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A B S T R A C T

Elliptical cylindrical shell is one of shells with special shape. Up to date, there is no publication on vibration and
dynamic of functionally graded elliptical cylindrical shells. Therefore, the purpose of the present study is to
investigate the nonlinear dynamic response and vibration of imperfect eccentrically stiffness functionally graded
elliptical cylindrical shells on elastic foundations using both the classical shell theory (CST) and Airy stress
functions method with motion equations using Volmir's assumption. The material properties are assumed to be
temperature - dependent and graded in the thickness direction according to a Sigmoid power law distribution (S-
FGM). The S-FGM elliptical cylindrical shell with metal-ceramic-metal layers are reinforced by outside metal
stiffeners. Both the S-FGM elliptical shell and metal stiffeners are assumed to be in thermal environment and
both of them are deformed under temperature simultaneously. Two cases of thermal loading (uniform
temperature rise and temperature variation through thickness) are considered. The nonlinear motion equations
are solved by Galerkin method and Runge-Kutta method (nonlinear dynamic response, natural frequencies). The
effects of geometrical parameters, material properties, elastic foundations Winkler and Pasternak, the nonlinear
dynamic analysis and nonlinear vibration of the elliptical cylindrical shells are studied. The some obtained
results are validated by comparing with those in the literature.

1. Introduction

Cylindrical shells are frequently used in the manufacturing of
aircrafts, missiles, boilers, automobiles, pipelines and some submarine
structures. Furthermore, because of the main components of metal and
ceramic with physical properties which are changed with the change in
thickness, FGM structures have a very high mechanical strength and
heat resistance, therefore, vibration and dynamic analysis of FGM
cylindrical shells are one of the major issues that many researchers
are especially interested in.

Sheng and Wang [1] studied the thermal vibration buckling and
dynamic stability of functionally graded cylindrical shells embedded in
an elastic medium. Duc considered nonlinear thermal dynamic analysis
of eccentrically stiffened S-FGM circular cylindrical shells [2] and
eccentrically stiffened piezoelectric S-FGM circular cylindrical shells
[3] surrounded on elastic foundations using the higher-order shear
deformation shell theory. Ng et al. [4] investigated the dynamic
stability analysis of FGM cylindrical shells under periodic axial loading.
Bahadori and Najafizadeh [5] presented the free vibration analysis of

two-dimensional functionally graded axisymmetric cylindrical shell on
Winkler–Pasternak elastic foundation by first-order shear deformation
theory and using Navier-differential quadrature solution methods. Bich
and Nguyen [6] proposed the nonlinear vibration of functionally
graded circular cylindrical shells based on improved Donnell equations.
Shariyat [7] investigated the dynamic buckling of suddenly loaded
imperfect hybrid FGM cylindrical shells with temperature-dependent
material properties under thermo-electro-mechanical loads. Du et al.
[8] considered the nonlinear forced vibration of functionally graded
cylindrical thin shells. Sofiyev and Kuruoglu [9,10] investigated the
buckling and vibration of shear deformable functionally graded ortho-
tropic cylindrical shells under external pressures and the dynamic
instability of three-layered cylindrical shells containing an FGM inter-
layer. Duc and Thang [11] studied the nonlinear response of imperfect
eccentrically stiffened ceramic-metal-ceramic FGM thin circular cylind-
rical shells surrounded on elastic foundations and subjected to axial
compression. Song et al. [12] investigated the active vibration control
of CNT-reinforced composite cylindrical shells via piezoelectric
patches. Shen [13] studied the large amplitude vibration behavior of
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a shear deformable FGM cylindrical shell of finite length embedded in a
large outer elastic medium and in thermal environments. Kandasamy
et al. [14] considered the numerical study on the free vibration and
thermal buckling behavior of moderately thick functionally graded
structures in thermal environments. Sepiani et al. [15] investigated the
free vibration and buckling of a two-layered cylindrical shell made of
inner functionally graded and outer isotropic elastic layer, subjected to
combined static and periodic axial forces. Kadoli and Ganesan [16]
presented the buckling and free vibration analysis of functionally
graded cylindrical shells subjected to a temperature-specified boundary
condition. Sepiani et al. [17] studied the vibration and buckling
analysis of two-layered functionally graded cylindrical shell, consider-
ing the effects of transverse shear and rotary inertia. Jafari et al. [18]
proposed the nonlinear vibration of functionally graded cylindrical
shells embedded with a piezoelectric layer. Mehralian et al. [19]
studied the size-dependent formulation of shear deformable function-
ally graded piezoelectric cylindrical nano shells is developed based on a
new modified couple stress theory. In [20], Duc et al. also considered
the nonlinear dynamic analysis of Sigmoid functionally graded circular
cylindrical shells on elastic foundations using third order shear
deformation theory in thermal environments.

Elliptical cylindrical shell which is one of special cylindrical shell
forms also attracts the researchers’ attention. Yue et al. [21] studied the
elliptical crack normal to functionally graded interface of bonded
solids. Ganapathi et al. [22] investigated the free flexural vibration
behavior of laminated angle-ply elliptical cylindrical shells. Tornabene
et al. studied free vibrations of composite oval and elliptic cylinders by
the generalized differential quadrature method in [23] and presented
dynamic analysis of thick and thin elliptic shell structures made of
laminated composite materials in [24]. Khalifa. [25] considered the
effects of non-uniform Winkler foundation and non-homogeneity on the
free vibration of an orthotropic elliptical cylindrical shell. Gholizadeh
et al. [26] investigated the non singular material parameters for
arbitrarily elliptical-cylindrical invisibility cloaks. Li el al. [27] studied
the prediction of the elastic critical load of submerged elliptical
cylindrical shell based on the vibro-acoustic model. Shariati and Rokhi
[28] proposed the numerical and experimental investigations on
buckling of steel cylindrical shells with elliptical cutout subject to axial
compression. Ahmed [29] investigated the buckling behavior of a
radially loaded corrugated orthotropic thin-elliptic cylindrical shell
on an elastic foundation.

However, there are very few publications about buckling and post
buckling as well as vibration of elliptical plates and elliptical cylindrical
shells made of FGM materials. In 2005, Patel et al. [30] presented the
free vibration characteristics of functionally graded elliptical cylindrical
shells using finite element procedure and the higher-order theory
including variable transverse displacement through the thickness. In
2013, Zhang [31] proposed the nonlinear bending analysis of FGM
elliptical plates resting on two-parameter elastic foundations. Recently,
Duc et al. [32] presented on the nonlinear buckling and postbuckling of
an eccentrically stiffness S-FGM elliptical cylindrical shells in thermal
environment. And according to the authors' knowledge, no paper on
dynamic analysis for FGM elliptical cylindrical shells is published so far.

Therefore, this paper set a research objective of researching the
nonlinear dynamic response and vibration of an imperfect eccentrically
stiffened functionally graded elliptical cylindrical shells in thermal
environment. The material properties are assumed to be temperature -
dependent and graded in the thickness direction according to a Sigmoid
power law distribution in terms of the volume fractions of constituents
with metal - ceramic - metal layers (ES-S-FGM shells). One surface of
the ES-S-FGM shells is reinforced by outside metal stiffeners. The S-
FGM elliptical cylindrical shells are reinforced by longitudinal and
transversal stiffeners and surrounded by Winkler and Pasternak type
elastic foundations. Both properties of S-FM elliptical cylindrical shells
and stiffeners are assumed to be temperature dependent and deformed
under temperature simultaneously. The governing equations are estab-

lished based on CST theory with motion equations using Volmir's
assumptions. The time-amplitude response curves of the cylindrical
shell are obtained and the effects of excitation force, elastic founda-
tions, stiffeners, geometrical parameters, material properties, imperfec-
tions, mechanical and thermal loads on the vibration and nonlinear
dynamic response of ES-S-FGM shells are examined (Fig. 1).

2. Modeling of the ES-S-FGM elliptical cylindrical shells
surrounded on elastic foundations

Consider an eccentrically stiffened moderately thin elliptical cylind-
rical shells with metal-ceramic-metal layers (ES-S-FGM elliptical cy-
lindrical shells). The length, mean radius and total thickness of the shell
are L, R and h, respectively. The outside of the ellipse is eccentrically
stiffeners in both directions (where s s,x y are spacing of the stringer and
ring stiffeners, respectively; A A,x y are cross-section areas of stiffeners;
z z,x y are eccentrically of stiffeners with respect to the middle surface
the shell; d h,x x and d h,y y are width and height of the stringer and
ring stiffened, respectively) and the inner is placed on the elastic
foundations. The shell is defined in a coordinate system x θ z( , , ) where
x and θ are in the axial and circumferential directions of the shell,
respectively, and z is perpendicular to the surface and points outwards

h z h(− /2 ≤ ≤ /2).

2.1. Material properties of the ES-S-FGM shells

Because FGM are typically made from a mixture of metal and
ceramic, their material properties are related to both the material
properties and the continual distribution of the constituent materials
[33–35,37]. Meanwhile, the material properties of both metal and
ceramic are related to environmental temperature. Thus, FGM material
properties vary smoothly through their thickness and exhibit tempera-
ture dependency.

The material properties of the constituent materials Pr (where the
subscripts r" " will be replaced with c" " or m" " corresponding to ceramic
or metal, respectively) are usually expressed as the following nonlinear
function of temperature T [32,38]:

P T c c T c T c T c T( ) = ( + 1 + + + ),r 0 −1
−1

1 2
2

3
3 (1)

in which T T ΔT= + ,0 ΔT is the temperature increment of the environ-
ment containing the shell and T K= 3000 (room temperature), and
c c c c c, , , ,0 −1 1 2 3 are coefficients characterizing of the constituent
materials with temperature-dependent given in Table 1.

The material properties of FGM such as the elastic modulus E , the
mass density ρ and the thermal expansion coefficient α are related not
only to the material properties of the constituent materials, but also to
their volume fraction Vc and Vm:

P z T P T V z P T V z V V( , ) = ( ) ( ) + ( ) ( ), + = 1c c m m c m (2)

in which Pc and Pm denotes a material property of ceramic and metal.
For an S-FGM shell made of two different constituent materials with

metal-ceramic-metal layers, the volume fractions V z( )c and V z( )m can be
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Fig. 1. Geometry and the coordinate system of the functionally graded elliptical
cylindrical shells with metal-ceramic-metal layers reinforced by (ES-S-FGM).
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written in the Sigmoid power law distribution (S-FGM) as [11,20].
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where N is power law exponent satisfying N0 ≤ < ∞. Using Eqs. (2)
and (3), the material properties of S-FGM are written as
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Accordingly, the effective Young's modulus E z T( , ), thermal expan-
sion coefficient α z T( , ), the mass density ρ z T( , ) and coefficient of
thermal conduction K of S-FGM structures can be written in the similar
form of Eq. (4).
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where E z T E z T E z T( , ) = ( , ) − ( , )cm c m , α z T α z T α z T( , ) = ( , ) − ( , )cm c m

ρ z T ρ z T ρ z T( , ) = ( , ) − ( , )cm c m and K z T K z T K z T( , ) = ( , ) − ( , ).cm c m The
Poisson's ratio v is assumed constant, v z T v( , ) = .

2.2. Elastic foundations

The ES-S-FGM elliptical cylindrical shells surrounded on elastic
foundations (Fig. 2). The reaction–deflection relation of Pasternak
foundation is given by:

q k w k w= − ∇e 1 2
2 (6)

where ∇ = +
x y

2 ∂
∂

∂
∂

2

2

2

2 , w is the deflection of the FGM shell, k1 and k2 are
Winkler foundation stiffness and shear layer stiffness of Pasternak
foundation, respectively.

In Fig. 2, R - the principal radii of curvature in the circumferential
direction, which depends on the type of cross-section. For elliptical
cross-section, R can be described as [30,32]:

R b R μ θ= ( / )(1 + cos 2 )2
0 0

−3/2 (7)

in which both R0 and μ0 as follows:

R a b μ a b a b= [( + )/2] , = [( − )/( + )];0
2 2 1

2 0
2 2 2 2 (8)

where a b, are the lengths of semi-major and semi-minor axes of
elliptical cross-section.

3. Governing equations and boundary conditions

3.1. Governing equation for ES-S-FGM shells

In this study, the CST is used to establish the governing equations
and determine the nonlinear response of the ES-S-FGM thin elliptical
cylindrical shells, taking into account thermal deformation of both the
shells as well as stiffeners.

For the elliptical cylindrical shells, the nonlinear strain-displace-
ment relations on the middle surface using CST are [37–40]:
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where ε ε,x y
0 0 and γxy

0 are the strain components on the reference surface.
u x y t v x y t( , , ), ( , , ) and w x y t( , , ) are the displacements along x y, and z
axes, respectively.

Hooke's law for the ES-S-FGM elliptical cylindrical shells can be
defined as [11,20,32,37]:

σ K z T ε vε v αΔT
σ K z T ε vε v αΔT

σ K z T v γ

= ( , ){ + − (1 + ) },
= ( , ){ + − (1 + ) }

= 1
2

( , )(1 − ) ,

x x y

y y x

xy xy (10)

where K z T E z T v( , ) = ( , )/(1 − )2

In order to provide continuity between the shell (with metal-
ceramic-metal layers) and stiffeners, suppose that stiffeners are made
of full metal. For stiffeners in thermal environments with temperature-
dependent properties, we have proposed its form be adopted from
[11,20,32,37], as follows
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in which, E E v v α α= , = , =s
m

s
m

s
m, are Young's modulus,

Poisson's ratio and thermal expansion coefficient of the stiffeners,
respectively.

The force and moment resultants of the ES-S-FGM elliptical
cylindrical shells are shown in a new form as:

Table 1
Temperature – dependent coefficients of the silicon nitride and stainless steel.

Material Property c0 c−1 c1 c2 c3

Si N3 4 (Ceramic) E Pa( ) 384.43 × 109 0 − 3.07 × 10−4 2.16 × 10−7 − 8.946 × 10−11

ρ kg m( / )3 2370 0 0 0 0

α K( )−1 5.87 × 10−6 0 9.10 × 10−4 0 0
k W mK( / ) 13.723 0 0 0 0

SUS304 (Metal) E Pa( ) 201.04 × 109 0 3.08 × 10−4 − 6.534 × 10−7 0

ρ kg m( / )3 8166 0 0 0 0

α K( )−1 12.33 × 10−6 0 8.09 × 10−4 0 0
k W mK( / ) 15.379 0 0 0 0
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Substitution Eq. (9) into Eqs. (10), (11) and results into (12) yields
the constitutive relations as:
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where A B D i j, , ( = 1 ÷ 6, = 1 ÷ 6)ij ij ij are given in Appendix A.
After the thermal deformation process, the geometric shapes of

stiffeners which can be determined as [11,20,32,37]:
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The nonlinear motion equations of the ES-S-FGM elliptical cylind-
rical shells surrounded on elastic foundations using CST are [37–40]:
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where p Pa( ) is an external pressure uniformly distributed on the
surface of the shell.
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The Airy stress function f x y t( , , ) is introduced as:
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The reverse relations are obtained from Eq. (13a), one can write:
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The nonlinear motion equation of the ES-S-FGM using the Volmir's
assumption [36,37]: u w v w ρ ρ< < , < < , → 0, → 0u

t
v

t1
∂
∂ 1

∂
∂

2

2

2

2 leads to:

N
x

N
y

∂
∂

+
∂
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= 0,x xy

(19a)

Fig. 2. Geometry and coordinate system of the ES-S-FGM elliptical cylindrical shells surrounded on elastic foundations.
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The deformation compatibility equation for an imperfect ES-S-FGM
can be written as [37,38]:
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(20)

in which the imperfection function w x y*( , ) denotes an initial small
imperfection of the ES-S- FGM shells.

Substitution Eq. (20) into Eq. (13a) result into Eq. (19c) leads to:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

B f
x

B f
y

B B B f
x y

C w
x

C w
y

R
f

x
f

y
w

x
w
x

C C C w
x y

f
x y

w
x y

w
x y

f
x

w
y

w
y

p k k w ρ w
t

* ∂
∂

+ * ∂
∂

+ ( * + * − 2 *) ∂
∂ ∂

− *∂
∂

− * ∂
∂

+ 1 ∂
∂

+ ∂
∂

∂
∂

+ ∂ *

∂
− ( * + * + 4 *) ∂

∂ ∂

−2 ∂
∂ ∂

∂
∂ ∂

+ ∂ *
∂ ∂

+ ∂
∂

∂
∂

+ ∂ *

∂

+ − + ∇ = ∂
∂

.

21

4

4 12

4

4 11 22 66

4

2 2 11

4

4 22

4

4

2

2

2

2

2

2

2

2 12 21 66

4

2 2

2 2 2 2

2

2

2

2

2

1 2
2

1

2

2

(21)

where:
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Replacing Eq. (18) into Eq. (20) leads to:
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(22)

Eqs. (21) and (22) are nonlinear equations in terms of variables w
and f and used to investigate the nonlinear vibration and dynamic
stability of imperfect ES-S-FGM elliptical cylindrical shells on elastic
foundations subjected to mechanical and thermal loads.

3.2. Boundary conditions

In this paper, the edges of ES-S-FGM shells are assumed to be simply
supported. Depending on the in-plane restraint at the edges, two cases
of boundary conditions, labeled as Case 1 and Case 2 may be
considered.

Case 1. Four edges are simply supported and freely movable (FM). The
associated boundary conditions are:

M N N N at x and x Lw = = = 0, = = 0 =x xy x x0 (23)

Case 2. Four edges are simply supported and immovable (IM). The

associated boundary conditions are:

u M N N at x and x Lw = = = 0, = = 0 =x x x0 (24)

where Nx0 are pre-buckling compressive force resultant in direction x.

4. Solutions of the problem

To solve two Eqs. (21) and (22) for unknowns w and f , and with the
consideration of the boundary conditions (23) and (24), we assume the
following approximate solutions

w x y t W t λ x δ y
w x y t μh λ x δ y

f x y t A λ x A δ y A λ x δ y N y

( , , ) = ( )sin sin
*( , , ) = sin sin

( , , ) = cos 2 + cos 2 + sin sin + 1
2

m n

m n

m n m n x1 2 3 0
2

(25)

where λ mπ L= /m , δ n R= /n , W is amplitude of the deflection and μ is
parameter of imperfection; m n, are odd natural numbers. The coeffi-
cients A i( = 1 ÷ 3)i are determined by substitution of Eq. (25) into Eq.
(18) as:

A B W W μh A B W W μh A B B W= ( + 2 ), = ( + 2 ), = ( + )1 1 2 2 3 3 4 (26)

where:
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Substitution of Eqs. (25) and (26) and (27) into Eq. (19) and
applying the Galerkin procedure for resulting equation yield:

h W h W W μh h W W μh h W W μh W μh

N λ LR W μh
λ δ

p ρ LR W
t

+ ( + ) + ( + 2 ) + ( + )( + 2 )

−
4

( + ) + 4 =
4

∂
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.x m
m n

11 12 13 14

0
4

1

2

2

(28)

where the coefficients h i j( = 1, = 1 ÷ 4)ij are shown in Appendix B.

4.1. Nonlinear dynamic analysis of ES-S-FGM subjected to mechanical load

Consider the ES-S-FGM elliptical cylindrical shells is simply sup-
ported and freely movable (FM - Case 1 of boundary conditions),
subjected to axial compressive load N P h= −x x0 in which Px is the
average axial stress on the shell's end sections positive when the shells
subjected to axial compression. Eq. (28) can be written as following:

h W h W W μh h W W μh h W W μh W μh

P λ LR h W μh
λ δ

p ρ LR W
t

+ ( + ) + ( + 2 ) + ( + )( + 2 )
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.x m
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11 12 13 14

4
1

2

2

(29)

4.2. Nonlinear dynamic analysis of ES-S- FGM with effect of temperature
dependent

A simply supported the imperfect ES-S-FGM elliptical cylindrical
shells with four edges are simply supported and immovable (IM, Case 2
of boundary conditions) under simultaneous action of uniform external
pressure p and under steadily increasing temperature is considered. The
condition expressing the immovability on the boundary edges of the
shell, i.e, u = 0 at x L= 0, is justified in an average sense as
[11,20,32,37]:

∫ ∫ u
x

dxdy∂
∂

= 0
πR L

0

2

0 (30)
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From Eq. (9) one can obtain the following expression in which Eq.
(18) and imperfect have been included:
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Substitution Eq. (25) into (31) and then results into Eq. (30), yield:
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4.2.1. Uniform temperature rise
The ES-S-FGM elliptical cylindrical shells is assumed to expose to

environment temperature uniformly raised from stress free initial value
Ti to final value Tf and temperature change ΔT T T= −f i is independent
from thickness variable. The thermal parameter Φ1 can be expressed in
terms of the ΔT as:

Φ PhΔT
v

ΔT const P E α E α E α
N

E α
N

=
1 −

, = , = + +
+ 1

+
2 + 1m m

m cm cm m cm cm
1 (33)

4.2.2. Through the thickness temperature gradient
In this case, the temperature gradient is assumed to vary through

the thickness of the ES-S-FGM shell. The metal-rich top surface
temperature Tm 1 is maintained at stress free initial value and metal-
rich bottom surface temperature Tm 2 is elevated, which are shown in the
Fig. 3.

The temperature conduction is governed by one-dimensional
Fourier equation as:

⎡
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d
dz
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zdz

T T T T T T ΔT T T

( ) + ( ) = 0

| = , | = , | = ; = −z R h m z R h m z R c m m= − 2
2 = + 2

1 = 1 2 (34)

where z the distance from a point which distance is radial coordinate of
a point which is distant z from the shell middle surface with respect to
the center of the shell, z R z R z R= + , ( − ≤ ≤ + ).h h

2 2
The solution of Eq. (34) can be obtained as follows:
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This section only considers linear distribution of metal and ceramic
constituents, i.e. N=1, the coefficient of thermal conduction K of S-
FGM in Eq. (5) leads:
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in which the details of coefficients I i( = 1, 2)i as shown in Appendix C.
Substitution of Eq. (36) into Eq. (35) gives temperature distribution

across the shell thickness T z( )

T z T ΔT
I

I( ) = +m2
1

2 (37)

Replacing Eq. (37) into Eq. (13b) give the thermal parameter Φ1
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(38)

5. Vibration analysis

Suppose that an ES-S-FGM elliptical cylindrical shells is acted on by
a uniformly distributed excited transverse load p Q Ωt= sin0 .
Substitution of Eq. (32) into (28) leads to:

ψ t M ψ t M ψ t ψ M ψ t ψ t ψ
M ψ t ψ t ψ
M ψ t ψ t ψ ψ t ψ M Q Ωt

̈ ( ) + ( ) + ( ( ) + ) + ( )( ( ) + )
+ ( )( ( ) + 2 )
+ ( )( ( ) + )( ( ) + 2 ) = sin

1 2 0 3 0

4 0

5 0 0 6 0 (39)

where the M i( = 1 ÷ 6)i - coefficients, are give in Appendix C.
Eq. (39) is the governing equation with temperature-dependent

coefficients to study the nonlinear dynamic response of the ES-S-FGM
cylindrical shells in thermal environments. The nonlinear dynamic
response can be obtained by solving Eq. (39) if the initial conditions are
assumed as ψ ψ(0) = 0, ̇ (0) = 0 and using the Runge-Kutta method.

In the case for linear free vibration for ES-FGM shells form Eq. (39)
obtained as:

ψ t M M ψ ẗ ( ) + ( + ) ( ) = 01 2 (40)

One can determine the fundamental frequency of natural vibration
of the ES-FGM shells as:

ω M M= +L 1 2

The equation of nonlinear free vibration of a perfect ES-S-FGM
elliptical cylindrical shells is:

ψ t M M ψ t M M ψ t M ψ ẗ ( ) + ( + ) ( ) + ( + ) ( ) + ( ) = 01 2 3 4
2

5
3 (41)

The nonlinear vibration frequency of the ES-S-FGM elliptical
cylindrical shells,

Seeking solution as ψ t ξ ωt( ) = cos( ) and applying procedure like
Galerkin method to Eq. (41) to obtain:

⎛
⎝⎜

⎞
⎠⎟ω ω M M

πω
ξ M

ω
ξ= 1 + 8( + )

3
+ 3

4NL L
L L

3 4
2

5
2

2

1
2

(42)

where ωNL is the nonlinear vibration frequency and ξ is the amplitude of
nonlinear vibration.

6. Numerical result and discussion

The effective material properties P T( )r in the Eq. (1) is present in
Table 1 [6,7,14,32] and the parameters for the ES-S-FGM elliptical
cylindrical shells were chosen as below:

h

h
/2

y

z

R

Tm1

Tm2

Metal

Metal

Ceramic

Fig. 3. The temperature variation through ES-S-FGM shell thickness.
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m n a b b h Q N m Ω
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0

2

h h m d d m n n s πR
n

s L
n

= = 0.01 , = = 0.0025 , = 20, = 40, = 2 ,

=

x
T

y
T

x
T

y
T

s r x
T

s

y
T

s

and assumed that the stiffeners are made by full metal, so
E E α α= , =s

m
s

m; nr and ns are the number of strings, rings of the
shells, respectively.

6.1. Validation studies

To validate the reliability of the method used in the paper, the
comparisons on dynamic response and vibration are made with results
of the study [6,20]. We choose a b= , the elliptical cylindrical shells
will turn into the circular cylindrical shells.

Table 2 shows a comparison between the present results for the S-
FGM shells in the paper and Bich's results for P-FGM shell [6] with the
same geometrical parameters. As can be seen, a good agreement is
obtained in this comparison.

Fig. 4 indicates the comparison of dynamic response of the
imperfect S-FGM shells without elastic foundations with the same
geometrical parameters L R m n Q N m/ = 2, ( , ) = (1, 1), = 6000( / ),0

2

N a b h= 1; = = 40 . The present using the classical shell theory (CST)
and Duc et al. in [20] uses the higher order shear deformation shell
theory (HSDST) for the circular S-FGM without elastic foundations. The
result shows that the vibration amplitude using the classical shell
theory is larger than vibration amplitude using the higher order shear
deformation shell theory. This is consistent with conclusions and
comparison results in [20] and shows the validity of the obtained
results.

6.2. Nonlinear dynamic response

The effect of elastic foundations and pre-loaded axial loads on the

natural frequency of the ES-FGM elliptical cylindrical shells are shown
in Table 3. The value of the natural frequency increases when the values
k1 and k2 increase and the natural frequency decreases when the value Px
increases. It can be seen that elastic foundations have positive effect
whilst Px has negative effect on the natural frequency value. Further-
more, the Pasternak elastic foundation influences on the natural
frequency larger than the Winkler foundation.

Fig. 5 shows the effects of the volume fraction index N = (0, 1, 5)
on the nonlinear dynamic response ES-S-FGM elliptical cylindrical
shells. As can be seen, the amplitudes of nonlinear vibration of ES-S-
FGM shells increase when increasing the volume fraction index N .

Fig. 6 shows the influence of ratio a b/ = (1, 1.5, 2) on the nonlinear
dynamic response of the ES-S-FGM elliptical cylindrical shells. From
Fig. 6, it can be seen that when a b/ is increased, the value of the shells
amplitude increases and vice versa.

Fig. 7 shows the effects of ratio b h/ = (70, 100, 130) on the

Table 2
Effect of volume fraction index on natural frequencies ω s(1/ ) of FGM cylindrical shells
with R h L R m n/ = 500, / = 2, ( , ) = (1, 3).

N Ref [6] Present

0 1120.0512 1114.1815
1 1090.6326 1087.1999
2 1078.9093 1076.9263
5 1065.9689 1065.8955
∞ 1051.5722 1054.0197

Fig. 4. The comparison of dynamic response of the imperfect S-FGM circular cylindrical
shells by CST and by HSDST.

Table 3
Effect of elastic foundations and mechanical loads on natural frequencies ω s(1/ ) of the ES-
FGM elliptical cylindrical shells.

k = 02 k GPa m= 0.02 .2 k GPa m= 0.04 .2

P = 0x k = 01 4140 4542 4912
k GPa m= 1 /1 4535 4905 5249
k GPa m= 2 /1 4898 5242 5566

P GPa= 0.3x k = 01 3688 4134 4537
k GPa m= 1 /1 4126 4529 4900
k GPa m= 2 /1 4522 4893 5238

P GPa= 0.5x k = 01 3352 3838 4269
k GPa m= 1 /1 3829 4261 4652
k GPa m= 2 /1 4253 4645 5007

Fig. 5. Effects of volume fraction index on the nonlinear dynamic response of the ES-S-
FGM elliptical cylindrical shells.

Fig. 6. Effects of ratio a b/ on the nonlinear dynamic response of the ES-S-FGM elliptical
cylindrical shells.
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nonlinear dynamic response of the ES-S-FGM elliptical cylindrical
shells. It is obvious that, the higher the ratio b h/ , the higher the
amplitude of the cylindrical shells.

Figs. 8 and 9 consider the effects of coefficients k k,1 2 of the linear
Winkler and Pasternak foundations, respectively, on the nonlinear
dynamic response of the ES-FGM elliptical cylindrical shells. From the
figures, we can see that the amplitude fluctuation of the shells decreases
when the coefficients of elastic foundations increase. Or in other words,
the elastic foundations have a positive effect on the reduction of the
amplitude fluctuation of the shells. In addition, compared with the case
of corresponding to the coefficient k1 of the Winkler model, the
Pasternak type elastic foundation with coefficient k2 has a stronger
effect.

Fig. 10 indicates influence of initial imperfection on nonlinear
dynamic response of the ES-S-FGM elliptical cylindrical shells. The

increase imperfection will lead to the increase of the amplitude of
maximum deflection.

Fig. 11 shows the effect of eccentrically stiffeners on the nonlinear
dynamic response of the ES-S-FGM elliptical cylindrical shells. Clearly,
the result shows that the stiffeners strongly decrease vibration ampli-
tude of the S-FGM shells.

The effect of excitation force amplitude Q = (6000, 9000, 12000)0 on
nonlinear dynamic response of the ES-S-FGM elliptical cylindrical shells
are shown in Fig. 12. As can be observed, the increase in excitation
force amplitude will lead to the increase of the ES-S-FGM nonlinear
response amplitudes.

Fig. 13 indicates the dynamic responses of the ES-S-FGM elliptical
shells, when the frequency of the exciting force is near to the natural

Fig. 7. Effects of ratio b h/ on the nonlinear dynamic response of the ES-S-FGM elliptical
cylindrical shells.

Fig. 8. Effects of the Pasternak foundation on the nonlinear dynamic response of the ES-S-
FGM elliptical cylindrical shells.

Fig. 9. Effects of the Winkler foundation on the nonlinear dynamic response of the ES-S-
FGM elliptical cylindrical shells.

Fig. 10. Effects of imperfection W0 on the nonlinear dynamic response of the ES-S-FGM
elliptical cylindrical shells.

Fig. 11. Effects of stiffeners on the nonlinear dynamic response of the ES-S-FGM elliptical
cylindrical shells.

Fig. 12. Effects of amplitude Q 0 on the nonlinear dynamic response of the ES-S-FGM
elliptical cylindrical shells.
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frequency of the shell: the natural frequency of the shell ω s= 4140(1/ )
and the external frequency Ω s= 4130(1/ ). From obtained results, the
interesting phenomenon is observed like the harmonic beat phenom-
enon of a linear vibration.

Fig. 14 illustrates the effects of temperature increment ΔT on the
amplitude-time curves of the nonlinear dynamic response of the ES-S-
FGM shells. Three sets of thermal environmental conditions are
considered ΔT K= (50, 100, 150)( ). It can be seen that the amplitude
will increase when the temperature is increased.

Fig. 15 shows the effects of the ratio thickness L R/ on the nonlinear
dynamic response of the ES-FGM elliptical cylindrical shells. With three
case L R/ = (1.5, 2, 3) As our expectation, the amplitude of nonlinear
dynamic response of the ES-S-FGM shells decreases when decreasing
the ratio L R/ .

Fig. 16 illustrates the comparison of dynamic response of the ES-S-

FGM elliptical cylindrical shells (R a b( , )), b a( ≤ ) and the ES-S-FGM
circular cylindrical shells with two cases R const a= = and
R const b= = as in [2]. From Fig. 16, we can see that with the same
thickness, length and excited transverse load, the present amplitude of
ES-S-FGM elliptical cylindrical shells is higher than one of the ES-S-
FGM circular cylindrical shells in [2].

Fig. 17 shows the nonlinear dynamic response of the ES-S-FGM
elliptical cylindrical shells in the case of uniform temperature and
through the thickness temperature gradient, it can be seen that
vibration amplitude of the elliptical cylindrical shells in the case of
uniform temperature rise is higher. Since then, we can conclude that
the load capacity of the shells under the uniform temperature rise is
weaker than that one.

The effects of elastic foundations on the frequency-amplitude

Fig. 13. The harmonic beat phenomenon of the ES-S-FGM elliptical cylindrical shells.

Fig. 14. Effects of temperature on the nonlinear dynamic response of the ES-S-FGM
elliptical cylindrical shells.

Fig. 15. Effects of ratio L R/ on the nonlinear dynamic response of the ES-S-FGM elliptical
cylindrical shells.

Fig. 16. The comparison of dynamic response of the ES-S-FGM elliptical cylindrical shells
and the ES-FGM circular cylindrical shells in [2].

Fig. 17. Comparison of nonlinear dynamic response of the ES-S-FGM elliptical cylindrical
shells in the case of uniform temperature and through the thickness temperature gradient.

Fig. 18. Effect of the elastic foundations on frequency-amplitude curve of the ES-S-FGM
elliptical cylindrical shells.
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relations of the ES-S-FGM elliptical cylindrical shells present in Fig. 18.
It is evident that with the same frequency, ES-S-FGM shells surrounded
on elastic foundations have smaller amplitude than the shells without
elastic foundations. Furthermore, the Pasternak foundation also has
stronger effect on the frequency-amplitude relations of the shells than
Winkler foundation.

Fig. 19 presents the effects of pre-loaded axial loads on the
frequency-amplitude relations of the nonlinear free vibration of cylind-
rical shells. Fig. 19 shows that with the same amplitude, when the pre-
loaded increases, the frequency of vibration becomes larger.

7. Conclusion

Some conclusions are obtained from this study:

i. The stiffener system strongly impacts on the dynamic response and
vibration of the ES-S-FGM elliptical cylindrical shells. Stringer

stiffeners lightly influence while ring stiffeners strongly influence
the t s W m( ) − ( ) time–deflection curves of ES-S-FGM shells.

ii. The results obtained also demonstrated that the t s W m( ) − ( )
time–deflection curves were affected greatly by variations in
parameters such as the volume fraction index N , the radius-to-
thickness ratio b h/ , the length-to-radius ratio L R/ and ratio a b/

iii. The imperfection, elastic foundations, outside stiffeners and tem-
perature strongly affected the dynamic response and vibration of
the ES-S-FGM elliptical cylindrical shells. The amplitude of the shell
increases when the temperature and imperfection increase, and the
stiffeners and elastic foundations have positive effects on the
natural frequency values and amplitudes of the ES-S-FGM shells.

iv. With the same amplitude, when the pre-loaded axial load increases,
the frequency of vibration of the ES-S-FGM shells becomes larger.

v. The temperature has significant impact on the nonlinear dynamic
response of S-FGM shell. Moreover, the dynamic defection of the
shell in the case of temperature variation through thickness is
smaller than one in the case of uniform temperature rise.

vi. The some obtained results are validated by comparing with those in
the literature.

vii. Used stress function, Galerkin method, Runge–Kutta method and
analytical approach, the nonlinear dynamic responses of the ES-S-
FGM eliptical shells are determined by explicit relations of materi-
al, geometrical parameters, temperature, outside stiffeners and
elastic foundations, so we can actively control dynamic response
and vibration of the ES-S-FGM elliptical cylindrical shells by
suitable pre-selection of these parameters.

Funding

This research is funded by Vietnam National Foundation for Science
and Technology Development (NAFOSTED) under grant number
107.02–2015.03. The authors are grateful for this support.

Appendix A

A
E

v
E

A
s

A
E v

v
A

E
v

E
A

s
A

E
v

B
E

v
C B

E v
v

B
E

v
C B

E
v

D
E

v
E

I
s

D
E

v
E

I

s
D

E v
v

D
E

v

=
1 −

+ , =
1 −

, =
1 −

+ , =
2(1 + )

,

=
1 −

+ , =
1 −

, =
1 −

+ , =
2(1 + )

,

=
1 −

+ , =
1 −

+ , =
1 −

, =
2(1 + )

,

s x
T

x
T

s y
T

y
T

x
T

y
T

s x
T

x
T

s y
T

y
T

11
1

2 12
1

2 22
1

2 66
1

11
2

2 12
2

2 22
2

2 66
2

11
3

2 22
3

2 12
3

2 66
3

E E h
E h

N
E E

E h E h
N N N

= +
+ 1

, = 0, =
12

+
2( + 1)( + 2)( + 3)

;m
cm m cm

1 2 3

3 3

⎛
⎝⎜⎜

⎞
⎠⎟⎟A h d z

h h
C

E A z
s

I
d h

A z= , =
+
2

, = , =
( )
12

+ ( )x
T

x
T

x
T

x
T x

T

x
T

s
x
T

x
T

x
T x

T x
T

x
T

x
T

x
T

3
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A h d z

h h
C

E A z

s
I

d h
A z= , =

+
2

, = , =
( )
12

+ ( )y
T

y
T

y
T

y
T y

T

y
T

s
y
T

y
T

y
T y

T y
T

y
T

y
T

y
T

3
2

Appendix B

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

h LR C λ C δ C C C λ δ k k λ δ

B λ B δ B B B λ δ
λ
R

B B LR

= −
4

[ * + * + ( * + * + 4 *) + + ( + )]+

* + * + ( * + * − 2 *) − ( − )
4

m n m n m n

m n m n
m

11 11
4

22
4

12 21 66
2 2

1 2
2 2

21
4

12
4

11 22 33
2 2

2

3 4

Fig. 19. Effect of pre-loaded axial loads on frequency-amplitude curve of the ES-S-FGM
elliptical cylindrical shells.
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