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Abstract: Based on the classical shell theory, the linear dynamic response of functionally graded
carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic
foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by
single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell
thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta
method. In numerical results, the influences of geometrical parameters, elastic foundations, natural
frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are
investigated. The proposed results are validated by comparing them with those of other authors.

Keywords: FG-CNTRC truncated conical shells; dynamic response and vibration; classical shell
theory; elastic foundations

1. Introduction

In the past few decades, carbon nanotubes (CNTs) have generated huge research interest from
many areas of science and engineering. This is mainly due to their remarkable structure: CNTs are
allotropes of carbon with a cylindrical nanostructure [1,2]. These cylindrical carbon molecules have
unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of
materials science and technology. Numerous studies have shown that CNTs have excellent mechanical,
electrical, and thermal properties. For example, CNTs’ materials are the strongest and stiffest materials
yet discovered in terms of tensile strength and elastic modulus. This strength results from the covalent
sp2 bonds formed between the individual carbon atoms. For example, a multi-walled carbon nanotube
has a tensile strength of 63 GPa [3], while an individual CNT shell has a strength of up to 100 GPa [4],
which is in agreement with quantum/atomistic models. In addition, CNTs have a low density for a
solid of 1.3 to 1.4 g/cm3; the specific strength of up to 48,000 kN·m·kg−1 is the best of known materials,
compared to high-carbon steel’s 154 kN·m·kg−1 [5]. About the electrical properties, because of CNTs’
nanoscale cross section, electrons propagate only along the tube’s axis. CNTs are one-dimensional
conductors, or, in other words, metallic or semiconducting along the tubular axis. The maximum
electrical conductance of a single-walled CNT is 4 e2/h, twice the conductivity of a single ballistic
quantum channel [6]. As for the thermal properties, as far as we know, all nanotubes are expected to be
very good thermal conductors along the tube; in fact, the temperature stability of CNTs is estimated to
be up to 2800 ◦C in vacuum and about 750 ◦C in air [7]. Moreover, CNTs have optical properties such as
useful absorption, photoluminescence (fluorescence), and Raman spectroscopy. The superior properties
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of CNTs are well established and have immediate applications in areas related to most industries,
including aerospace, electronics, medicine, defense, automotive, energy, construction, and even
fashion. For example, Aliahmad et al. presented the poly (vinylidene fluoride-hexafluoropropylene)
porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide and lithium
aluminum titanium phosphate with an ionic conductivity of 2.1 × 10−3 S·cm−1 for paper-based
battery applications [8] and the paper–based lithium–ion batteries using carbon nanotube coated wood
microfibers [9]. Agarwal et al. studied the conductive paper from lignocellulose wood microfibers
coated with nanocomposite of carbon nanotubes and conductive polymers [10].

As a new breed of composite materials and the components of structures in the advanced
engineering, FGMs (functionally graded materials) are microscopically inhomogeneous composites
usually made of a mixture of metal and ceramic in which the volume ratios of each composition vary
smoothly and continuously from one surface to another according to the structure thickness to be
suitable to the specific strength of materials. For FGMs, the mechanical properties vary smoothly and
continuously in preferred directions, which enables FGMs to avoid interface problems and unexpected
thermal stress concentrations. There are many areas of application for FGM. The concept is to make a
composite material by varying the microstructure from one material to another material with a specific
gradient. This enables the microstructure to have the best characteristics of both materials. If it is
for thermal or corrosive resistance or malleability and toughness, both strengths of the material may
be used to avoid corrosion, fatigue, fractures, and stress corrosion cracking. Due to the high heat
resistance, FGMs are appropriate to use as structural components operating in ultrahigh-temperature
environments and subjected to extremely high thermal gradients, such as in nuclear plants, aerospace
structures, aircraft, and other engineering applications. This has prompted considerable research
focusing on linear and nonlinear analyses of FGMs in recent years.

As can be seen, both CNTs and FGMs are breakthroughs in materials science. If the texture is
made of a material that is a combination of CNT and FGM, then the texture would have been better.
The unique features of FGMs and CNTs may be combined, for instance, through functionally graded
distributions of CNTs in a FGM media. Functionally graded carbon nanotube-reinforced composites
(FG-CNTRC) were first introduced by Shen [11] and have recently become more popular.

FG-CNTRC could be embedded in beams, panels, plates, and shells as structural elements.
By considering the temperature dependence of material properties and the initial thermal stresses,
Amin et al. studied the free vibration behavior of pre-twisted FG-CNTRC beams in a thermal
environment [12], in which the governing equations were derived based on the higher-order shear
deformation theory of beams and the free vibration eigenvalue equations are extracted using
the Chebyshev–Ritz method. Wu and his colleague analyzed the imperfection sensitivity of the
post-buckling behavior of FG-CNTRC beam subjected to axial compression based on the first order
shear deformation beam theory with a von Kármán geometric nonlinearity in [13] and analyzed
thermal post-buckling behavior of FG-CNTRC beam subjected to in-plane temperature variation
in [14].

In a study on the FG-CNTRC panels using the Chebyshev–Ritz method, first-order shear
deformation shell theory, and Donnell-type kinematic assumptions, Miraei and Kiani presented free
vibration FG-CNTRC cylindrical panels [15]. To investigate the effect of the main design variables that
influence the linear buckling behavior of FG-CNTRC unstiffened curved panels, in [16] the authors
presented a buckling analysis of FG CNT-reinforced curved panels under axial compression and
shear. The analysis of flexural strength and free vibration of carbon nanotube-reinforced composite
cylindrical panels was carried out in [17] by Liew et al., with four types of distributions of uniaxially
aligned reinforcements.

About the FG-CNTRC plates, based on iso-geometric analysis (IGA) and generalized higher-order
shear deformation theory (GHSDT), in [18] Phung et al. performed a size-dependent analysis of
FG-CNTRC nano-plates with nonlocal governing equations approximated according to IGA based
on GHSDT, which naturally satisfies the higher-order derivatives continuity requirement in the weak
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form of FG-CNTRC nanoplates. By using first-order shear deformation plate theory, the authors of [19]
presented a geometrically nonlinear analysis of FG-CNTR composite laminated plates (which were
composed of perfectly bonded carbon nanotube-reinforced functionally graded layers; in each layer,
CNTs are assumed to be uniformly distributed or functionally graded in the thickness direction) by
using first-order shear deformation plate theory and the Von Kármán assumption accounting for
transverse shear strains, rotary inertia, and moderate rotations. Kiani analyzed the free vibration
behavior of FG-CNTRC plates integrated with piezoelectric layers at the bottom and top surfaces [20],
while the buckling behavior of FG CNTR composite laminated plate was studied in [21], in which the
first-order shear deformation theory (FSDT) was employed to incorporate the effects of rotary inertia
and transverse shear deformation, and the meshless kp-Ritz method was used to obtain the buckling
solutions. By applying the traditional Galerkin method and the Airy stress function, Duc et al. [22]
presented the static response and free vibration of functionally graded carbon nanotube-reinforced
composite rectangular plates resting on Winkler–Pasternak elastic foundations; Thanh et al. [23]
studied the nonlinear dynamic response and vibration of FG-CNTRC shear deformable plates with
temperature-dependent material properties and surrounded by elastic foundations.

The FG-CNTRC shells are also of interest to researchers; however, the number of studies is still
limited. For example, the free vibration characteristics of embedded FG-CNTRC spherical shells were
studied [24] based on a numerical approach according to the first-order shear deformation shell theory
and by using differential operators. Ansari and colleague presented a nonlinear post-buckling analysis
of piezoelectric FG-CNTRC cylindrical shells subjected to combined electro-thermal loadings, axial
compression and lateral loads in [25] by applying the Ritz energy approach. Based on the theory of
elasticity, static analysis of FG-CNTRC cylindrical shell imbedded in piezoelectric sensor and actuator
layers under thermo-electro-mechanical load was carried out by Alibeigloo and Pasha Zanoosi [26].
In particular, up to this point, studies on conical and truncated conical FG-CNTRC include: according
to the adjacent equilibrium criterion, [27] dealt with the buckling of FG-CNTRC conical shells subjected
to pressure loading using first-order theory of shells and geometrical non-linearity of von-Karman and
Donnell kinematic assumptions; Duc et al. [28] studied the linear thermal and mechanical instability
of the FG-CNTRC truncated conical shells reinforced by CNT fibers and surrounded by elastic
foundations in a thermal environment, with the equilibrium and linearized stability equations for the
shells derived based on the classical shell theory; Mirzaei and Kiani [29] studied the thermal buckling
of FG-CNTRC conical shells with axially immovable edge supports subjected to uniform temperature
rise loading in. Hamilton’s principle and the differential quadrature method (DQM) were employed
to discretize the governing differential equations subjected to the related boundary conditions for
studying free vibration analysis of rotating FG-CNTRC truncated conical shells in [30] by Heydarpour
et al., and Reza and Jalal studied the buckling and vibration of FG-CNTRC conical shells under axial
loading [31]. Via the extended Hamilton principle based on the basis of Novozhilov nonlinear shell
theory and Green–Lagrange geometrical nonlinearity and using Fourier expansion and the HDQ
discretization, Mehri et al. studied the buckling and vibration of the FG-CNTRC truncated conical
shell simultaneously subjected to axial compression and external pressure in [32] and dealt with the
dynamic instability of a pressurized functionally graded carbon nanotube-reinforced truncated conical
shell subjected to yawed supersonic airflow in [33]. Additional investigations on FG-CNTRC structures
are also reported in the literature [34–43].

Truncated conical shells are one of the principal elements of structure in many technical fields.
For instance, they are used for aircraft, satellites, submarines, and water-borne ballistic missiles; in
civil engineering, they are frequently used in containment vessels in elevated water tanks. In the
open-source literature, there are several authors who have studied linear and nonlinear conical cones
and truncated cones made of different materials; the best-known author is Sofiyev, some of whose
investigations are reported in the literature [44–53].

Despite all the abovementioned studies, there has been no work on the structural responses of the
analysis of FG-CNTRC truncated conical shells resting on Winkler and Pasternak’s elastic foundations
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using the analytic method. Thus, this study is indispensable for understanding the structural responses
of FG-CNTRC truncated conical shells.

In the present work, by using the classical thin shell theory, an approximate solution, which was
proposed by Agamirov [54] and used by Sofiyev [55] for FGM truncated conical shells and Duc et al.
in [56] for FGM annular spherical shells, the authors tried to apply this form to solve problems related
to FG-CNTRC truncated conical shells. The object of the present investigation is to give analytical
solutions to the problem of the dynamic response of FG-CNTRC truncated conical shells resting on
elastic foundations.

2. Formulation of the Problem

Consider a thin FG-CNTRC truncated conical shells surrounded by elastic foundations, with a
thickness of shell h, and radii R1 < R2, length L and the semi-vertex angle of the cone γ. The meridional,
circumferential, and normal directions of the shell are denoted by S, θ and z, respectively. A schematic
of the shell with the assigned coordinate system and geometric characteristics is shown in Figure 1.
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2.1. Determination of the Elastic Modules of CNTRCs and FG-CNTRC

In the present study, the FG-CNTRC material is made of poly(methyl methacrylate), referred to as
PMMA, reinforced by (10,10) single-walled carbon nanotubes (SWCNT). The SWCNT reinforcement
is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction [11,12].
FG-V, FG-X, and FG-O CNTRC (Figure 2) are the functionally graded distribution of CNTs through the
thickness direction of the composite truncated conical shell.
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The elastic modules of the FG-CNTRC material are determined as follows [11]:

E11 = η1VCNTECNT
11 + VmEm,

η2
E22

= VCNT
ECNT

22
+ Vm

Em
,

η3
G12

= VCNT
GCNT

12
+ Vm

Gm
,

. (1)

In the above equations, ECNT
11 , ECNT

11 , GCNT
12 are the Young’s and shear modulus of the CNT,

respectively; Em, Gm are mechanical properties of the matrix, ηi(i = 1, 3) are the CNT efficiency
parameters and VCNT , Vm are the volume fractions of the CNT and the matrix, respectively. The volume
fractions of the CNT and the matrix are assumed to change according to the linear functions of the
shell thickness. Specifically, the volume fractions of the CNT are expressed as follows:

VCNT =



V∗CNT (UD)

V∗CNT
(
1 + 2 z

h
)

(FG−V)

2V∗CNT

(
1− 2 |z|h

)
(FG−O)

4V∗CNT
|z|
h (FG− X)

, Vm = 1−VCNT . (2)

The effective Poisson’s ratio and mass destiny may be written as [11,28]:

v12 = V∗CNTvCNT
12 + Vmvm,

ρ = VCNTρCNT + Vmρm,
(3)

where
(
νCNT

12 , ρCNT
)

and (νm, ρm) are Poisson’s ratio and mass destiny of the CNT and the
matrix, respectively.

The CNT efficiency parameters ηi(i = 1, 3) used in Equation (1) are estimated by matching
Young’s modulus E11 and E22 and the shear modulus G12 of FG-CNTRC material obtained
by the extended rule of mixture to molecular simulation results. For various volume fraction
of CNTs, these parameters are [11,28,33]: η1 = 0.137, η2 = 1.022, η3 = 0.715 for the case
of V∗CNT = 0.12(12%); η1 = 0.142, η2 = 1.626, η3 = 1.138 for the case of V∗CNT = 0.17(17%) and
η1 = 0.141, η2 = 1.585, η3 = 1.109 for the case of V∗CNT = 0.28(28%).

2.2. Analytical Modeling of Elastic Medium

The FG-CNTRC truncated conical shell is surrounded by an elastic medium. The
reaction–deflection relation of Pasternak foundation is given by [54,55]:

qe(S, ϕ) = Kww− Kp∆w, (4)

where ϕ = θ sin(γ), ∆w =
(

∂2w
∂S2 + 1

S
∂w
∂S + 1

S2
∂2w
∂ϕ2

)
, w is the deflection of the shell, Kw

(
N/m3

)
is the Winkler foundation modulus and Kp(N/m) is the shear layer foundation stiffness of the
Pasternak model.

2.3. Basic Formulation of the FG-CNTRC Truncated Conical Shells Surrounded by Elastic Foundations

The classical shell theory is used to obtain the motion and compatibility equations of thin
FG-CNTRC truncated conical shell in this study.

The strains across the shell thickness at a distance z from the mid-plane are:
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εS
εθ

γSθ

 =


ε0

S
ε0

θ

γ0
Sθ

+ z


kS
kθ

2kSθ

. (5)

The strains at the middle surface and the change of curvatures and twist are related to the
displacement components u, v, w in the S, ϕ, z coordinate directions, respectively [54,55,57]:

ε0
S = ∂u

∂S ,

ε0
θ = 1

S
∂v
∂ϕ + u

S −
w
S cot γ,

γ0
Sθ = 1

S
∂u
∂ϕ −

v
S + ∂v

∂S ,

kS = − ∂2w
∂S2 ,

kθ = − 1
S2

∂2w
∂ϕ2 − 1

S
∂w
∂S ,

kSθ = − 1
S

∂2w
∂S∂ϕ + 1

S2
∂w
∂ϕ ,

(6)

where ε0
S and ε0

θ are the normal strains in the curvilinear coordinate directions S and θ on the reference
surface respectively, γ0

Sθ is the shear strain at the middle surface of the shell, and kS, kθ , kSθ are the
changes of curvatures and twist.

The geometrical compatibility equation of the shells is written as [54,55]:

cot γ

S
∂2w
∂S2 −

1
S

∂2γ0
Sθ

∂S∂ϕ
− 1

S2
∂γ0

Sθ

∂ϕ
+

∂2ε0
θ

∂S2 +
1
S2

∂2ε0
S

∂ϕ2 +
2
S

∂ε0
θ

∂S
− 1

S
∂ε0

S
∂S

= 0. (7)

The stress—strain relations of the shell within the classical shell theory are given as: σS
σθ

σSθ

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66


 εS

εθ

γSθ

, (8)

where the quantities Qij, (ij = 11, 12, 22, 66) are functions of non-dimensional thickness coordinates
and are expressed as:

Q11 =
E11

1− ν12ν21
, Q22 =

E22

1− ν12ν21
, Q12 =

ν21E11

1− ν12ν21
, Q66 = G12.

The force and moment resultants of FG-CNTRC shells are given by:

(Ni, Mi) =

h/2∫
−h/2

σi(1, z)dz, (i = s, θ). (9)

Integrating the above stress–strain equations, the force and moment resultants of the shell are
expressed in terms of the stress components through the thickness as:

NS
Nθ

NSθ

MS
Mθ

MSθ


=



A11 A12 0 B11 B12 0
A12 A22 0 B12 B22 0
0 0 A66 0 0 2B66

B11 B12 0 D11 D12 0
B12 B22 0 D12 D22 0
0 0 B66 0 0 2D66





ε0
S

ε0
θ

γ0
Sθ

ks

kθ

kSθ


, (10)

where the coefficients Aij, Bij, Dij(i = 1÷ 2, 6; j = 1÷ 2, 6) are calculated by:

(
Aij, Bij, Dij

)
=

h/2∫
−h/2

Qij(1, z, z2)dz, (ij = 11, 12, 22, 66). (11)
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The motion equations of a truncated conical shell are based on the classical shell theory [54,55]:

S ∂NS
∂S +

∂NSθ
∂ϕ + NS − Nθ = 0,

∂Nθ
∂ϕ + S ∂NSθ

∂S + 2NSθ = 0,

∂2 MS
∂S2 + 2

S
∂MS
∂S + 2

S

(
∂2 MSθ
∂S∂ϕ + 1

S
∂MSθ

∂ϕ

)
+ 1

S2
∂2 Mθ
∂ϕ2 − 1

S
∂Mθ
∂S −

Nθ
S cot γ

+q− Kww + Kp∆w = I0
∂2w
∂t2 ,

(12)

where I0 is a parameter of density and is given by:

I0 =

h
2∫

− h
2

ρdz. (13)

The first two equations of the system of Equation (12) are identically satisfied by introducing an
Airy stress function F(s, θ, t) as follows [54,55,57]:

NS =
1
S2

∂2F
∂ϕ2 +

1
S

∂F
∂S

, Nθ =
∂2F
∂S2 , NSθ = − 1

S
∂2F

∂S∂ϕ
+

1
S2

∂F
∂ϕ

. (14)

The reverse relations are obtained from Equation (10); one can write:

ε0
S = A∗22

(
1

S2
∂2F
∂ϕ2 +

1
S

∂F
∂S

)
− A∗12

(
∂2F
∂S2

)
+ C11

∂2w
∂S2 + C∗21

(
1

S2
∂2w
∂ϕ2 + 1

S
∂w
∂S

)
,

ε0
θ = A∗11

(
∂2F
∂S2

)
− A∗12

(
1

S2
∂2F
∂ϕ2 +

1
S

∂F
∂S

)
+ C12

∂2w
∂S2 + C22

(
1

S2
∂2w
∂ϕ2 + 1

S
∂w
∂S

)
,

γ0
Sθ = −A∗66

(
1
S

∂2F
∂S∂ϕ −

1
s2

∂F
∂ϕ

)
+ 2C31

(
1
S

∂2w
∂S∂ϕ −

1
S2

∂w
∂ϕ

)
,

(15)

where:

A∗11 = A11
∆ , A∗22 = A22

∆ , A∗12 = A12
∆ , A∗66 = 1

A66
, ∆ = A11 A22 − A2

12,

C11 = B11 A∗22 − B12 A∗12, C12 = B12 A∗11 − B11 A∗12, C13 =
(

B11B∗11 + B12B∗21 − D11
)
,

C14 =
(

B11B∗12 + B12B∗22 − D12
)
, C21 = B12 A∗22 − B22 A∗12, C22 = B22 A∗11 − B12 A∗12,

C23 =
(

B12B∗11 + B22B∗21 − D11
)
, C24 =

(
B12B∗12 + B22B∗22 − D12

)
,

C31 = B66 A∗66, C32 = 2(B66B∗66 − D66).

Substituting Equation (15) into Equations (7) and (10), and the third equation of the system of
Equation (12), resulted in two new equations for F and w. For the simplicity of the mathematical
operations, the variable S = S1ex is included and F = F1e2x is taken into account instead of F.
After lengthy computations, the system of partial differential equations for F1 and w can be written in
the form [

L11 L12

L21 L22

][
F1

w

]
=

[
0
0

]
, (16)

with Lij given in Appendix A.
Equation (16) is the basic equation used to investigate the dynamic response of FG-CNTRC

truncated conical shells. It is in terms of two dependent unknowns, w and F1.



Materials 2017, 10, 1194 8 of 20

2.4. The Solution of Basic Equations

In this section, an analytical approach is used to investigate the dynamic response of shells resting
on an elastic foundation. The shell is assumed to be simply supported at both edges of the shell.

w = 0 at x = 0 and x = x0. (17)

The boundary conditions can be satisfied when the deflection w is approximated as
follows [54,55,58]:

w(x, θ, t) = f (t)ex sin(m1x) sin(m2 ϕ), (18)

in which m1 = mπ
x0

, m2 = n
sin γ , x0 = ln

(
S2
S1

)
, and f (t) is time dependent unknown function of the

deflection, m is the number of half waves along a generatrix, and n is the number of full waves along a
parallel circle.

By introducing Equation (18) into Equation (16) and solving the obtained equation by applying
the superposition principle, the stress function can be obtained as

F1 = f (t)

[
K1 sin(m1x) + K2 cos(m1x)
+K3e−x sin(m1x) + K4e−x cos(m1x)

]
sin(m2 ϕ), (19)

where the following definitions apply:

K1 = m1S1(a1m1+a2) cot γ

a2
2+a2

1
, K2 = −m1S1(a1−a2m1) cot γ

a2
2+a2

1
,

K3 = − a3a5−a4a6
a2

3+a2
4

, K4 = − a3a6+a4a5
a2

3+a2
4

,

in which the remaining constants ai(i = 1÷ 7) are given in Appendix B.
Applying the Galerkin method with the limits of integral is given by the formula:

x0∫
0

2π sin γ∫
0

[L11F1 + L12w]ex sin(m1x) sin(m2 ϕ)dϕdx =0. (20)

After substituting Equations (18) and (19) into Equation (16) and applying the Galerkin method
as shown in Equation (20), we obtain the following equation:

M5 I0
d2 f (t)

dt2 +
(

M1 + M2Kw + M3Kp + M4
)

f (t) = q, (21)

where the constants Mi(i = 1÷ 5) are given in Appendix C.

2.5. Vibration Analysis

Assume that a FG-CNTRC truncated conical shell is acted on by a uniformly external pressure
load q = Q sin Ωt.

Equation (21) is used to determine the dynamic response and vibration of FG-CNTRCs truncated
conical shells under uniform external pressure. The dynamic response of the truncated conical shells
can be gained by solving Equation (21), combined with the initial conditions f (0) = 0, d f (0)

dt = 0, and
using the Runge–Kutta method.

The linear free vibration for FG-CNRTC truncated conical shells without load form Equation (21)
is obtained

d2 f (t)
dt2 +

M1 + M2Kw + M3Kp + M4

M5 I0
f (t) = 0. (22)
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The fundamental frequency of natural vibration of FG-CNRTC truncated conical shells can be
expressed by:

ωF =

√
M1 + M2Kw + M3Kp + M4

M5 I0
. (23)

The non-dimensional frequency of FG-CNRTC truncated conical shells is:

ωNF = R1ωNF

√
(1− v2

m)ρm

Em
. (24)

3. Numerical Results and Discussion

3.1. Validation

In order to validate the reliability of the method used in the paper, a comparison of the
non-dimensional frequency is made with the results of other studies [59,60].

Table 1 shows the comparison of the non-dimensional frequency of the isotropic truncated

conical shells with the same geometrical parameters Ω = ω

√
ρ(1−ν2)

E , R2
h = 100, L sin γ

R2
= 0.25, ν =

0.3, h = 4 mm, E = 70 GPa, ρ = 2710 Kg
m3 .

In this table, the present results are compared with those of Li et al. [59] showing the calculations
of natural frequencies and the forced vibration responses of conical shells using the Rayleigh–Ritz
method. Lam and Hua presented the influence of boundary conditions on the frequency characteristics
of a rotating truncated circular conical shell [60]. From this table, as can be seen, a good agreement is
obtained in this comparison. A similar comparison is shown in [33].

Table 1. Comparisons of non-dimensional frequency parameter of the isotropic truncated conical shells.

γ n 2 3 4 5 6

30
◦

Li et al. [59] 0.8431 0.7416 0.6419 0.5590 0.5008

Lam and Hua [60] 0.8429 0.7376 0.6362 0.5528 0.4950

Present 0.8700 0.7934 0.6831 0.5491 0.3976

45
◦

Li et al. [59] 0.7642 0.7211 0.6747 0.6336 0.6049

Lam and Hua [60] 0.7655 0.7212 0.6739 0.6323 0.6035

Present 0.7205 0.7023 0.6689 0.6149 0.5350

3.2. The Natural Frequency and Dynamic Response

The effects of CNT volume fraction, variously distributed types, and small radius to thickness
ratio (R1/h) on the non-dimensional frequency of the FG-CNTRC truncated conical shells are shown
in Table 2 with the geometrical parameters L/R1 = 2, γ = 30

◦
. As can be seen, the value of the

non-dimensional frequency increases when the value of V∗CNT increases and the non-dimensional
frequency decreases when the value ratio R1/h increases. This is the case because when ratio R1/h
increases, the truncated conical shell becomes thinner. In the case of variously distributed types of the
CNTRC truncated conical shell, the non-dimensional frequency of the FG-X and FG-O types of shell
are the highest and the lowest, respectively.

Table 3 shows the influence of semi-vertex angle γ and various types of CNTRC (FG and uniform)
on the non-dimensional frequency of the truncated conical shells. It is clear that the value of the
non-dimensional frequency decreases when the values of semi-vertex angle γ increase. The value of
the non-dimensional frequency of the uniform distribution (UD) of CNTRC is consistently higher than
one of the FG-CNTRCs (FG-O and FG-V). However, the value of the non-dimensional frequency of
FG-X type is still highest, as shown in Table 2.
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Table 2. Influences of CNT volume fraction, various types of FG-CNTRC and ratio R1/h on the
non-dimensional frequency of the FG-CNTRC truncated conical shells.

R1/h
V∗CNT = 0.12 V∗CNT = 0.17 V∗CNT = 0.28

FG-O FG-V FG-X FG-O FG-V FG-X FG-O FG-V FG-X

50 1.039 1.236 1.905 1.214 1.455 2.275 1.586 1.878 2.905
60 0.816 0.989 1.561 0.940 1.153 1.859 1.260 1.513 2.387
70 0.646 0.804 1.310 0.726 0.925 1.555 1.013 1.242 2.012
80 0.505 0.656 1.118 0.544 0.740 1.320 0.814 1.029 1.725
100 0.255 0.421 0.838 0.154 0.430 0.974 0.485 0.699 1.310

Table 3. Influences of semi-vertex angle γ on the non-dimensional frequency of the CNTRC truncated
conical shells.

γ UD FG-O FG-V FG-X

15◦ 1.3672 0.8341 1.0526 1.7414
30◦ 1.2463 0.8160 0.9889 1.5606
45◦ 1.1507 0.7866 0.9311 1.4238
60◦ 1.0898 0.7658 0.8935 1.3371
75◦ 1.0567 0.7544 0.8731 1.2900

Figures 3 and 4 illustrate the influence of CNT volume fraction of fibers on the dynamic
response of the CNTRC truncated conical shells. Three sets of CNT volume fraction are considered
V∗CNT = (12%, 17%, 28%). From these figures, as can be observed, the value of the shells’ amplitude
increases when the CNT volume fraction decreases and vice versa. The CNT volume fraction increase
makes the FG-CNTRC truncated conical shells have a better load capacity because the elastic modulus
of the CNT is significantly stronger than the elastic modulus of the matrix. With the same geometrical
parameters and the value of time, the amplitude of the uniform distribution CNTRC truncated conical
shell (Figure 3) is considerably lower than the amplitude of the FG-V CNTRC truncated conical shell
(Figure 4).Materials 2017, 10, 1194  12 of 22 
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Figure 4. Effect of volume fraction of fibers on the dynamic response of the FG-CNTRC truncated
conical shells.

Figure 5 presents the influence of semi-vertex angle γ on the dynamic response of the FG-CNTRC
truncated conical shells. Three different semi-vertex angles are considered. Increasing the value
of the semi-vertex angles makes the value of the amplitude of the FG-CNTRC truncated conical
shells increase.Materials 2017, 10, 1194  13 of 22 
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Figure 5. Effect of semi-vertex angle γ on the dynamic response of the FG-CNTRC truncated
conical shells.

Figure 6 shows the influence of ratio L/R1 = (1.5, 2, 2.5) on the dynamic response of the
FG-CNTRC truncated conical shells. From Figure 6, it is noticeable that when L/R1 increases, the
value of the shells’ amplitude increases and vice versa.
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The effect of ratio R1/h = (50, 60, 70) on the dynamic response of the FG-CNTRC truncated
conical shells is shown in Figure 7. Clearly, the higher the ratio R1/h, the higher the amplitude
of the truncated conical shells. It is also understood that R1/h increase makes the FG-CNTRC
truncated conical shells thinner which results in the lower the load capacity of the FG-CNTRC truncated
conical shells.Materials 2017, 10, 1194  14 of 22 
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Figure 7. Effect of ratio R1/h on the dynamic response of the FG-CNTRC truncated conical shells.

Figures 8 and 9 show the effects of modulus Kw, Kp of the linear Winkler and Pasternak
foundations, respectively. It is clear from the figures that the amplitude of the FG-CNTRC truncated
conical shells decreases when the modulus of the elastic foundations increases. In other words, the
elastic foundations have a positive effect on the reduction of the truncated conical shells’ amplitude.
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In conclusion, the load capacity is better when the FG-CNTRC truncated conical shells resting on
elastic foundations.
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Figure 9. Effect of the Pasternak modulus parameter Kp on the dynamic response of the FG-CNTRC
truncated conical shells.

Figure 10 presents the effect of excitation force amplitude Q = (3000, 6000, 9000) on the dynamic
response of the FG-CNTRC shells. It can be seen that an increase in the excitation force amplitude
results in the increase of the FG-CNTRC truncated conical shells’ amplitude.

Figure 11 illustrates the dynamic response of CNTRC truncated conical shells with three types of
CNT reinforcements (FG-V, UD, and FG-X). It is noticeable that the various types of CNT distribution
contribute to dramatic changes in amplitude. As we expected, the value amplitude of the FG-X type of
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CNT distribution is the smallest so the load capacity of the FG-X CNTRC truncated conical shells is
the highest.
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Figure 11. The dynamic response of CNTRC truncated conical shells with various types of
CNT reinforcements.

4. Conclusions

This paper studies the dynamic response and vibration of FG-CNTRC truncated conical shells
resting on elastic foundations based on the classical shell theory. The following conclusions are
obtained from this study:

• The value of the non-dimensional frequency negligible decreases when the values of semi-vertex
angle γ increase.
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• The value of the amplitude and non-dimensional frequency of the shells are significantly affected
by various types of CNT distributions. In the case of the FG-X type of CNT distribution, the
amplitude value is the smallest and the non-dimensional frequency is the highest.

• The results obtained also demonstrate that the t− f time–deflection curves are affected greatly by
variations in parameters such as ratio R1/h, length-to-radius ratio L/R1, and amplitude Q.

• The elastic foundations strongly affect the dynamic response of FG-CNTRC truncated conical
shells. The elastic foundations have positive effects on the amplitudes of FG-CNTRC truncated
conical shells.

• The stress function, Galerkin method, Runge–Kutta method, and analytical approach are used to
assess the dynamic responses of FG-CNTRC truncated conical shells resting on elastic foundations.
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research output.
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Appendix A

L11(F1) = C12e2x ∂4F1
∂x4 + (C11 + 4C12 − C22)e2x ∂3F1

∂x3

+(5C12 + 3(C11 − C22)− C21)e2x ∂2F1
∂x2 + (2C12 + 2(C11 − C22)− 2C21)e2x ∂F1

∂x

+(C11 + C22 − 2C31)e2x ∂4F1
∂x2∂ϕ2 + (C11 + 3C22 − 4C31)e2x ∂3F1

∂x∂ϕ2

+(2C22 − 2C31 + 2C21)e2x ∂2F1
∂ϕ2 + C21e2x ∂4F1

∂ϕ4 − s1e3x
(

∂2F1
∂x2 + 3 ∂F1

∂x + 2F1

)
cot γ,

L12(w) = C13
∂4w
∂x4 + (−4C13 − C23 + C14)

∂3w
∂x3 + (5C13 + 3(C23 − C14)− C24)

∂2w
∂x2

+(−2C13 + 2(C14 − C23) + 2C24)
∂w
∂x + (−3C14 − (4C32 + C23))

∂3w
∂x∂ϕ2

+(C14 + 2C32 + C23)
∂4w

∂x2∂ϕ2 + (2C14 − 2C32 + 2C24)
(

∂2w
∂ϕ2

)
+C24

(
∂4w
∂ϕ4

)
+ s4

1e4xq− s4
1e4xKww + s2

1e2xKp

(
∂2w
∂x2 + ∂2w

∂ϕ2

)
− I0s4

1e4x ∂2w
∂t2 ,

L21(F1) = A∗11e2x ∂4F1
∂x4 + 4A∗11e2x ∂3F1

∂x3 +
(
5A∗11 − A∗22

)
e2x ∂2F1

∂x2

+
(
2A∗11 − 2A∗22

)
e2x ∂F1

∂x +
(
2A∗66 − 4A∗12

)
e2x ∂3F1

∂x∂ϕ2

+
(
2A∗22 − 2A∗12 + A∗66

)
e2x ∂2F1

∂ϕ2 + A∗22e2x ∂4F1
∂ϕ4 ,

L22(w) = C12
∂4w
∂x4 + (C22 − C11 − 4C12)

∂3w
∂x3 + (5C12 − 3C22 + 3C11 − C21)

∂2w
∂x2

+(−2C12 + 2C22 − 2C11 + 2C21)
∂w
∂x + (−3C22 + 4C31 − C11)

∂3w
∂x∂ϕ2

+(C11 + C22 − 2C31)
∂4w

∂x2∂ϕ2 + (2C22 + 2C21 − 2C31)
∂2w
∂ϕ2 + C21

∂4w
∂ϕ4 + s1ex cot γ

(
∂2w
∂x2 − ∂w

∂x

)
.
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Appendix B

a1 = −m2
2 A∗66 + A∗11m4

1 + A∗22m2
1 + 2A∗12m2

2 − 5A∗11m2
1 − 2A∗22m2

2 + A∗22m4
2,

a2 = 2m1m2
2 A∗66 − 4A∗12m1m2

2 + A∗22m1 − 2A∗11m1 + 4A∗11m3
1,

a3 = A∗22 + A∗11m2
1 + A∗66m2

2 − 2A∗12m2
2 + A∗12m2

2 + A∗22m2
1 + A∗22m4

2 − 2A∗22m2
2 + A∗11m4

1,

a4 = 2m1m2
2 A∗66 − 4A∗12m1m2

2,

a5 =

 C22m2
1m2

2 + C11m2
1m2

2 − 2C31m2
1m2

2 + C21 + C12 + C12m4
1 + 7C12m2

1 + C21m2
1

+8C31m2
2 − 6C12m2

1 − 2C21m2
2

,

a6 =

 8C31m1m2
2 − C11m1m2

2 − 3C12m1 + C22m1m2
2 + 4C12m3

1 + C11m3
1 + C11m1

−4C12m3
1 − C22m3

1 − C22m1 + 4C12m1

.

Appendix C

M1 = 1
24

π2m



96b6x5
0 sin(γ) + 216b8x5

0 sin(γ) + 12b1e4x0 π5m5S1 cos(γ)

+16b3e3x0 π5m5S1 cos(γ) + 64b4e3x0 πmx4
0 sin(γ) + 80b4e3x0 π3m3x2

0 sin(γ)

−150b8e2x0 π2m2x3
0 sin(γ)− 24b8e2x0 π4m4x0 sin(γ) + 150b7e2x0 π3m3x2

0 sin(γ)

+216b7e2x0 πmx4
0 sin(γ)− 24b6e3x0 π4m4x0 sin(γ)− 120b6e3x0 π2m2x3

0 sin(γ)

+24b5π4m4S1x0 cos(γ) + 120b5π2m2S1x3
0 cos(γ)− 39b1π3m3S1x2

0 cos(γ)

−27b1πmS1x4
0 cos(γ) + 24b2π4m4S1x0 cos(γ) + 78b2π2m2S1x3

0 cos(γ)

−80b3π3m3S1x2
0 cos(γ)− 64b3πmS1x4

0 cos(γ) + 27b1e4x0 πmS1x4
0 cos(γ)

−24e4x0 cos(γ)π4m4S1b2x0 + 39e4x0 cos(γ)π3m3S1b2x2
0 − 78e4x0 cos(γ)π2m2S1b2x3

0

−120e3x0 cos(γ)π2m2S1b5x3
0 + 64e3x0 cos(γ)πmS1b3x4

0 − 24e3x0 cos(γ)π4m4S1b5x0

+80e3x0 cos(γ)π3m3S1b3x2
0 − 54e4x0 cos(γ)S1b2x5

0 − 96e3x0 cos(γ)S1b5x5
0

+24e2x0 π5m5b7 sin(γ) + 16e3x0 π5m5b4 sin(γ)− 12π5m5b1S1 cos(γ)

−16π5m5b3S1 cos(γ)− 216πmb7x4
0 sin(γ) + 24π4m4b8x0 sin(γ)

+120π2m2b6x3
0 sin(γ)− 150π3m3b7x2

0 sin(γ)− 80π3m3b4x2
0 sin(γ)

−64πmb4x4
0 sin(γ) + 24π4m4b6x0 sin(γ) + 150π2m2b8x3

0 sin(γ)

−16π5m5b4 sin(γ)− 24π5m5b7 sin(γ)− 216e2x0 b8x5
0 sin(γ)

−96e3x0 b6x5
0 sin(γ) + 96b5S1x5

0 cos(γ) + 54b2S1x5
0 cos(γ)


(4π2m2+9x2

0)(π2m2+x2
0)(π2m2+4x2

0)
,

M2 = − 1
12

S4
1m2π3 sin(γ)

(
e6x0 − 1

)
π2m2 + 9x2

0
,

M3 = −
m2π3S2

1

(
π2 sin(γ)e4x0 − π2 sin2(γ)m2 + 3e4x0 sin2(γ)x2

0 + e4x0 n2x2
0

−3 sin(γ)x2
0 − n2x2

0

)
8 sin(γ)

(
π2m2 + 4x2

0
)
x2

0
,

M4 =
1
4

sin(γ)mπ2(e2x0 πmb9 − e2x0 b10x0 − πmb9 + b10x0
)

x2
0 + π2m2

,

M5 = − 1
12

S4
1πm2 sin(γ)

(
e6x0 − 1

)
m2π2 + 9x2

0
,
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b1 = K1m2
1 + 3K2m1 − 2K1, b2 = K2m2

1 − K1m1 − K2, b3 = K3m2
1 + K4m1,

b4 =


C11K1m2

1m2
2 + C12K1m4

1 + C22K1m2
1m2

2 − 2C31K1m2
1m2

2 + C11K2m3
1 + C11K2m1m2

1
+4C12K2m3

1 − C22K2m3
1 + 3C22K2m1m2

2 − 4C31K2m1m2
2 − 3C11K1m2

1 − 5C12K1m2
1

+C21K1m2
1 − 2C21K1m2

2 + 3C22K1m2
1 − 2C22K1m2

2 + 2C31K1m2
2 − 2C11K2m1

−2C12K2m1 + 2C21K2m1 + 2C22K2m1

,

b5 = K4m2
1 − K3m1,

b6 =


C11K2m2

1m2
2 + C12K2m4

1 + C21K2m4
2 + C22K2m2

1m2
2 − C31K2m2

1m2
2 − C11K1m3

1
−C11K1m1m2

2 − 4C12K2m3
1 + C22K1m3

1 − 3C22K1m1m2
2 + 4C31K1m1m2

2 − 3C11K2m2
1

−5C12K2m2
1 − 2C12K2m2

2 + 3C22K2m2
1 − 2C22K2m2

2 + 2C31K2m2
2 + 2C11K1m1

+2C12K1m1 − 2C21K1m1 − 2C22K1m1

,

b7 =

 C11K3m2
1m2

2 + K3C12m4
1 + K3C21m4

2 + K3C22m2
1m2

2 − 2K3C31m2
1m2

2 + K4C11m1m2
2

−K4C11m1m2
2 − K4C22m3

1 + K4C22m1m2
2 + K3C12m2

1 + K3C21m2
1 − 2K3C21m2

2
+K4C11m1 − K4C22m1 + K3C21

,

b8 =

 C11K4m2
1m2

2 + K4C12m4
1 + K4C21m4

2 + K4C22m2
1m2

2 − 2K4C31m2
1m2

2 − K3C11m3
1

+K3C11m1m2
2 + K3C22m3

1 − K3C22m1m2
2 + K4C12m2

1 + K4C21m2
1 − 2K4C21m2

2
−K3C11m1 + K3C22m1 + K4C21

,

b9 = −C24m4
2 +

(
(2C32 − C14 − C23)m2

1 + 2C24

)
m2

2 − C13m4
1 + (−C13 − C24)m2

1 − C24,

b10 = (C23 − C14)m1m2
2 + (C14 − C23)m3

1 + (C14 − C23)m1.
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