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The main goal of this study is using analytical solution to investigate the nonlinear dynamic response and 
vibration of sandwich auxetic composite cylindrical panels. The sandwich composite panels have three 
layers in which the top and bottom outer skins are isotropic aluminum materials, the central auxetic 
core layer – honeycomb structures with negative Poisson’s ratio using the same aluminum material. The 
panels are resting on elastic foundations and subjected to mechanical, blast and damping loads. Based 
on Reddy’s first order shear deformation theory (FSDT) with the geometrical nonlinear in von Karman 
and using the Airy stress functions method, Galerkin method and fourth-order Runge–Kutta method, 
the resulting equations are solved to obtain expressions for nonlinear motion equations. The effects 
of geometrical parameters, material properties, elastic Winkler and Pasternak foundations, mechanical, 
blast and damping loads on the nonlinear dynamic response and the natural frequencies of sandwich 
composite cylindrical panels are studied.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

Most natural materials are characterized by a positive Poisson’s 
ratio, namely they are observed to contract (expand) laterally when 
stretched (compressed) longitudinally. Nonetheless, the classical 
theory of elasticity does not preclude the existence of materials 
with negative Poisson’s ratio, known as ‘auxetic’ after [1]. Auxetic 
materials are a special and a fascinating material. One example of 
important applications of auxetic structures in aerospace engineer-
ing or in civil engineering is the absorption of powerful impacts 
such as explosive waves, so they are often used as the outer layer, 
safeguarding structures inside.

Therefore, recently, auxetic materials have received special at-
tention of a lot of authors in the world. Qiao and Chen [2] studied 
the impact resistance of uniform and functionally graded auxetic 
double arrowhead honeycombs, double arrowhead honeycombs 
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(DAHs) are auxetic cellular materials with negative Poisson’s ratio 
(NPR). Grujicic et al. [3] investigated the multi-physics modeling 
of the fabrication and dynamic performance of all-metal auxetic-
hexagonal sandwich-structures. Zhang et al. [4] considered the dy-
namic thermo-mechanical and impact properties of helical auxetic 
yarns. Assidi et al. [5] presented the composites with auxetic in-
clusions showing both an auxetic behavior and enhancement of 
their mechanical properties. Burlayenko and Sadowski [6] obtained 
the effective elastic properties of foam-filled honeycomb cores of 
sandwich panels. Grima et al. [7] investigated the hexagonal hon-
eycombs with zero Poisson’s ratios and enhances stiffness. Liu et 
al. [8] presented the wave propagation in a sandwich plate with 
a periodic composite core. Wan et al. [9] investigated the study of 
negative Poisson’s ratios in auxetic honeycombs based on a large 
deflection model. Greaves et al. [10] studied Possion’s ratio and 
modern materials. Zhang et al. [11] investigated the influence of 
cell micro-structure on the in-plane dynamic crushing of honey-
combs with negative Poisson’s ratio.

Milton [12] considered the composite materials with Poisson’s
ratios close to. Tian and Chung [13] studied the wave propaga-
tion in sandwich panel with auxetic core. Analytical expressions 
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for the dynamic crushing strength of hexagonal honeycombs were 
derived by Hu and Yu [14]. Strek et al. [15] investigated the finite 
element analysis of auxetic obstacle deformation and fluid flow 
in a channel. Strek et al. [16] investigated the effective mechan-
ical properties of concentric cylindrical composites with auxetic 
phase, the computational analysis of sandwich-structured com-
posites with an auxetic phase [17] and the dynamic response of 
sandwich panels with auxetic cores [18]. Gabriele Imbalzano et 
al. [19] studied the three-dimensional modeling of auxetic sand-
wich panels for localized impact resistance. Thê-Duong Nguyen
and Duc [20] considered evaluation of elastic properties and ther-
mal expansion coefficient of composites reinforced by randomly 
distributed spherical particles with negative Poisson’s ratios. Jopek 
and Strek [21] investigated the thermal and structural dependence 
of auxetic properties of composite materials. Duc and Cong stud-
ied [22] studied the nonlinear dynamic response and vibration of 
sandwich composite plates with negative Poisson’s ratio in auxetic 
honeycombs. In [23], Duc considered generally and comprehen-
sively about nonlinear static and dynamic stability of FGM plates 
and shells.

Cylindrical panels play the important part in the modern indus-
tries. Therefore, research on static and dynamic response of these 
structures have received special attention of a lot of authors in 
the world. Duc et al. [24] investigated the vibration and nonlinear 
dynamic response of imperfect three-phase polymer nanocompos-
ite panel resting on elastic foundations under hydrodynamic loads. 
Duc and Quan [25] presented nonlinear buckling and postbuckling 
of eccentrically stiffened FGM cylindrical panels resting on elas-
tic foundations and subjected to mechanical loads. Duc and Tung 
[26] proposed the nonlinear response of pressure-loaded function-
ally graded cylindrical panels with temperature effects. In 2013, 
Duc [27] also studied the nonlinear dynamic and vibration of ec-
centrically stiffened FGM double curved shallow shells.

In recent years, the safety of building and structures of infras-
tructure have become hot issues in all over the world because the 
negative dynamic loads caused of increasing in terrorist activities, 
accidental blast. As the results, the composite auxetic material un-
der blast load has gained interests and been studied more. Tan et 
al. [28] presented the blast-wave impact mitigation using negative 
effective mass density concept of elastic metamaterials. Adhikary 
et al. [29] considered the influence of cylindrical charge orientation 
on the blast response of high strength concrete panels. Zhai et al. 
[30] investigated the experimental and numerical investigation into 
RC beams subjected to blast after exposure to fire. Yao et al. [31]
presented the experimental and numerical study on the dynamic 
response of RC slabs under blast loading. Lam et al. [32] studied 
the response spectrum solutions for blast loading. Imbalzano et al. 
[33] investigated the auxetic composite panels under blast load-
ings. Ding and Ngo [34] studied the dynamic response of double 
skin façades under blast loads. Duc et al. [35] presented the nonlin-
ear dynamic response and vibration of imperfect shear deformable 
functionally graded plates subjected to blast and thermal loads.

From above literature review [1–17], we can see that there are 
no studies about dynamic response and vibration of auxetic cylin-
drical panels yet. Moreover, auxetic plates and shells are complex 
structures, all published studies on auxetic structures as mentioned 
above use the Finite element method.

The most significant contribution of this work is using new ap-
proach – analytical solution to study nonlinear dynamic response 
and vibration of sandwich composite panels with negative Pois-
son’s ratio in auxetic honeycombs. This method is more compli-
cated than numerical methods in the aspect of mathematics, es-
pecially when using FSTD, but the advantage is that the dynamic 
response is expressed explicitly through material parameters, geo-
metric parameters of the structure and load, and therefore we can 
Fig. 1. (left) Model of sandwich composite cylindrical panels on elastic foundations 
with negative Poisson’s ratios in auxetic honeycombs core layer. (right) Dicretization 
of the sandwich cylindrical panel.

actively control the behavior of the structure by selecting those 
parameters appropriately.

By using analytical approach, this work focuses on studying the 
nonlinear dynamic response and vibration of the sandwich com-
posite cylindrical panels with negative Poisson’s ratio in auxetic 
honeycombs core structures on elastic foundations subjected to 
blast and other mechanical loads. The sandwich composite cylin-
drical panels used in the work have three layers in which the top 
and bottom outer skins are isotropic aluminum materials, the cen-
tral core layer has auxetic honeycomb structures using the same 
aluminum material. The governing equations are derived within 
the framework of Reddy’s first order shear deformation theory, 
taken into account the von Karman nonlinearity and using the 
Airy stress function, Galerkin method and fourth-order Runge–
Kutta method. The work also analyses and discusses the effects of 
material and geometrical properties, elastic foundations and me-
chanical, blast and damping loads on the natural frequency and 
the nonlinear dynamic response of the composite cylindrical pan-
els.

2. Sandwich composite cylindrical panel with auxetic core layer 
model

2.1. Model

Consider a sandwich cylindrical panel with auxetic core of ra-
dius of curvature R , length of edges a, b and uniform thickness h
resting on elastic foundations. A coordinate system (x, y, z) is es-
tablished, in which the (x, y) plane is in the middle surface of the 
panel and is z in the thickness direction (Fig. 1, left). The auxetic 
core which has three layers in which the top and bottom outer 
skins are isotropic aluminum materials; the central layer has hon-
eycomb structure using the same aluminum material (Fig. 1, right). 
The bottom outer skin thickness is h1, internal honeycomb core 
material thickness is h2 and top outer skin thickness is h3, and the 
total thickness of the shell is h = h1 + h2 + h3.

The reaction–deflection relation of Pasternak foundation is 
given by

qe = k1 w − k2∇2 w (1)

In which ∇2 = ∂2

∂x2 + ∂2

∂ y2 , w is the deflection of the cylindrical 
panels, k1 and k2 are Winkler foundation modulus and shear layer 
of Pasternak foundation, respectively.

2.2. Honeycomb core materials

The sandwich composite cylindrical panels having the auxetic 
honeycomb core layer with negative Poisson’s ratio are introduced 
in this work. Unit cells of core material discussed in the paper are 
shown in Fig. 2 where l is the length of the inclined cell rib, h is 
the length of the vertical cell rib, θ is the inclined angle, α and 
β define the relative cell wall length and the wall’s slenderness 
ratio, respectively, which are important parameters in honeycomb 
property.
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Fig. 2. Geometric of the cell of honeycomb core layer.

Table 1
Poisson’s ratio v12 in auxetic honeycomb layer of the composite cylindrical panel at 
the limit value of small deformation.

h
l = 1 h

l = 1.5 h
l = 2 h

l = 2.5 h
l = 3

θ = −35 −2.7434 −1.2628 −0.8201 −0.6073 −0.4821
θ = −45 −2.4142 −0.8918 −0.5469 −0.3944 −0.3084
θ = −50 −2.3054 −0.7349 −0.4371 −0.3111 −0.2414
θ = −60 −2.1547 −0.4553 −0.3401 −0.1767 −0.1353
θ = −75 −2.0353 −0.1299 −0.0671 −0.0452 −0.0341

Formulas in reference [3] are adopted for calculation of honey-
comb core material property
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2 cos θ(h/l + sin θ)

(2)

where symbol “c” represents core material, E, G and ρ are Young’s 
moduli, shear moduli and mass density of the origin material.

To investigate the effect of geometry of the cylindrical panels 
with negative Poisson’s ratio v12 at the limit of small deformation 
are presented in Table 1 for the combinations of θ and h

l . From 
Table 1, it can be seen that Poisson’s ratio v12 increased when 
geometric parameters of h

l increases and vice versa. The same for 
in the case geometric parameters of θ decreases, Poisson’s ratio 
v12 increased and vice versa.

3. Theoretical formulations

In this work, Reddy’s first order shear deformation theory 
(FSDT) is used to determine the dynamic response and natural fre-
quency of the panels.

The strain-displacement relations taking into account the von 
Karman nonlinear terms are [23]⎧⎪⎪⎪⎪⎪⎨
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∂ y ∂x ∂x ∂ y
where in the above equations u, v, w are displacement compo-
nents corresponding to the coordinates (x, y, z), and φx, φy are the 
rotations of normals to the mid-surface with respect to the x and 
y axes, respectively.

Hooke’s law for the sandwich cylindrical panel with negative 
Poisson’s ratio in auxetic honeycomb core layer is defined as fol-
lows:⎧⎪⎨
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where above index T , C, B are Top outer skin, Core material, Bot-
tom outer skin respectively.
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The forces and moments of the cylindrical panel can be ex-
pressed in terms of stress components across the cylindrical panel 
thickness as [21,23]:
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(6)

Substitution of Eqs. (4) into Eqs. (6) gives the constitutive rela-
tions as
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where K is the shear correction factors, and K = 5
6 .
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According to the first-order shear deformation theory, the equa-
tions of motion for the cylindrical panels are [23]:
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where ε is the damping coefficient [24], and
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The blast load p(t) is a short–term load and generated by an 
explosion or by a shock-wave disturbance produced by an aircraft 
flying at supersonic speed, or by a supersonic projectile, rocket or 
missile operating in its vicinity. It can be expressed as [32–35]

p(t) = 1.8P smax

(
1 − t

Ts

)
exp

(−bt

Ts

)
, (11)

where the “1.8” factor accounts for the effects of a hemispherical 
blast, P smax is the maximum (or peak) static over-pressure, b is the 
parameter controlling the rate of wave amplitude decay and Ts is 
the parameter characterizing the duration of the blast pulse.

From the constitutive relations in Eq. (7), one can write

ε0
x = − A5

A2
2 − A1 A5

Nx + A2

A2
2 − A1 A5

N y + A3 A5 − A2 A4

A2
2 − A1 A5

ε1
x

+ A4 A5 − A2 A6

A2
2 − A1 A5

ε1
y,

ε0
y = A2

A2
2 − A1 A5

Nx − A1

A2
2 − A1 A5

N y + A1 A4 − A2 A3

A2
2 − A1 A5

ε1
x

+ A1 A6 − A2 A4

A2
2 − A1 A5

ε1
y

γ 0
xy = 1

A7
Nxy − A8

A7
γ 1

xy

(12)

The stress function f (x, y, t) is introduced as
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∂x∂ y
. (13)

Replacing Eq. (13) into Eqs. (9a) and (9b) gives

∂2u

∂t2
= − I1

I0

∂2φx

∂t2
, (14a)

∂2 v

∂t2
= − I1

I0

∂2φy

∂t2
. (14b)

Substituting Eqs. (14a) and (14b) into Eqs. (9c)–(9e) yields

∂ Q x

∂x
+ ∂ Q y

∂ y
+ ∂2 f

∂ y2

∂2w

∂x2
− 2

∂2 f

∂x∂ y

∂2w

∂x∂ y
+ ∂2 f

∂x2

∂2w

∂ y2

+ p − k1w + k2

(
∂2w

∂x2
+ ∂2w

∂ y2

)

+ 1 ∂2 f
2

= I0
∂2w

2
+ 2ε I0

∂w
,

(15a)
R ∂x ∂t ∂t
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∂Mx

∂x
+ ∂Mxy

∂ y
− Q x =

(
I2 − I2

1

I0

)
∂2φx

∂t2
, (15b)

∂Mxy

∂x
+ ∂M y

∂ y
− Q y =

(
I2 − I2

1

I0

)
∂2φy

∂t2
. (15c)

By substituting Eqs. (12) into Eqs. (7) and then into Eqs. (15), 
the system of motion Eqs. (15) is rewritten as follows

H11(w) + H12(φx) + H13(φy) + S(w, f ) + p

= Io
∂2 w

∂t2
+ 2ε I0

∂w

∂t
, (16a)

H21(w) + H22(φx) + H23(φy) + H24( f )

=
(

I2 − I2
1

I0

)
∂2φx

∂t2
, (16b)

H31(w) + H32(φx) + H33(φy) + H34( f )

=
(

I2 − I2
1

Io

)
∂2φy

∂t2
, (16c)

where

H11(w) = K A13
∂2w

∂x2
+ K A15

∂2w

∂ y2
− k1w + k2

(
∂2w

∂x2
+ ∂2w

∂ y2

)
,

H12(φx) = K A13
∂φx

∂x
, H13(φy) = K A15

∂φy

∂ y
,

S(w, f ) = ∂2 f

∂ y2

∂2w

∂x2
− 2

∂2 f

∂x∂ y

∂2w

∂x∂ y
+ ∂2 f

∂x2

∂2w

∂ y2
+ 1

R

∂2 f

∂x2
,

H21(w) = −K A13
∂w

∂x
,

H22(φx) = D11
∂2φx

∂x2
+ D66

∂2φx

∂ y2
− K A13φx,

H23(φy) = (D12 + D66)
∂2φy

∂x∂ y
,

H24( f ) =
(

A2 A4 − A3 A5

A2
2 − A1 A5

− A8

A7

)
∂3 f

∂x∂ y2
+ A2 A3 − A1 A4

A2
2 − A1 A5

∂3 f

∂x3
,

H31(w) = −K A15
∂ w

∂ y
, H32(φx) = (D21 + D66)

∂2φx

∂x∂ y
,

H33(φy) = (D22)
∂2φy

∂ y2
+ (D66)

∂2φy

∂x2
− K A15φy,

H34( f ) =
(

A2 A4 − A1 A6

A2
2 − A1 A5

− A8

A7

)
∂3 f

∂x2∂ y
+ A2 A6 − A4 A5

A2
2 − A1 A5

∂3 f

∂ y3
,

D11 = A2
3 A5 − 2A2 A3 A4 + A1 A2

4

A2
2 − A1 A5

+ A9,

D66 = A12 − A2
8

A7
,

D12 = A3(A4 A5 − A2 A6) + A4(A1 A6 − A2 A4)

A2
2 − A1 A5

+ A10,

D21 = A4(A3 A5 − A2 A4) + A6(A1 A4 − A2 A3)

A2
2 − A1 A5

+ A10,

D22 = A2
4 A5 − 2A2 A4 A6 + A1 A2

6

A2
2 − A1 A5

+ A11.

The geometric compatibility equation for a cylindrical panel is 
written as [6,23]

∂2ε0
x
2

+ ∂2ε0
y

2
− ∂2γ 0

xy =
(

∂2w
)2

− ∂2w
2

∂2w
2

− 1 ∂2w
2

. (17)

∂ y ∂x ∂x∂ y ∂x∂ y ∂x ∂ y R ∂x
Set Eqs. (13) and (12) into the deformation compatibility equa-
tion (17), we obtain

− A1

A2
2 − A1 A5

∂4 f

∂x4
− A5

A2
2 − A1 A5

∂4 f

∂ y4

+
(

2A2

A2
2 − A1 A5

+ 1

A7

)
∂4 f

∂x2∂ y2

+
(

A3 A5 − A2 A4

A2
2 − A1 A5

+ A8

A7

)
∂3φx

∂x∂ y2
+ A1 A4 − A2 A3

A2
2 − A1 A5

∂3φx

∂x3

+ A4 A5 − A2 A6

A2
2 − A1 A5

∂3φy

∂ y3
+

(
A1 A6 − A2 A4

A2
2 − A1 A5

+ A8

A7

)
∂3φy

∂x2∂ y

=
(

∂2w

∂x∂ y

)2

− ∂2w

∂x2

∂2w

∂ y2
− 1

R

∂2w

∂x2
. (18)

Eqs. (16) and (18) are nonlinear equations in terms of variables 
w, φx, φy and f and are used to investigate the nonlinear vibra-
tion and dynamic stability of the cylindrical panels with negative 
Poisson’s ratio in auxetic honeycombs using the first order shear 
deformation theory.

Considering the following boundary condition [5], four edges of 
cylindrical panel are simply supported; immovable edges is under 
blast load p. Thus, the boundary conditions are

w = Nxy = φy = Mx = 0, Nx = −P xh at x = 0,a,

w = Nxy = φx = M y = 0, N y = −P yh at y = 0,b.
(19)

The mentioned conditions in (19) can be satisfied identically if 
the approximate solutions are represented by:

w(x, y, t) = W(t) sinλmx sin δn y,

φx(x, y, t) = x(t) cosλmx sin δn y,

φy(x, y, t) = y(t) sin λmxcosδn y,

(20)

f (x, y, t) = B1 cos 2λmx + B2 cos 2δn y + B3 sinλmx sin δn y

− 1

2
P xhy2 − 1

2
P yhx2,

(21)

where λm = mπ
a , δn = nπ

b , m, n = 1, 2, . . . are the natural numbers 
of half waves in the corresponding direction x, y, and W , x, y – 
the amplitudes which are functions dependent on time.

B1 = A1 A5 − A2
2

32A1

δ2
n

λ2
m

W 2(t), B2 = A1 A5 − A2
2

32A5

λ2
m

δ2
n

W 2(t),

B3 = a1W 2(t) + a2x(t) + a3y(t), (22)

where

a1 = λ2
m

R
[ A1

A2
2−A1 A5

λ4
m+ A5

A2
2−A1 A5

δ4
n −( 2A2

A2
2−A1 A5

+ 1
A7

)
λ2

mδ2
n
]

a2 =
[( A3 A5−A2 A4

A2
2−A1 A5

+ A8
A7

)
λmδ2

n + A1 A4−A2 A3
A2

2−A1 A5
λ3

m
]

A1
A2

2−A1 A5
λ4

m+ A5
A2

2−A1 A5
δ4

n −( 2A2
A2

2−A1 A5
+ 1

A7

)
λ2

mδ2
n

a3 =
[ A4 A5−A2 A6

A2
2−A1 A5

δ3
n +( A1 A6−A2 A4

A2
2−A1 A5

+ A8
A7

)
λ2

mδn
]

A1
A2

2−A1 A5
λ4

m+ A5
A2

2−A1 A5
δ4

n −( 2A2
A2

2−A1 A5
+ 1

A7

)
λ2

mδ2
n

.

Replacing Eqs. (19)–(21) into Eqs. (16), and then applying the 
Galerkin method to the resulting equations yields:

h11W + h12x + h13y + h14xW + h15y W + h16W 2

+ h17W 3 + h18 + p
4 = ab

(
Io

∂2 w
2

+ 2ε Io
∂w

)
,

(23a)
λmδn 4 ∂t ∂t
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Fig. 3. Comparison of nonlinear dynamic response of plate on elastic foundations 
subjected to blast load with results in [35].

h21W + h22x + h23y + h24W 2 = ρ1
∂2φx

∂t2
(23b)

h31W + h32x + h33y + h34W 2 = ρ1
∂2φy

∂t2
(23c)

in which the detail of coefficients h1i(i = 1,8), h jk( j = 2,3, k =
1,4), ρ1 may be found in Appendix.

Taking linear parts of the set of Eqs. (23), the natural frequen-
cies of the shell can be determined directly by solving determi-
nant∣∣∣∣∣∣

h11 + I0ω
2 h12 h13

h21 h22 + ρ1ω
2 h23

h31 h32 h33 + ρ1ω
2

∣∣∣∣∣∣ = 0 (24)

Solving Eqs. (24) yields three angular frequencies, the smallest 
one is being considered.

4. Numerical results and discussion

The parameters for the geometric parameters of sandwich 
cylindrical panels with negative Poisson’s ratio in core layer were 
chosen as below:

m = n = 1, b/a = 1, b/h = 20, h/l = 2,

t/l = 0.0138751, b/R = 1/2, θ = −50◦,
E = 68.2 GPa, ν = 0.33, ρ = 2700 kg/m3,

G = 26 GPa h1 = h3 = 0.00667 m, h2 = 0.02.

4.1. Numerical verification

To evaluate the reliability of the method used in the paper, we 
have compared our results with the findings in Ref. [35]. If we 
chose R → ∞, the nonlinear dynamic response of panel cylindri-
cal will turn into the nonlinear dynamic response of plate. Fig. 3
shows the comparison between present of the nonlinear dynamic 
response of plate with only made of ceramic (N = 0) on the elastic 
foundations subjected to blast load and the result of Duc et al in 
[35]. In this work, the authors considered the nonlinear dynamic 
and vibration of FGM plates subjected to blast loads with the vol-
ume fraction index N = 0. From Fig. 3, it can be seen that a good 
agreement is obtained in this comparison.

The geometry parameters and material parameters in Fig. 3 are 
chosen as follows [22]
Table 2
Effect of elastic foundation and mechanical load on natural frequencies ω(1/s) of 
the cylindrical panels with auxetic core layer (v12 = −0.4371).

k2 = 0 k2 = 0.02 GPa m k2 = 0.04 GPa m

Px = 0
k1 = 0 7259 8717 9964
k1 = 0.3 GPa/m 7782 9157 10351
k1 = 0.5 GPa/m 8112 9439 10602

Px = 0.3 GPa
k1 = 0 6846 8376 9667
k1 = 0.3 GPa/m 7398 8834 10066
k1 = 0.5 GPa/m 7745 9126 10323

Px = 0.5 GPa
k1 = 0 6557 8141 9464
k1 = 0.3 GPa/m 7131 8611 9871
k1 = 0.5 GPa/m 7490 8910 10134

Fig. 4. Effects of ratio a/b on the nonlinear dynamic response of the cylindrical 
panels with negative Poisson’s ratio in core layer under blast load.

N = 0, m = n = 1, b/a = 1, b/h = 20,

k1 = 0.3 GPa/m, k2 = 0.02 GPa m, T = (300 + 350) K
Ec

1 = Ec
2 = E = 384.43 × 109(0 × T −1 + 1 − 3.07 × 10−4T

+ 2.16 × 10−7T 2 − 8.94 × 10−11T 3) Pa,
Gc

12 = Gc
13 = Gc

23 = G = E
2(1+v)

,

ρ = ρc = 2370 kg/m3.

4.2. Nonlinear dynamic response

The effect of elastic foundations and pre-loaded axial on the 
natural frequency of the cylindrical panel with auxetic core are 
shown in Table 2 (v12 = −0.4371). The value of the natural fre-
quency increases when the values k1 and k2 increase and the 
natural frequency decreases when the value P x increases. It can 
be seen that elastic foundations have positive effect whilst P x has 
negative effect on the natural frequency value. Furthermore, the 
Pasternak elastic foundation influences on the natural frequency 
larger than the Winkler foundation.

Fig. 4 shows the influence of ratio a/b = (0.5, 1, 2) on the 
nonlinear dynamic response of the sandwich cylindrical panels 
(v12 = −0.4371) under blast loads. From Fig. 4, it can be seen that 
when a/b is increased, the value of the panels amplitude increases 
and vice versa.

Fig. 5 shows the effects of ratio b/h = (20, 30, 40) on the non-
linear dynamic response of the sandwich cylindrical panels (v12 =
−0.4371) under blast loads. It is obvious that, the higher the ratio 
b/h, the higher the amplitude of the panels.
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Fig. 5. Effects of ratio a/b on the nonlinear dynamic response of the cylindrical 
panels with negative Poisson’s ratio in core layer under blast load.

Fig. 6. Effect of the linear Winkler foundation on the nonlinear dynamic response of 
the sandwich composite cylindrical panels.

Figs. 6 and 7 consider the effects of coefficients k1, k2 of the 
linear Winkler and Pasternak foundations, respectively, on the non-
linear dynamic response of the sandwich panels under blast loads. 
From the figures, we can see that the amplitude fluctuation of 
the panels with negative Poisson’s ratio (v12 = −0.4371) decreases 
when the coefficients of elastic foundations increase. In addition, 
compared with the case of corresponding to the coefficient k1 of 
the Winkler model, the Pasternak type elastic foundation with co-
efficient k2 has a stronger effect.

Fig. 8 illustrates the effect of parameter characterizing the du-
ration of the blast pulse on nonlinear response of the cylindrical 
panels for three cases Ts = (0.005, 0.01, 0.02). From this figure, as 
our expectation, the amplitude of vibration increases with increase 
in the value of the parameter characterizing the duration of the 
blast pulse Ts and vice versa.

Fig. 9 shows the variation of nonlinear dynamic response am-
plitudes of the sandwich panels (v12 = −0.4371) with various val-
ues of pre-loaded axial compression P x . It can be seen that the 
amplitude fluctuation of the panels increases when the value of 
pre-loaded axial compression force P x increases.

Fig. 10 illustrates the effect of damping on amplitude–time 
curves for nonlinear dynamic response of the sandwich panels 
with three values of damping coefficient ε = (0.1, 5, 8). From 
Fig. 7. Effect of the Pasternak foundation on the nonlinear dynamic response of the 
sandwich composite cylindrical panels.

Fig. 8. Effect of parameter characterizing the duration of the blast pulse Ts on non-
linear response of the sandwich composite cylindrical panels.

Fig. 9. Effect of pre-loaded axial Px compression on nonlinear response of the sand-
wich composite cylindrical panels.
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Fig. 10. Effect of damping coefficient ε on the nonlinear dynamic response of the 
sandwich composite panels under blast loads.

Fig. 10, it can be observed that the damping influences on the 
nonlinear response of the shell are very small in the first vibra-
tion periods.

5. Conclusion

Auxetic material with negative Poisson’s ratio is a special and 
fascinating material. In this work, using analytical approach, the 
nonlinear dynamic response and vibration of the sandwich com-
posite cylindrical panels on elastic foundations with negative Pois-
son’s ratio core layer under mechanical, blast and damping loads 
are studied. Reddy’s first order shear deformation theory, the Airy 
stress function and Galerkin method are used to form the ba-
sic equations to determine the dynamic response and the natural 
frequencies of the composite panels. The numerical results are in-
vestigated by the Runge–Kutta procedure.

The work has analyzed and discussed the effects of material 
and geometrical properties, elastic foundations, mechanical, blats 
and damping loads on the natural frequencies and the nonlinear 
dynamic response of the sandwich composite panels. Our most im-
portant finding by analytical solution is the dynamic response and 
natural frequency could be explicitly represented in these input 
parameters. As the result, we are able to design a suitable auxetic 
composite structures under the blast and other mechanical loads.

A point to be emphasized is that within the framework of this 
work, we only consider a certain case in which the middle core 
layer is an auxetic layer (having cell structure as shown in Fig. 2). 
When the middle layer consists of a number of auxetic layers that 
are connected together in the form of a honeycomb, the effect of 
reducing shocks will be stronger [29–34]. However, in that case, 
it is important to know exactly how many independent elastic 
modulus the honeycomb structure has, how strain-displacement 
relation is so that we can apply the analytical solutions. Unfortu-
nately, until now, there have been no experimental and theoretical 
publishments covering all mechanical–physical parameters of this 
multi-layered structures.
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Appendix

h11 = −K A13λ
2
m

ab

4
− K A15δ

2
n

ab

4
− k1

ab

4
− k2

(
λ2

m + δ2
n

)ab

4

+ P xhλ2
m

ab

4
+ P yhδ2

n
ab

4
,

h12 = −K A13λm
ab

4
− λ2

m

R

ab

4
a2,

h13 = −K A15δn
ab

4
− λ2

m

R

ab

4
a3, h14 = 8

3
a2λ

3
mδ3

n ,

h15 = a3
8

3
λ3

mδ3
n ,

h16 = 1

6

A1 A5 − A2
2

A1

δn

λm
− λ2

m

R

ab

4
a1,

h17 = − A1 A5 − A2
2

64A5
abλ4

m + 8

3
a1λ

3
mδ3

n − A1 A5 − A2
2

64A1
abδ4

n ,

h18 = − 4

λmδn

P yh

R
, h21 = −K A13λm

ab

4
,

h22 = −(D11)λ
2
m

ab

4
− (D66)δ

2
n

ab

4
− K A13

ab

4

−
((

A2 A4 − A3 A5

A2
2 − A1 A5

− A8

A7

)
λmδ2

n

+ A2 A3 − A1 A4

A2
2 − A1 A5

λ3
m

)
ab

4
a2

h23 = −(D12 + D66)λmδn
ab

4
−
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A2 A4 − A3 A5

A2
2 − A1 A5

− A8

A7
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λmδ2

n

+ A2 A3 − A1 A4

A2
2 − A1 A5

λ3
m

)
ab

4
a3,

h24 = 2

3

A2 A3 − A1 A4

A2
2 − A1 A5

A1 A5 − A2
2

A1
δn

−
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A2 A4 − A3 A5

A2
2 − A1 A5

− A8

A7
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h31 = −K A15δn
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4
,
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A2 A4 − A1 A6

A2
2 − A1 A5
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A7
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+ A2 A6 − A4 A5

A2
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δ3
n

]
ab

4
a2,
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h34 = 2

3

A2 A6 − A4 A5
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2
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