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ABSTRACT In this paper, we study crucial elements of a complex network, namely its nodes and
connections, which play a key role in maintaining the network’s structure and function under unexpected
structural perturbations of nodes and edges removal. Specifically, we want to identify vital nodes and edges
whose failure (either random or intentional) will break the most number of connected triples (or triangles) in
the network. This problem is extremely important, because connected triples form the foundation of strong
connections in many real-world systems, such as mutual relationships in social networks, reliable data
transmission in communication networks, and stable routing strategies in mobile networks. Disconnected
triples, analog to broken mutual connections, can greatly affect the network’s structure and disrupt its
normal function, which can further lead to the corruption of the entire system. The analysis of such crucial
elements will shed light on key factors behind the resilience and robustness of many complex systems in
practice. We formulate the analysis under multiple optimization problems and show their intractability.
We next propose efficient approximation algorithms, namely, DAK-n and DAK-e, which guarantee an
(1 − 1/e)-approximate ratio (compared with the overall optimal solutions) while having the same time
complexity as the best triangle counting and listing algorithm on power-law networks. This advantage makes
our algorithms scale extremely well even for very large networks. In an application perspective, we perform
comprehensive experiments on real social traces with millions of nodes and billions of edges. Empirical
results indicate that our approaches achieve comparably better solution quality while are up to 100× faster
than the current state-of-the-art methods.

INDEX TERMS Triangle breaking, social networks, approximation algorithms.

I. INTRODUCTION
Resilience to unexpected perturbations is perhaps one of the
most desirable properties for real-world complex systems,
such as the World Wide Web, communication networks,
transportation networks, biological networks and social infor-
mation networks. In general, the resilience of a network eval-
uates how much the network’s normal function is affected in
case of external or undesired perturbation, i.e., it measures the
network in response to unexpected events such as adversarial
attacks and random failures [1]. In order to improve the
robustness of real-world systems, it is therefore important
to obtain key insights into the structural vulnerabilities of
the networks representing them. A major aspect of this is to

analyze and understand the effect of failure (either intention-
ally or at random) of individual components on the degree of
clustering in the network.

Clustering, or more particularly, the number of connected
triples/triangles, is a fundamental network property that has
been shown to be relevant to a variety of topics, such as clus-
ters of genes in biological networks, forwarding and routing
tables mobile networks, and especially strong connection of
communities users in online social networks (OSNs) [2]–[4].
Connected triples nicely capture the social intuition ‘‘a friend
of your friend is also your friend’’ [5], and thus, is the
fundamental pattern of information diffusion in multiple sys-
tems. For example, consider the propagation of information

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

15913



H. T. Nguyen et al.: Transitivity Demolition and the Fall of Social Networks

through a social network, such as the spread of a rumor.
A growing body of work has identified the importance of
the number of connected triples to such propagation; the
more connected triples a network has, the easier it is for
information to propagate [6]–[10]. Connected triples are
also behind the fall of some online social sites, such as
MySpace and Friendster, as they suffered a catastrophic
degrade of active users, activity traffic, and consequently,
popularity in the cyberspace. For instance, Friendster claimed
to have over 100 million users at its peak, but most them had
quit and fled to other networks (e.g., Facebook) by the end
of 2009 [11], [12], triggering a cascade of broken bonds
and friends leaving Friendster. The identification of elements
that crucially affect the number of connected triples in the
network, as a result, is of great impact.

The importance of connected triples is not limited to just
social networks; in the context of air transportation networks,
work in [13] argued that those connected triples of such a
network is beneficial, as passengers for a canceled flight can
be rerouted to connecting flights more easily. This metric also
plays an important role in the network community structure,
which is the core of mobile forwarding and routing strategies
in Delay Tolerant Networks (DTNs). Particularly, [14] has
shown the correlation between the number of disconnected
triples and the significant degrade of forwarded packets in
DTNs. In addition, as a matter of homeland security, the
critical elements for clustering in homeland communication
networks should receive greater resources for protection; in
complement, the identification of critical elements in a social
network of adversaries could potentially limit the spread of
information in such a network.

Many measures have been proposed for evaluating the
resilience of technological and biological systems; however,
there are only few work suggested for social networks. Most
studies in the literature focus on how the network behaves
under perturbation using measures such as pair-wise connec-
tivity [15], natural connectivity [16], or using centrality mea-
sures, e.g., degree, betweeness [17], the geodesic length [1],
eigenvector [18], etc. Nevertheless, most of them (1) focus
only on the local but not the global network’ structure, and
(2) do not take mutual interactions and social relationships
into account. These limits drive the need for another metric
for social resilience. To our knowledge, none of the existing
work has examined the number of connected triples from the
perspective of vulnerability - as evidenced by the examples
above, the damage made by the broken triples, resulted from
element-wise failures, can potentially have severe effects on
the functionality of the network.

Our study in this paper investigates the structural resilience
of complex networks, particularly OSNs, under the scenarios
of element-wise failures due to adversary attacks or random
failures. Our goal is to discover and protect critical net-
work’ elements (nodes and links) whose failures will break
most triples in the network. This research largely extends
our preliminary work presented in [19]. In a nutshell, our
contributions are

1) We study the resilience of social networks through the
number of connected triples. This an important struc-
tural vulnerability of an OSN that can greatly affect its
popularity among the crowds. We formulate the anal-
ysis under multiple optimization problems, and show
their hardness and intractability.

2) We propose efficient approximation algorithms to iden-
tify triangle-breaking points (i.e., nodes and links)
in the network structure: DAK-n algorithm for node
removal and DAK-e algorithm for edge removal. Our
proposed approaches guarantee are a small constant
factor in comparision to optimal solutions. Interest-
ingly, both DAK-n and DAK-e have the same time
complexity with the best triangle counting/listing
algorithms, O(m

3
2 ). This makes our algorithms scale

extremely well for large social data.
3) We also investigate the input-dependent bounding tech-

nique previously appeared in [20] for influence maxi-
mization problem. The input-dependent bound usually
gives better approximation guarantee than the worst-
case bound since it accounts for the particular instance
of the problem and particular run of the algorithms. As
shown in the experiments, the input-dependent bounds
vastly improve over the worst-case guarantee and in
many instances our approaches produce the optimal
solutions.

4) We carry out extensive experiments in comparison with
state-of-the-art methods on real-world data with mil-
lions of nodes and edges. The results show that DAK-n
and DAK-e substantially outperform the other methods
in terms of time consumption: They are up to 100×
faster than the direct competitor, GreedyAll [21], which
was shown be the best available method in terms of
solution quality and scalability.

Paper organization: Section II reviews studies that are
related to our work. Section III describes our model and prob-
lem definitions. Sections IV shows the intractability of these
investigating problems. Sections V and VI present our algo-
rithms DAK-n and DAK-e for the problems of interested in
terms of node and edge detection, respectively. In section VII,
we report empirical results of our approaches in compari-
son with other strategies. Finally, section VIII concludes the
paper.

II. RELATED WORK
Many metrics and approaches have been proposed to account
for network robustness and vulnerability [22]–[26]. While
each of these measures has its own emphasis and rationality,
they often come with several shortcomings that prevent them
from capturing desired characteristics of network connectiv-
ity and resilience. For example, measures based on shortest
path are rather sensitive to small changes (e.g. removing
edges or nodes); algebraic connectivity and diameter are not
meaningful for disconnected graphs (all disconnected graphs
have the same values); number of connected components
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TABLE 1. List of Symbols.

and component sizes, arguably, do not fully reflect level of
network connectivity.

Vulnerability assessment has attracted a large amount of
attention from the network science community. Work in the
literature can be divided into two categories: Measuring the
robustness and Manipulating the robustness of a network.
In measuring the robustness, different measures and metrics
have been proposed such as the graph connectivity [15], the
diameter, relative size of largest components, and average
size of the isolated cluster [17]. Other work suggests using the
minimum node/edge cut [27] or the second smallest non-zero
eigenvalue or the Laplacian matrix [28]. In terms of manip-
ulating the robustness, different strategies has been proposed
such as [17] and [29], or using graph percolation [30]. Other
studies focus on excluding nodes by centrality measures,
such as betweeness and the geodesic length [1], eigenvector
[18], the shortest path between node pairs [22], the pair-
wise connectivity [15], propagation of worms and cascading
failures [31], [32]. More information of general vulnerability
assessment can be found in [16] and references therein.

Community structure [33]–[35] is an another common pat-
tern found in real-world networks. Network structural vulner-
ability in social networks, has so far been an untrodden area.
In a related work [36], the authors introduced the community
structure vulnerability to analyze how the communities are
affected when top k vertices are excluded from the underlying
graphs. They further provided different heuristic approaches
to find those critical components in modularity-based com-
munity structure. [37] suggested a method based on the gen-
erating edges of a community to find the critical components.

Counting and listing triangles in a graph is an important
problem, motivated by applications in a variety of areas.
The problem of counting triangles on a graph with n ver-
tices and m edges can be performed in a straightforward
manner in O(mn). This has been improved to O(m3/2)
in [38] and O(m

2w
w+1 ) where w < 2.376 is the exponent

of matrix multiplication [39]. To improve the performance
of triangle counting in large graphs, parallel algorithms
are also studied in [40]. There are also several works
on approximate triangle counting [41]–[43]. Recently, the
k-triangle-breaking-node and k-triangle-breaking-edge

problems are investigated in [21]. The authors provides
NP-completeness proofs and greedy algorithms for the prob-
lems. Unfortunately, the NP-completeness proofs contains
fundamental flaws that cannot be easily fixed.

III. MODEL AND PROBLEM DEFINITION
In this section, we first define the main problem of inter-
est, describe its four triangle-breaking variants, and then
show their NP-hardness. Based on the submodularity prop-
erty of the objective functions, the approximability is stated
accordingly for each problem based on the rich literature of
optimizing submodular functions [44], [45].

The list of symbols is presented in Table 1.

A. MODEL
We represent a social network by an undirected graph G =
(V ,E) with |V | = n nodes and |E| = m undirected edges.
A set of 3 nodes is call a triple (or triangle) if every pair of
those nodes is connected by an edge. A triangle breaks if at
least one node or edge is removed or excluded from the graph.
Given a graph G = (V ,E), we investigate different models
in which the adversary attempts to break the most number
of triangles in the graph by removing nodes and edges either
intentionally or at random. In what following, we define four
variants of the triangle-breaking problem based on node and
edge removals.

B. PROBLEM DEFINITION
Definition 1 (k-Triangle-Breaking-Node): Given an

undirected graph G = (V ,E) and budget size k , find a
subset S∗ of k nodes whose removal will break the maximum
number of triangles in G:

S∗ = argmax |Tri(S)|

s.t. |S| ≤ k

S ⊆ V ,

where Tri(S) is the set of triangles with at least a node in S:

Tri(S) = {(u, v,w) | (u, v), (v,w), (w, u) ∈ E

and {u, v,w} ∩ S 6= ∅}.
k-triangle-breaking-node can also be formulated as an

Integer Linear Programming problem (ILP). For each u ∈ V ,
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define xu ∈ {0, 1} such that

xu =

{
1 if node u is removed
0 otherwise,

and for each triangle (u, v,w) ∈ Tri(V ), define an integral
variable yuvw ∈ {0, 1} that satisfies

yuvw =

{
1 if (u, v,w) is broken
0 otherwise.

Recall that k-triangle-breaking-node’s goal is to remove
k nodes, i.e.,

∑
u∈V xu ≤ k , to break the maximum

number of triangles, i.e., to maximize the objective function∑
(u,v,w)∈Tri(V ) yuvw. Because a triangle (u, v,w) is only bro-

ken if at least one node in {u, vw} is chosen to be removed the
following constraint is therefore imposed,

xu + xv + xw ≥ yuvw.

The final ILP formulation of k-triangle-breaking-node is

max
∑

(u,v,w)∈Tri(V )

yuvw

s.t.
∑
v∈V

xv ≤ k,

xu + xv + xw ≥ yuvw, ∀(u, v,w) ∈ Tri(V ),

xu, yuvw ∈ {0, 1}. (1)

Note that this ILP formulation forms a special case of the
Max-k-Coverage [46] problem: Given an universe set of ele-
ments U and a collections of subsets of U , S = {S1, . . . , Sn}
where Si ⊆ U , the general Max-k-Coverage problem asks
for k subsets of S, Ŝ = {Ŝ1, . . . , Ŝk}, to maximize the
coverage Cover(Ŝ) of Ŝ where

Cover(Ŝ) =
∣∣∣ k⋃
i=1

Ŝk
∣∣∣,

is the number of distinct elements in the union of Ŝi, i = 1...k .
We call the number of subsets that an element appears in the
frequency of that element. Thus, in the Eq. 1 the universe set is
U = Tri(V ) and the collection of subsets is S = {Tri(v) | v ∈
V }. This special case of Max-k-Coverage also satisfies the
condition that all the elements have the same frequency of
three as each triangle involves exactly three nodes.
Definition 2 (k-Triangle-Breaking-Edge): Given an

undirected graph G = (V ,E) and budget size k , find a
subset F∗ of k edges whose removal will break the maximum
number of triangles in G:

F∗ = argmax |Tri(F)|

s.t. |F | ≤ k

F ⊆ E,

where Tri(F) is the set of triangles with at least an edge in F :

Tri(F) = {(u, v,w) | (u, v), (v,w), (w, u) ∈ E

and {(u, v), (v,w), (w, u)} ∩ F 6= ∅}.

The equivalent ILP of k-triangle-breaking-edge is,

max
∑

(u,v,w)∈Tri(V )

yuvw

s.t.
∑

(u,v)∈E

xuv ≤ k,

xuv + xvw + xwv ≥ yuvw, ∀(u, v,w) ∈ Tri(V ),

xuv, yuvw ∈ {0, 1}, (2)

where

xuv =

{
1 if edge (u, v) is removed,
0 otherwise.

for all (u, v) ∈ E .
k-triangle-breaking-edge is also forms a special case of

Max-k-Coverage in which the elements to be covered are the
triangles in G, and the collection of subsets includes the set
of triangles involving each edge (u, v) ∈ E . As each triangle
consists of three edges, the frequency of each element in this
instance is also three. Moreover, any two subsets have at most
one triangle in common.

We also formulate the converse variants in which we want
to break a certain number (or a percentage of the total num-
ber) of triangles by removing the least number of nodes/edges
from the graph. Their definitions and ILP formulations are
defined in the following paragraphs
Definition 3 (Min-Triangle-Breaking-Node): Given an

undirected graph G = (V ,E) and a positive integer
p ≤ |Tri(V )|, find a minimum-size subset S of nodes whose
removal will break at least p triangles in G.

The ILP for min-triangle-breaking-nodeis

min
∑
v∈V

xv

s.t.
∑

(u,v,w)∈Tri(V )

yuvw ≥ p,

xu + xv + xw ≥ yuvw,

xu, yuvw ∈ {0, 1}. (3)

Definition 4 (Min-Triangle-Breaking-Edge): Given an
undirected graph G = (V ,E) and a positive integer
p ≤ |Tri(V )|, find the minimum-size subset F of edges
whose removal will break at least p triangles in G.

The ILP for min-triangle-breaking-edgeis

max
∑

(u,v)∈E

xuv

s.t.
∑

(u,v,w)∈Tri(V )

yuvw ≥ p,

xuv + xvw + xwv ≥ yuvw,

xuv, yuvw ∈ {0, 1}. (4)

Note that min-triangle-breaking-node and
min-triangle-breaking-edge are special cases of the Partial
Set Cover problem [44]. The Partial Set Cover problem is
a variation of the set cover problem. Given an universe set U ,
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TABLE 2. Summary of Complexity and Best Approximation Guarantees.

a collection of subsets of U , Partial Set Cover finds a sub-
collection to cover only a required number p of the elements
inU . Thus,min-triangle-breaking-node andmin-triangle-
breaking-edge are instances of Partial Set Cover in which
each element is in exactly three subsets and the intersection
of any three subsets contains at most one element.

IV. HARDNESS AND APPROXIMABILITY
This section discusses the complexity and presents the cur-
rently available approximation guarantees for our proposed
problems. The summary of the complexity and approxima-
bility results for the studied problems is presented in Table 2.

A. NP-COMPLETENESS
Recent work of Li et al. [21] attempted to prove the
NP-completeness of problems similar to k-triangle-
breaking-node and k-triangle-breaking-edge. Unfortu-
nately, their proofs contained some flaws which are not easily
addressed. Specifically, the proof of Theorem 2.1 [21] relies
on a weaker constraint of the set system: ‘‘the intersection
of any three subsets in S has at most one element’’. Indeed,
for k-triangle-breaking-edge, the correct (and stronger)
condition should be: the intersection of any two subsets in
S has at most one element. Moreover, their proof relies on
the assumption that if a problem is not NP-hard then there is
a polynomial-time algorithm to solve it. We do not know yet
if there exist NP-intermediate problems between NP and P.
Consequently, the correctness of the reduction cannot be
confirmed.

We show that all four aforementioned variants are
indeed NP-complete problems. We present a simple
NP-completeness proof of min-triangle-breaking-node
(similarly k-triangle-breaking-node) via reduction from
the Vertex-Cover problem [46]. The decision versions of k-
triangle-breaking-node (similarlymin-triangle-breaking-
node) can be polynomial-time reducible from the following
decision problem, called Node-Triangle-Free:
‘‘Given a undirected graph G = (V ,E) and a number k,

can we delete k nodes from G so that it is triangle-free (or in
other words, there is no more triangles in G)?’’.

We show an important result that Node-Triangle-Free
is polynomial-time reducible from the decision version of
Vertex Cover problem (definition below).
‘‘(Vertex Cover) Given a graph G = (V ,E) and an integer

0 < k < |V |, is there a vertex-cover of size k?’’.

1) REDUCTION
Let8 =< G = (V ,E), k > be an instance of the vertex cover
problem. For each edge (u, v) ∈ E , we add to G a new node
tuv and connect tuv to both u and v. Let G′ be the new graph.
We shall reduce φ to an instance 3 =< G′, k > of Node-
Triangle-Free. Obviously, if we have a vertex-cover S ⊂ V
of size k in G then we can delete the same set of nodes S in
G′ to obtain a triangle-free graph. In the reverse direction, we
can assume without lost of generality that tuv will never be
removed. The reason is that we can always remove u or v and
break an equal or greater number of triangle(s). Thus a subset
of size k that its removal makes G′ triangle-free must induce
a vertex-cover of size k in G.

This reduction consequently sets forth the NP-
Completeness of k-triangle-breaking-node.
Theorem 1: The problems k-triangle-breaking-node

and min-triangle-breaking-node are NP-complete.
By a very similar reduction, both k-triangle-breaking-

edge and min-triangle-breaking-edge can be polynomial-
time reducible to the following problem:
‘‘Can we delete k edges from a graph G = (V ,E) so that it

is triangle-free (or in other words, there is no more triangles
in G )?’’.

The following Theorem is obtained from [47].
Theorem 2: k-triangle-breaking-edge and min-

triangle-breaking-edge are NP-complete.

B. APPROXIMABILITY
Since min-triangle-breaking-node and min-triangle-
breaking-edge problems are special cases of the Partial Set
Cover problem with bounded frequencies f = 3 [44], the
primal-dual algorithm in [44] provides a 3-approximation
algorithm for both problems. Instead of operating on sets, the
primal-dual algorithm works on the elements in the universe
set U . It assigns a dual covering cost for each element that
signifies the selection of a set to cover that element. The basic
operation of the algorithm is increasing all the dual covering
costs of those that have not been covered simultaneously until
the total cost of uncovered elements in a set equals 1 (the cost
of choosing that set). The corresponding set is then selected
to the solution and the algorithm continues until satisfying the
covering requirement. To achieve the f -approximation factor,
the algorithm assumes that we know a set in the optimal
solution (simply by trying all the possible sets) and applies
the primal-dual selection on the rest. Therefore, we obtain
the following result.

VOLUME 5, 2017 15917



H. T. Nguyen et al.: Transitivity Demolition and the Fall of Social Networks

Theorem 3: There exist 3-approximation algorithms for
min-triangle-breaking-node and min-triangle-breaking-
edge.

The k-triangle-breaking-node and k-triangle-breaking-
edge problems are special cases ofMax-k-Coverage and the
Pipage-rounding method in [45] results in an approximation
algorithm with ratio 1− (1− 1/3)3 = 19/27.
The Pipage-rounding technique is a general method pro-

viding worst-case approximation guarantees for a large
class of discrete optimization problems, including Max-k-
Coverage, with assignment-type constraints. It first refor-
mulates the problem into a non-linear program which has
an integral optimum and is at least 1 − (1 − 1/f )f greater
than the starting problem at any feasible solution. It then
finds an integral solution of the non-linear program in two
phases: 1) solving the non-integral relaxation of the problem
and 2) transform the non-integral solution to an integral one
by pipage rounding. The relaxation is polynomially solvable
and the second phase takes the solution and rounds it in the
manner that the objective value of rounded solution can only
increase and get closer to integral numbers. As shown in [45],
each rounding circle in Pipage-rounding brings one element
in the current solution to integral value. The approximation
factor follows directly from the properties of the non-linear
program and the rounding procedure. Therefore, we obtain
the following result.
Theorem 4: There exist 19/27-approximation algorithms

for k-triangle-breaking-node and k-triangle-breaking-
edge.
Remarks: Both the primal-dual method in [44] and the

pipage-rounding algorithm in [45] have high time complexity
and are not scalable for large networks. As a result, efficient
algorithms that can be applied on large-scale data are of
desire. In next sessions, we propose efficient discounting
algorithms for the studied problems on very large-scale net-
works with just a slightly looser approximation ratio.

V. ALGORITHMS FOR k-TRIANGLE-BREAKING-NODE
In this section, we first present a naive Greedy algorithm
(Alg. 1) to solve k-triangle-breaking-node problem. The
greedy strategy is known to obtain a (1 − 1/e)- approx-
imate solution; however, is time consuming and therefore
is prohibitive for practical large-scale data. To address the
scalability issue, we propose k-triangle-breaking-nodeDis-
counting Algorithm (DAK-n - Alg. 2) which achieves the
same solution quality and approximation guarantees and is
at least k time faster than the naive Greedy algorithm.

Algorithm 1 Greedy Algorithm for k-Triangle-Breaking-
Node (Simple_Greedy)
1: S ← ∅;
2: for i = 1 to k
3: S ← S + argmaxv∈V\S 1S (v);
4: return S

A. NAIVE GREEDY ALGORITHM
The first algorithm (Alg. 1) selects at each step the node u
that breaks the most number of triangles, i.e., u =

argmaxv∈V\S 1S (v), and then adds u to the solution S. This
algorithm continues until k nodes have been selected into the
returned solution S.

Since k-triangle-breaking-node is a special case of
Max-k-Coverage, the native greedy algorithm provides a
performance guarantee of (1−1/e) for k-triangle-breaking-
node. Another way of proving this is to show that the main
objective function (the number of broken triangles) is mono-
tone and submodular, which in turn admits a nearly optimal
greedy approximation algorithm [21].

The complexity of Alg. 1 is O(kmn) assuming the budget
of k nodes. In a recent work, the time complexity for Alg. 1
is brought down to O(km3/2) in [21] using the fast triangle
computation method in [38]. For large value of k = θ (n),
the time-complexity of the algorithm in [21] could be as
high as O(nm3/2) which is very expensive and not scalable
for practical large size data. To this end, we present in next
section our scalable Discounting Algorithms for k-triangle-
breaking-node with time complexity O(m3/2

+ km) which
is up to m1/2 times faster than the algorithm in [21].

B. DISCOUNTING ALGORITHM FOR
k-TRIANGLE-BREAKING-NODE
Our Discounting Algorithm for k-triangle-breaking-node
(DAK-n - Alg. 2) speeds up significantly the simple greedy
algorithm. For small values of k , this algorithm requires as
much time as the best algorithm for counting the number of
triangles. The core efficiency of DAK-n is that it employs a
smart updating technique to keep track of the number of effec-
tive triangles associated with each of the remaining nodes. In
particular, DAK-n employs an adaptive strategy in computing
the marginal gains (the number of broken triangles) when
nodes are removed one after another. At each round, the
node v that breaks the most number of triangles is selected
into the solution. Node v is then excluded from the struc-
ture and the procedure repeats itself on the remaining nodes
and recomputes efficiently the new marginal gain for each
node u.
We structure DAK-n into two phases. The first phase

(lines 1–8) extends the algorithm in [38] to compute the num-
ber of triangles that are incident with each node in the graph.
This algorithm was proved to be time-optimal in θ (m3/2) for
triangle-listing, and has been shown to be very efficient in
practice. The second phase starts at line 9 where it creates a
Max-priority-queue to ranks nodes according to values in T .
DAK-n then (lines 9–18) repeats the vertex selection for k
rounds. In each round, DAK-n selects a node umax with the
highest value of 1S (u) = T (u) (from top of the priority
queue) into the solution. It then removes umax from the graph,
and performs the necessary updates on T (u) for all u ∈ V \S.
DAK-n subsequently updates the indexes of v and w in the
queue according to their new values in T .
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Algorithm 2 Discounting Algorithm for k-Triangle-
Breaking-Node (DAK-n)

Phase 1:

1: Number nodes from 1 to n such that u < v implies d(u) ≤
d(v).

2: S ← ∅;
3: for each u ∈ V do T (u)← 0;
4: for u← n to 1 do
5: for each v ∈ N (u) with v < u do
6: for each w ∈ A(u) ∩ A(v) do
7: Increase T (u),T (v) and T (w) by one;
8: Add u to A(v);

Phase 2:

9: Q←Max-Priority-Queue(T )
10: for i = 1 to k
11: umax = Q.pop();
12: Remove umax from G and add umax to S;
13: for each v ∈ N (umax) do
14: for each w ∈ N (v) do
15: if v,w ∈ N (umax) \ S then
16: Decrease T (v) and T (w) by one;
17: Q.update(v,T );
18: Q.update(w,T );
19: return S

The key efficiency of DAK-n lies in its update procedure
for 1S (u) = T (u). Specifically, the total update for all
O(n) values of 1S (u) after removing umax can be done in
linear time as indicates in lines 15 – 18. The linear time
update is made possible due to the information on the number
of triangles involving each node. This significantly reduces
the complexity for computing the marginal gain 1S (u) and
speeds up the node selection process.

1) COMPLEXITY
The first phase takesO(m3/2) as analyzed in [38]. The second
phase takes a linear time in each round and has a total time
complexityO(k(m+n)) as creating and maintaining theMax-
priority queue requires O(n log n). In each sequential round,
the algorithm checks all the neighbors v of umax and for each
neighbor, it examines all the neighbors of v. Thus, the total
complexity of checking at a round is

∑
v∈N (umax ) dv ≤ 2m

where dv is the degree of v. Each update (Lines 17-18) takes
constant time since T (v) and T (w) decrease by 1 and the
queue Q needs to move v,w at most one level in the queue.
Hence, the overall complexity isO(m3/2

+km). For k < m1/2,
the algorithm has an effective time-complexity O(m3/2),
which is the same as the counting triangles procedure.

2) APPROXIMATION GUARANTEES
DAK-n respects the spirit of Greedy method as it selects
the node with the highest marginal gain at each step. As a
result, DAK-n retains the approximation guarantees of the

greedy method for Max-k-Coverage. The following theorem
summarizes our suggested approach.
Theorem 5: DAK-n algorithm is an (1 − 1/e)-approxi-

mation algorithm for k-triangle-breaking-nodewith a com-
plexity of O(m3/2

+ km).
Note that the naive Greedy (Alg. 1) and Discounting

Algorithms (Alg. 2) can be easily adapted for min-triangle-
breaking-node by terminating node selection until p broken
triples triangles are satisfied. This is due to the fact that
min-triangle-breaking-node is a special case of the Partial
Set Cover problem and the greedy strategy guarantees an
H (p)− 1/2 approximation solution, where H (p) denotes the
harmonic function H (p) = 1 + 1/2 + . . . + 1/p. Thus,
Algs. 1 and 2 are also (H (p)−1/2)-approximation algorithms
for min-triangle-breaking-node.

C. ANALYSIS IN NETWORKS WITH POWER-LAW
DEGREE DISTRIBUTION
We next show that the complexity of DAK-n can furthermore
be reduced to O(m3/2) in networks with power-law degree
distributions, which are commonly exhibited in many real
world complex systems such as the Internet, social, and bio-
logical networks [48], [49]. Conceptually, power-law degree
distributed networks have the fraction of nodes with degree k
(k connections to other nodes) is b e

α

kγ c, where eα is the
normalization factor as in the P(α, γ ) model [50]. Practical
networks usually have 2 < α < 3. In this work, we deduce
the maximum degree in a P(α, γ ) network to e

α
γ because for

k > e
α
γ , the number of edges will be less than 1.We show that

in power-law degree distributed networks, the overall time
complexity is O(m3/2) which implies that DAK-n is as fast
as the state-of-the-art algorithms for counting/listing triangles
with no additional costs (Theorem 6). This also realizes the
scalability of DAK-n in large networks.
Theorem 6: The complexity ofDAK-n algorithm isO(m

3
2 )

on power-law degree distributed networks.
Proof: In a power-law degree distributed network, the

numbers of vertices and edges are computed as
follows,

n =
e
α
γ∑

k=1

eα

kγ
≈


ζ (γ )eα if γ > 1
αeα if γ = 1,

e
α
γ

1− γ
if γ < 1

(5)

m =
1
2

e
α
γ∑

k=1

k
eα

kγ
≈



1
2
ζ (γ − 1)eα if γ > 2

1
4
αeα if γ = 2,

1
2

e
2α
γ

2− γ
if γ < 2

(6)

where ζ (γ ) =
∑
∞

i=1
1
iγ is the Riemann Zeta

function [50], [51] which converges absolutely for γ > 1
and diverges for all γ ≤ 1. For the sake of simplicity, we will
simply use real number instead of rounding down to integers.
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The error terms can be easily bounded and are negligible in
our proof.

Since Phase 1 of Alg. 2 is O(m
3
2 ) for counting triangles,

we will analyze Phase 2 of Alg. 2 and show its overall
complexity O(m

3
2 ). To this end, we first find the workload

Ci at each round i in phase 2, sum them all up and utilize the
power-law property to obtain the final result. In particular,

Ci =
∑

v∈N (umax )

dv.

The worst case of the second phase happens when
k = n which means that the algorithm has to select all
nodes in decreasing order of triangle-breaking gains into the
solution set S. That leads to the overall complexity of,

C =
n∑
i=1

Ci =
∑
u∈V

∑
v∈N (u)

dv =
∑
u∈V

d2u . (7)

We apply the power-law property on the number of nodes
with degree k being eα

kγ and the maximum degree is e
α
γ on the

above equation which yields

C =
∑
u∈V

d2u =
e
α
γ∑

k=1

k2
eα

kγ
= eα

e
α
γ∑

k=1

k2−γ . (8)

We consider two cases:
Case 1 (γ ≥ 2): This implies k2−γ ≥ 1. Eq. 8 becomes,

C = eα
e
α
γ∑

k=1

k2−γ ≤ eα
e
α
γ∑

k=1

1 = eαe
α
γ = eα+

α
γ

≤ eα+
α
2 =

(
eα
) 3

2
. (9)

Combining Eq. 9 with the number of edges in power-law
degree networks in Eq. 6, we obtain,

C ≤
(
eα
) 3

2
= c1 · m

3
2 , (10)

where c1 is a constant that satisfies,

c1 ≈

(
1

1
2ζ (γ − 1)

)3/2 if γ > 2.

(4/α)3/2 if γ = 2.

Note that γ > 2 infers ζ (γ − 1) converges and c1 is a finite
constant.

Thus, in this case, phase 2 has time complexity of O(m
3
2 ).

Case 2 (γ < 2): In this case, Eq. 8 is equivalent to,

C = eα
e
α
γ∑

k=1

k2−γ = eα(e
α
γ )2−γ

e
α
γ∑

k=1

k2−γ

(e
α
γ )2−γ

≤ eαe
2α
γ
−α

∫ 1

t=0
t2−γ dt = e

2α
γ

1
3− γ

= c2× m, (11)

where

c2 ≈
2(2− γ )
3− γ

,

is a finite constant since γ < 2. This yields the time com-
plexityO(m) for Phase 2. Finally, we conclude that the overall
time complexity of O(m

3
2 ) in both cases.

VI. ALGORITHM FOR k-TRIANGLE-BREAKING-EDGE
In a similar vein to k-triangle-breaking-node and min-
triangle-breaking-node, the edge removal variants expose
similar attributes and thus the greedy algorithm can be
directly applied with near-optimal guarantee. We present
DAK-e for finding triangle-breaking edges in Alg. 3. On gen-
eral networks, DAK-e performs faster than its node-version,
DAK-n due to its complexity of O(m3/2

+ kn).

Algorithm 3 Discounting Algorithm for k-Triangle-
Breaking-Edge (DAK-e)

Phase 1:

1: Renumber nodes so that u < v implies d(u) ≤ d(v).
2: F ← ∅;
3: for each (u, v) ∈ E do tr(u, v)← 0;
4: for u← n to 1 do
5: for each v ∈ N (u) with v < u do
6: for each w ∈ A(u) ∩ A(v) do
7: Increase tr(u, v), tr(v,w) and tr(u,w) by

one;
8: Add u to A(v);

Phase 2:

9: Q←Max-Priority-Queue(T )
10: For i = 1 to k
11: emax ← Q.pop();
12: Remove emax from G and add emax to F ;
13: Let (u′, v′) = emax ;
14: for each w ∈ N (u′) ∩ N (v′) do
15: Decrease tr(w, u′) and tr(w, v′) by one;
16: Q.update((w, u′),T );
17: Q.update((w, v′),T );
18: return F

In its execution DAK-e maintains, for each edge, the num-
ber of triangles incident on that edge and updates the measure
efficiently when removing nodes from G. After removing an
edge (u′, v′) we only need to consider only |N (u′) ∩ N (v′)|
updates to discount the triangles incident on (u′, v′) from the
corresponding edges. Thus the overall complexity in each
iteration relies on finding the edge that breaks the maximum
number of triangles. We obtain the following approximation
guarantee for the edge-removal problem which is similar to
the node version.
Theorem 7: DAK-e is an (1 − 1/e)-approximation

algorithm for k-triangle-breaking-edge with complexity
O(m3/2

+ kn).
On power-law degree distributed networks, by an argument

similar to DAK-n, we can show that the overall complexity of
DAK-e isO(m

3
2 ) which is also equal to counting/listing trian-

gles in the networks as concluded in the following theorem.
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Theorem 8: On power-law degree distributed networks,
the complexity of DAK-e algorithm is O(m

3
2 ).

Note: An approach adapted algorithm from Alg. 3 can
be devised for solving min-triangle-breaking-edge and
returns a (H (p) − 1/2)-approximate edge set since min-
triangle-breaking-edge is also a special case of Partial Set
Cover problem.

A. INPUT-DEPENDENT APPROXIMATION GUARANTEES
The (1− 1/e)-approximation factor, termed fixed worst-case
bound, achieved by our algorithms provides a general lower-
bound on the solution quality of the selected set S. This
factor is known in advance even prior to the execution of the
methods. Nevertheless, we can derive a better approximation
bound of the solution quality, namely the input-dependent
bound, depending on the problem instance and even the par-
ticular run of the algorithms. Inspired by the work in [20] on
the Influence Maximization problem, we can apply a similar
bounding technique (named online-bound) to obtain a real
input-dependent bound on the solution quality in both the
naive greedy and our DAK-n and DAK-e algorithms. The
input-dependent bound for DAK-n is stated as follows,
Theorem 9 (DAK-n Input-Dependent Bound): For a set of

selected nodes S ⊂ V and each node u ∈ V , let 1S (u) =
T (S ∪ u)−T (S) be the marginal gain of u when u is included
in S. Let u1, u2, . . . , un−k be the sequence of the remaining
nodes (not in S) sorted in decreasing order of 1S (u), then

OPT nk ≤ T (S)+
k∑
i=1

1S (ui), (12)

where OPT nk = maxS ′⊂V ,|S ′|=k T (S ′) is the triangles broken
by the optimal solution with k nodes.
By selecting the top k nodes with the highest marginal

gains into the returned solution S of DAK-n, we obtain an
upper-bound on the optimal solution. Then by dividing the
number of triangles broken by S with that upper-bound, we
have an input-dependent guarantee on S,

OBn(S) =
T (S)

T (S)+
∑k

i=11S (ui)
≥

T (S)
OPT nk

. (13)

Similarly, the input-dependent for solution F of the DAK-e
is computed by the following equation,

OBe(F) =
T (F)

T (F)+
∑k

i=11F (ei)
≥

T (F)
OPT ek

, (14)

where e1, . . . , ek are the top k edges with the highest marginal
gain of broken triangles with respect to F and OPT ek is the
triangles broken by the optimal edge set with k edges.

VII. EXPERIMENTAL EVALUATION
In this section, we evaluate the quality and performance of
our proposed methods DAK-n and DAK-e. We show, through
empirical results, two important features of our approaches:
performance and scalability that are desired for any practical
techniques. We compare and contrast ours with GreedyAll,1

the state-of-the-art method suggested in [21], and approaches
based on centralites, i.e., Max-degree, Pagerank and Ran-
domization. Betweeness centrality was not included in the
experiments due to its time consumption in large networks.
On k-triangle-breaking-node and k-triangle-breaking-
edge problems, results indicate that our methods vastly
outperform GreedyAll up to 100× in terms of time consump-
tion while achieving the same level of solution quality. The
baseline methods based on centrality and randomization are
slightly faster but the qualities are much worst. We also spend
a good portion to study the networks under node and edge
removal attacks using the min-triangle-breaking-node and
min-triangle-breaking-edge problems.

A. EXPERIMENTAL SETTINGS
1) DATASETS
Tomake our experiments extensive, we select a set of six real-
world traces from various domains with sizes ranging from
thousand to million scales. The summary of those networks
are provided in Table. 3.

Specifically, our dataset includes both physical (connected
by physical links) and virtual (e.g., friendship, communica-
tion) networks. In the first category: Gnutella4 is a snap-
shot of the Gnutella peer-to-peer file sharing network on

1Work in [21] also proposed Approx which used FM-sketch to approx-
imate the triangle-breaking gain. This approach imposes the same time
complexity with GreedyAll.

(∗) http://snap.stanford.edu/data/index.html;
(y) http://socialcomputing.asu.edu/pages/datasets

TABLE 3. Real-World Networks for Experimentation.
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August 4th 2002 in which nodes represent hosts in the
Gnutella network topology and edges represent connections
between the hosts; Skitter is the Internet topology graph
captured by tracerouting in 2005. In the second category:
Flickr is a contact network crawled from the photo sharing
Flickr website where nodes are users and edges are friendship
connections between users; Google is the dataset of web-
pages and hyperlinks between the webs released by Google
company in 2002; Wiki-Talk contains the set of users in the
Wikipedia website and edit relationship (who edits take pages
of whom) and Orkut is an online social networks with users
as nodes and friendships as connections.

2) PERFORMANCE AND SCALABILITY MEASURES
(Performance) For a fair comparison between different meth-
ods, we count the number of triangles broken by the set
of nodes/edges returned by the algorithms as the quality
measure.

(Scalability) In terms of scalability, we record the running
time consumed by each algorithm. For the min-triangle-
breaking-node and min-triangle-breaking-edge problem,
we only measure the running time of DAK-n and DAK-e. The
input-dependent bound of our algorithms is also illustrated in
the last experiments.

3) IMPLEMENTATION AND TESTING ENVIRONMENT
We implemented our algorithms DAK-n and DAK-e in
C++ programming language with GCC 4.8 C++11 com-
piler. We also implemented the GreedyAll [21] algorithm

following closely the provided description and pseudo-code.
All the experiments are run on a Linux environment with
2.2Ghz Xeon 8 core processor and 100GB of RAM. In each
execution, only a single core is assigned for each method.

B. PERFORMANCE EVALUATION
The performance, i.e., the solution quality, measured by the
number of triangles broken by node and edge removals is
illustrated in Figures. 1 and 2 for node and edge variants,
respectively. In this evaluation, the higher the number of tri-
angles disconnected by the removal of sets of k-nodes/edges
the better. As depicted from these figures,DAK-n,DAK-e and
GreedyAll consistently have the best performance on all the
social traces compared to the others. This indicates node and
edge sets selected by those algorithms are crucial in maintain-
ing the network’s clustering and strong connectivity. In terms
of social networks, the nodes and edges identified can be
considered as important or influential users/relationships that
are key to the network’s function. Pagerank and Max-degree
achieve very good solution quality on certain datasets, e.g.,
Google andWiki-Talk, but fall far behind DAK-n, DAK-e and
GreedyAll on the other tests. The quality of Random strat-
egy, as expected, falls below and is inconsistent compared
to the others. In summary, empirical results from multiple
real-world data confirm the performance provided by our
suggested algorithms. Figures. 1 and 2 also display the typical
trend of monotone and submodular functions as they exhibit
the diminishing return property. For the first few selections,
the marginal gain (in terms of the number of broken triangles)

FIGURE 1. Number of broken triangles by node removal algorithms (higher value is better). (a) Flickr. (b) Gnutella. (c) Google. (d) Skitter. (e) Wiki-Talk.
(f) Orkut.
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FIGURE 2. Number of broken triangles broken by edge removal algorithms (higher value is better). (a) Flickr. (b) Gnutella. (c) Google. (d) Skitter.
(e) Wiki-Talk. (f) Orkut.

FIGURE 3. Running time of node removal algorithms (legends in Figure 1). (a) Flickr. (b) Gnutella. (c) Google. (d) Skitter. (e) Wiki-Talk. (f) Orkut.

is significant yet the later rounds provide smaller marginal
gain, and the gain tends to saturate quickly.

C. SCALABILITY EVALUATION
Figures. 3 and 4 report the time consumption (in seconds)
of testing algorithms in experiments. These figures display

three groups of methods with different magnitudes: (Group 1)
GreedyAll with most time consumption (up to 100×
times higher than the second group), (Group 2) DAK-n,
DAK-e, Pagerank and Max-degree algorithms, and (Group 3)
Random method which returns almost instantly k ran-
dom nodes/edges due to it simple nature. We observe
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FIGURE 4. Running time of edge removal algorithms (legends in Figure 1). (a) Flickr. (b) Gnutella. (c) Google. (d) Skitter. (e) Wiki-Talk. (f) Orkut.

that DAK-n and DAK-e require a very comparable amount of
time to Pagerank andMax-degree methods, the two canonical
centralities and very fast to compute. Better yet, DAK-n and
DAK-e produce much better solution quality than Pagerank
and Max-degree while are very comparable in terms of
scalability.

These extensive experiments illustrate that our proposed
DAK-n and DAK-e algorithms is highly competitive to the
current best GreedyAll method performance meanwhile is
much better in terms of scalability. As shown in the previous
experiments, only GreedyAll has similarly highest level of
solution quality as DAK-n and DAK-e; however, our running
time results show that GreedyAll is up to 20 slower than
DAK-n on the node removal problem and 100 times slower
than DAK-e on the edge removal variants.

D. INPUT-DEPENDENT BOUND TESTING
Finally, we perform experiments on the input-dependent
bounding technique embedded in DAK-n and

DAK-e algorithms. Theoretically, the solutions returned
by DAK-n and DAK-e are guaranteed to be at least
(1 − 1/e) ≈ 0.63 on any input instance. In prac-
tice, we can even obtain better guarantees depending on
the problem instance and the execution itself. Our input-
dependent bounding strategy is one way of finding such
instance- and execution-dependent guarantees. Table 4
presents the input-dependent bounds provided by DAK-n
algorithm for node removal problem. Values in this table
express the input-dependent bounds and the closer to 1
the better. We can observe that these input-dependent
bounds are substantially better than the theoretical guarantee
1 − 1/e ≈ 0.63. For example, with k = 400 on Wiki-Talk
dataset,DAK-n is guaranteed to output a solution whose qual-
ity is at least 95% of the optimal one. For Gnutella network,
with k ≥ 600, DAK-n indeed finds the optimal solution,
indicating that all the triangles in the network have been
disconnected. We can also observe that the bound gets tighter
when k increases. This implies our suggested algorithms

TABLE 4. Input-Dependent Bounds Provided by DAK-n (Closer to 1 Is Better).
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closely approach the optimal solutions (which are generally
very hard to find out due to their NP-hardness) as more nodes
are allowed in the budget k . The reason behind that is due to
the nature of our bounding technique: larger k means more
triangles are broken and the gain of the next k nodes becomes
smaller and approximation ratio approaches 1.

In summary, we observe that our proposed algorithms (1)
performmuch better in practice with less time consumption in
comparison with other methods, and (2) obtain much tighter
(and sometimes the best) approximation guarantees than the
theoretical bounds as the budget k increase. These features
indicate the applicability of our approaches for real-world
social network data.

VIII. CONCLUSION
We investigate critical nodes and links whose failures will
severely damage most triangles in the network, changing
the network’s organization and (possibly) leading to the
unpredictable dissolving of the network. We formulate this
vulnerability analysis as optimization problems, and pro-
vide proofs of their NP-Completeness. We propose two
algorithms DAK-n and DAK-e with notable performance
and scalability. Both DAK-n and DAK-e obtain best approx-
imation guarantees: 19/27-approximation for k-triangle-
breaking-node and k-triangle-breaking-edge as well
as 3-approximation for min-triangle-breaking-node and
min-triangle-breaking-edge, and are scalable for network
with millions nodes and edges. Those features lend our
approaches nicely into the analysis of various large-scale
real-world problems. In the future, we aim to bridge the
gaps between theory and practice to design more scalable
approaches with better approximation guarantees.
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