Definition 2 (s-t paths problem [16]). Given a directed graph G = (V,E), |V | =
n, |E| = m, s-t paths problem ask to compute the number of (directed) paths from
node s to node t that visit every node at most once.

Consider an instance I1 of s-t paths problem, where G = (V,E), s, t ∈ V are
given. As Fig. 1 shows, from G, we construct G′ as follow we add a new node
u and add two edges (s, u), (t, u) with weights w(s, u) = w(t, u) = 1/2. We add
more set Q include 2n nodes and connect u to them with the same weight is
equal to 1. For the others edges, we set the weight is equal to w = 1/∆, where
∆ be the maximum in-degree of any node in G. This assumption still satisfies
the LT mode since the total of in-neighbour weight is not greater than 1.

Fig. 1. Reduce from s-t paths to TMB.

By claim 2.6 of [13], we have: σS(G′) =
∑
x∈P(G′,s)

∏
e∈x w(e), and σS(G′\{u}) =∑

x∈P(G′\{u},s)
∏
e∈x w(e). Eliminate the same elements in the two above equa-

tions so the remaining paths containing node u. Set these paths divided into
two groups: paths have u is the endpoint and the paths have v ∈ Q is end-
point. Therefore, h(u) = σS(G′) − σS(G′ \ {u}) =

∑
x∈P(G′,s,u)

∏
e∈x w(e) +∑

v∈Q

(∑
x∈P(G′,s,v)

∏
e∈x w(e)

)
= 2n+1

2

∑n−1
i=0 αiw

i+n. Where αi = |Pi(G, s, t)|.
Let f(w) =

∑n−1
i=0 αiw

i, on G′ we easy see that 0 ≤ f(w) ≤ 1 n ≤ h(u) ≤
2n + 1

2 , and h(u) = maxv∈G′ h(v). We first show that if we can determine
f(u) ≥ β for any integer β ∈ [0, 1] in polynomial time, we can solve s-t paths
problem in polynomial time. Since the weigh w = 1/∆, f(w) is a fraction
with a numerator of ∆n−1 and the numerator at most ∆n−1. By using bi-
nary search from 1 to ∆n−1, we can find value of f(w). This task can be
done in O(log(∆n−1)) = O((n − 1) log∆) = O(n log n). Hence, we can cal-
culate f(u) in polynomial time. We then the adjust weight w to n distinc-
tion values 1

∆ ,
1

∆+1 , . . . ,
1

∆+n−1 . By using above method, we can find value of
f(w) corresponding to each w. Hence, we obtain a set of n linear equations∑n−1
i=0 αiw

i = f(w), w ∈ { 1
∆ ,

1
∆+1 , . . . ,

1
∆+n−1} with {α0, α2, . . . , αn−1} as vari-

ables. The matrix of this equation is Mn×n = {mij} and mij = wi, i, j = 0, .., n
so this is Vandermonde matrix and we can easily to compute the unique solution
{α0, α2, . . . , αn−1} for the linear system of equations. The total of s-t paths in

G is
∑n−1
i=0 αi. Therefore, we can solve s-t paths problem in polynomial time.

We now consider an instance I2 of TMB where S = {s}, γ = β 2n+1
2 +n, β ∈ [0, 1].
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Assume that an A is a polynomial-time algorithm solving TMB problem. Con-
sider two cases: (1) If A returns the solution set A whose size is equal to 1, we
only need to select A = {u}, infer f(w) ≥ β. (2) If A returns the solution set A
whose size larger than 1. At that besides u, some nodes are chosen into A. We
infer f(w) < β. Therefore, A can be used to decide f(w) is greater than β, that
can also solve the s-t paths problem. This implying that our TMB problem is at
least as hard as s-t paths problem. ut

4 Proposed algorithms

4.1 Greedy algorithm

We introduce an approximation algorithm that provide a ratio of 1 + ln(γ/ε)
base on h(.) is proved submodular and monotone function, i.e, for A ⊂ T, v /∈ T
h(A+ {v})− h(A) ≥ h(T + {v})− h(T )

Algorithm 1: Greedy Algorithm (GA)

Data: Graph G = (V,E,w), S = {S1, S2, .., Sq}, threshold < γ < |V |,
parameter ε ∈ (0, γ)

Result: set of nodes A
1. A← ∅;
2. while h(A) > γ − ε do
3. u = arg maxv∈V \A δ(A, v); A← A ∪ {u};
4. end
5. return A;

Theorem 2. The function h(.) is submodular and monotone function.

Proof. Denote NE(A) is set of edges adjacent with all nodes in A. By theorem 5
in [12], for A ⊆ T we have h(T )−h(A) = σS(NE(A))−σS(NE(T )) ≥ 0. Therefore
h(.) is a monotonically increasing. We then show that the function σS(Gi\A) is a
supermodular function of the set A is the variable, i.e, ∀A ⊆ T ⊂ V , ∀v ∈ T \A,
we have σS(G \ (A ∪ {v})) − σS(G \ A) ≤ σS(G \ (T ∪ {v})) − σS(G \ T ) Let
ET,v = NE(T+{v})\NE(T ), EA,v = NE(A+{v})\NE(A) we have ET,v ⊆ EA,v
and due to A ⊆ T . We obtain NE(A) ∪ ET,v ⊆ NE(A + {v}). Let σS(G \ X)
is the influence of S for graph G after remove the set edges X ⊂ E, we obtain
σS(G \A) = σS(G \NE(A). By theorem theorem 6 in [12], ∀X ⊆ Y, e ∈ Y \X,
we have:

σS(Gi \ (X ∪ {e})− σS(Gi \X) ≤ σS(G \ (Y ∪ {e}))− σS(Gi \ Y ) (1)

Therefore, σS(G\A)−σS(G\(A∪{u})) = σS(G\NE(A))−σS(G\NE(A+{v})) ≥
σS(G \NE(A))− σS(G \ (NE(A)∪ET,v)) ≥ σS(G \NE(T ))− σS(G \ (NE(T )∪
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ET,v)) = σS(G\T )−σS(G\(T ∪{u}))(Apply the inequality (1)). Combine with
h(A) = σS(G)− σS(G \A) we easy see that h(.) is a supermodular function ut

.

Theorem 3. Algorithm 1 return solution A satisfies h(A) ≥ γ− ε, and the size
of A is within factor 1 + ln(γ/ε) of the optimal size

The proof of theorem 3 straightforward based on [15]. Base on theorem 2, the
greedy algorithm given in Algorithm 1 achieve 1 + ln(γ/ε) approximation ra-
tio. The algorithm simply choses the node that provides maximum largest in-
cremental influence reduction in each step, defined as δ(A, u) = min{γ, h(A +
{u})} − h(A). The main challenge of this algorithm comes from calculate σS(.)
is #P-hard (see [14]). Therefore, we introduce an efficiency algorithm in next
subsection.

4.2 Scalable TMB Algorithm

We try to tackle this problem with a speed-up approach proposed by Zhang
[9]. This approach use characteristics of the LT model, in which the set nodes
that reach from a seed node v in live-edge is a tree root at v. In our proposed
algorithm, we first simplify the instance of TMB problem by merging set source
S = {s1, s2, .., sk} into a supper source node I. For each node v ∈ N+(S), we
assign weight w(I, v) =

∑
s∈N−(v)∪S w(si, v) and remove S after update the

new weight set, the result’s called merged graph G′. Based on the characteristic
of LT model, the instances before and after of TMB are equivalence (see more
details in [8, 9]). Next, we’ll generate η sample graphs g from the G′. For each
g, we construct an induced tree root at I by removing the edges (v, I),∀v ∈ g.
We obtained set L which contains η tree (line 3). The influence reduction of a
node v on each tree is calculated by using DFS algorithm. We then approximate
the marginal influence reduction of node u on G is equal to average influence
reduction of node u on all tree TI ∈ L (line 4).
After that, we apply the lazy forward method in [17] to select the solution based
on h(.) is submodular function (line 10-23). The node is selected in each step
also removed from each tree TI ∈ L and h(u, TI)u ∈ TI will be updated (line 18)
in the way as follows: (1) For children of u, we can remove them because it is not
reachable from I, (2) for any ancestor v of u, h(v, TI \ u) = h(v, TI)− h(u, TI),
which can be done in constant time. The details of algorithm are presented in
algorithm 2
Complexity. Merge algorithm takes O(k + |N+(S)|) (line 3). Generating η
sample takes O(η(m+ n)). Calculating h(TI , u),∀u ∈ TI can be done in O(ηn).
For lazy forward phase, the total time needed takes at mostO(qηn) where q is the
number of iterations of while loop. Therefore, algorithm 2 runs in O(η(m+qn)).
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Algorithm 2: Scalable TMB (STMB) Algorithm

Data: Graph G = (V,E,w), S = {s1, s2, .., sq}, threshold γ > 0
Result: set of nodes A

1. A← ∅; (G′, I)← Merge(G,S).
2. Remove all node, I can’t reach in G.

3. Generate η live-edge graphs and set η tree L = {T 1
I , T

2
I , . . . , T

|η|
I }

4. For each TI ∈ L, calculate r(u, TI) for all u ∈ TI (by using DFS algorithm).
5. for u ∈ V do
6. u.δ(u)← 1

η

∑
TI∈L r(u, TI); u.cur ← 1

7. Insert element u into Q with u.δ(u) as the key

8. end
9. hmax ← 0; iteration← 1

10. while hmax < γ − ε do
11. umax ← dequence Q
12. if umax.cur = iteration then
13. A← A ∪ {umax}
14. iteration← iteration+ 1
15. foreach TI ∈ Lc do
16. If umax ∈ TI , remove node umax and update r(v, TI), ∀v ∈ TI .
17. end
18. hmax ← hmax + umax.δ(umax)

19. else
20. umax.δ(umax)← 1

η

(∑
TI∈L r(I, TI)−

∑
TI∈L r(I, TI \ umax)

)
21. umax.cur = iteration; re-insert umax into Q

22. end

23. end
24. return A;

5 Experiments

In this section, we show experimental results of proposed algorithms on three
real-world datasets to evaluate the performance and compare them with several
other baselines algorithm.

5.1 Experiment setup

Dataset. The three real-world networks we use and their basic statistics are sum-
marized in Table 1. We assign the weights of edges in LT model according to
previous studies [12–14]. The weight of the edge (u, v) is w(u, v) = 1

d−(v)
, where

d−(v) = |N−(v)|. For the misinformation source, we randomly choose S in 4-6%
of the set nodes. The code is written in Python 2.7 using the NetworkX library
and all experiments are run on a Linux Server machine with 2.30 GHz Intel R©

Xeon R© CPU E5-2697 and 128G of RAM DDR4.
Algorithms Compared. In our experiments, we compare STMB algorithm with
other algorithms listed below:
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Table 1. Datasets

Dataset NetS [18] AS [19] NetHEPT [13, 14]

Num. of nodes 1.5K 6.4K 15.2K
Num. of edges 5.4K 12.5K 32.2K
Avg. degree 3.8 7.5 4.2
Num. of source nodes 100 300 1000

-PageRank: Compute a ranking of the nodes in the graph G based on the struc-
ture of the incoming links. It was originally designed as an algorithm to rank
web pages. We setup damping parameter for PageRank is 0.85. Because h(.)
is monotonic function, we used binary search algorithm to find A set with |A|
nodes having highest-ranked.
-High− Degree: A heuristic based on the notion of degree centrality. We sort all
nodes base on degree of each node then making the same to PageRank, we use
binary search algorithm to find A.
-Greedy: The Greedy algorithm (algorithm 1) with the lazy evaluation optimiza-
tion in [17].
We run 10, 000 simulations to accurately estimate h(A) for every A set obtained
for each algorithm.

5.2 Experiment Results

Solution quality. As demonstrated in the Fig. 2, the number of selected nodes
gave by STMB algorithm is the smallest. STMB is up to 39% better than Greedy
method, 60%-95% and 57%-87% better than that PageRank and High− Degree
respectively. To check A set got from STMB algorithm, we run 10000 times
Monte-Carlo simulations to calculate function h(A) and result is shown in Fig.3.
In most cases h(A) is greater than γ.
Running Time. The running time of different algorithms on the three networks
are given in Fig.2 and Table 2. On the NetS and NetHEPT dataset, our STMB
algorithm is roughly two times faster than the PageRank, High− Degree and 800-
3500 times faster than the Greedy. On the AS dataset, STMB algorithm is slower
than the PageRank and High Degree but still 300 times faster than Greedy. From
the result, we see that STMB algorithm is very competitive in its time efficiency.

6 Conclusions

In this paper, we studied the TBM problem, in which aim to finding smallest set
nodes to remove from a social network so that the number of influence reduction
no less than a given threshold γ. Besides proving the problem is #NP-Hard. We
proposed two algorithm: Greedy and STMB algorithms. In the future, we will
tackle the TBM problem in other diffusion model, especially IC model.
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Fig. 2. Comparison of Solution quality of algorithms on NetS, AS, NetHEPT networks
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