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ABSTRACT

The main goal of this study is using analytical solution to investigate the nonlinear dynamic response and
vibration of sandwich auxetic composite cylindrical panels. The sandwich composite panels have three
layers in which the top and bottom outer skins are isotropic aluminum materials, the central auxetic
core layer — honeycomb structures with negative Poisson’s ratio using the same aluminum material. The
panels are resting on elastic foundations and subjected to mechanical, blast and damping loads. Based
on Reddy'’s first order shear deformation theory (FSDT) with the geometrical nonlinear in von Karman
and using the Airy stress functions method, Galerkin method and fourth-order Runge-Kutta method,
the resulting equations are solved to obtain expressions for nonlinear motion equations. The effects
of geometrical parameters, material properties, elastic Winkler and Pasternak foundations, mechanical,
blast and damping loads on the nonlinear dynamic response and the natural frequencies of sandwich
composite cylindrical panels are studied.

Mechanical, blast and damping loads
Elastic foundations

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Most natural materials are characterized by a positive Poisson’s
ratio, namely they are observed to contract (expand) laterally when
stretched (compressed) longitudinally. Nonetheless, the classical
theory of elasticity does not preclude the existence of materials
with negative Poisson’s ratio, known as ‘auxetic’ after [1]. Auxetic
materials are a special and a fascinating material. One example of
important applications of auxetic structures in aerospace engineer-
ing or in civil engineering is the absorption of powerful impacts
such as explosive waves, so they are often used as the outer layer,
safeguarding structures inside.

Therefore, recently, auxetic materials have received special at-
tention of a lot of authors in the world. Qiao and Chen [2] studied
the impact resistance of uniform and functionally graded auxetic
double arrowhead honeycombs, double arrowhead honeycombs

* Corresponding author at: Infrastructure Engineering Program - VNU Hanoi,
Vietnam-Japan University (VJU), My Dinh 1, Tu Liem, Hanoi, Viet Nam.
E-mail address: ducnd@vnu.edu.vn (N.D. Duc).

http://dx.doi.org/10.1016/j.ast.2017.08.023
1270-9638/© 2017 Elsevier Masson SAS. All rights reserved.

(DAHs) are auxetic cellular materials with negative Poisson’s ratio
(NPR). Grujicic et al. [3] investigated the multi-physics modeling
of the fabrication and dynamic performance of all-metal auxetic-
hexagonal sandwich-structures. Zhang et al. [4] considered the dy-
namic thermo-mechanical and impact properties of helical auxetic
yarns. Assidi et al. [5] presented the composites with auxetic in-
clusions showing both an auxetic behavior and enhancement of
their mechanical properties. Burlayenko and Sadowski [6] obtained
the effective elastic properties of foam-filled honeycomb cores of
sandwich panels. Grima et al. [7] investigated the hexagonal hon-
eycombs with zero Poisson’s ratios and enhances stiffness. Liu et
al. [8] presented the wave propagation in a sandwich plate with
a periodic composite core. Wan et al. [9] investigated the study of
negative Poisson’s ratios in auxetic honeycombs based on a large
deflection model. Greaves et al. [10] studied Possion’s ratio and
modern materials. Zhang et al. [11] investigated the influence of
cell micro-structure on the in-plane dynamic crushing of honey-
combs with negative Poisson’s ratio.

Milton [12] considered the composite materials with Poisson’s
ratios close to. Tian and Chung [13] studied the wave propaga-
tion in sandwich panel with auxetic core. Analytical expressions
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for the dynamic crushing strength of hexagonal honeycombs were
derived by Hu and Yu [14]. Strek et al. [15] investigated the finite
element analysis of auxetic obstacle deformation and fluid flow
in a channel. Strek et al. [16] investigated the effective mechan-
ical properties of concentric cylindrical composites with auxetic
phase, the computational analysis of sandwich-structured com-
posites with an auxetic phase [17] and the dynamic response of
sandwich panels with auxetic cores [18]. Gabriele Imbalzano et
al. [19] studied the three-dimensional modeling of auxetic sand-
wich panels for localized impact resistance. Thé-Duong Nguyen
and Duc [20] considered evaluation of elastic properties and ther-
mal expansion coefficient of composites reinforced by randomly
distributed spherical particles with negative Poisson’s ratios. Jopek
and Strek [21] investigated the thermal and structural dependence
of auxetic properties of composite materials. Duc and Cong stud-
ied [22] studied the nonlinear dynamic response and vibration of
sandwich composite plates with negative Poisson’s ratio in auxetic
honeycombs. In [23], Duc considered generally and comprehen-
sively about nonlinear static and dynamic stability of FGM plates
and shells.

Cylindrical panels play the important part in the modern indus-
tries. Therefore, research on static and dynamic response of these
structures have received special attention of a lot of authors in
the world. Duc et al. [24] investigated the vibration and nonlinear
dynamic response of imperfect three-phase polymer nanocompos-
ite panel resting on elastic foundations under hydrodynamic loads.
Duc and Quan [25] presented nonlinear buckling and postbuckling
of eccentrically stiffened FGM cylindrical panels resting on elas-
tic foundations and subjected to mechanical loads. Duc and Tung
[26] proposed the nonlinear response of pressure-loaded function-
ally graded cylindrical panels with temperature effects. In 2013,
Duc [27] also studied the nonlinear dynamic and vibration of ec-
centrically stiffened FGM double curved shallow shells.

In recent years, the safety of building and structures of infras-
tructure have become hot issues in all over the world because the
negative dynamic loads caused of increasing in terrorist activities,
accidental blast. As the results, the composite auxetic material un-
der blast load has gained interests and been studied more. Tan et
al. [28] presented the blast-wave impact mitigation using negative
effective mass density concept of elastic metamaterials. Adhikary
et al. [29] considered the influence of cylindrical charge orientation
on the blast response of high strength concrete panels. Zhai et al.
[30] investigated the experimental and numerical investigation into
RC beams subjected to blast after exposure to fire. Yao et al. [31]
presented the experimental and numerical study on the dynamic
response of RC slabs under blast loading. Lam et al. [32] studied
the response spectrum solutions for blast loading. Imbalzano et al.
[33] investigated the auxetic composite panels under blast load-
ings. Ding and Ngo [34] studied the dynamic response of double
skin fagades under blast loads. Duc et al. [35] presented the nonlin-
ear dynamic response and vibration of imperfect shear deformable
functionally graded plates subjected to blast and thermal loads.

From above literature review [1-17], we can see that there are
no studies about dynamic response and vibration of auxetic cylin-
drical panels yet. Moreover, auxetic plates and shells are complex
structures, all published studies on auxetic structures as mentioned
above use the Finite element method.

The most significant contribution of this work is using new ap-
proach - analytical solution to study nonlinear dynamic response
and vibration of sandwich composite panels with negative Pois-
son’s ratio in auxetic honeycombs. This method is more compli-
cated than numerical methods in the aspect of mathematics, es-
pecially when using FSTD, but the advantage is that the dynamic
response is expressed explicitly through material parameters, geo-
metric parameters of the structure and load, and therefore we can

Top outer skin hy
Internal core h,
K Auxetic core Bottom outer skin h;

Fig. 1. (left) Model of sandwich composite cylindrical panels on elastic foundations
with negative Poisson’s ratios in auxetic honeycombs core layer. (right) Dicretization
of the sandwich cylindrical panel.

actively control the behavior of the structure by selecting those
parameters appropriately.

By using analytical approach, this work focuses on studying the
nonlinear dynamic response and vibration of the sandwich com-
posite cylindrical panels with negative Poisson’s ratio in auxetic
honeycombs core structures on elastic foundations subjected to
blast and other mechanical loads. The sandwich composite cylin-
drical panels used in the work have three layers in which the top
and bottom outer skins are isotropic aluminum materials, the cen-
tral core layer has auxetic honeycomb structures using the same
aluminum material. The governing equations are derived within
the framework of Reddy’s first order shear deformation theory,
taken into account the von Karman nonlinearity and using the
Airy stress function, Galerkin method and fourth-order Runge-
Kutta method. The work also analyses and discusses the effects of
material and geometrical properties, elastic foundations and me-
chanical, blast and damping loads on the natural frequency and
the nonlinear dynamic response of the composite cylindrical pan-
els.

2. Sandwich composite cylindrical panel with auxetic core layer
model

2.1. Model

Consider a sandwich cylindrical panel with auxetic core of ra-
dius of curvature R, length of edges a,b and uniform thickness h
resting on elastic foundations. A coordinate system (x, y, z) is es-
tablished, in which the (x, y) plane is in the middle surface of the
panel and is z in the thickness direction (Fig. 1, left). The auxetic
core which has three layers in which the top and bottom outer
skins are isotropic aluminum materials; the central layer has hon-
eycomb structure using the same aluminum material (Fig. 1, right).
The bottom outer skin thickness is hi, internal honeycomb core
material thickness is hy and top outer skin thickness is hs, and the
total thickness of the shell is h = hy + hy + h3.

The reaction-deflection relation of Pasternak foundation is
given by
qe:lqw—kzvzw (1)
In which V2 = % + % w is the deflection of the cylindrical
panels, k1 and k, are Winkler foundation modulus and shear layer
of Pasternak foundation, respectively.

2.2. Honeycomb core materials

The sandwich composite cylindrical panels having the auxetic
honeycomb core layer with negative Poisson’s ratio are introduced
in this work. Unit cells of core material discussed in the paper are
shown in Fig. 2 where [ is the length of the inclined cell rib, h is
the length of the vertical cell rib, 6 is the inclined angle, o and
B define the relative cell wall length and the wall’s slenderness
ratio, respectively, which are important parameters in honeycomb
property.
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Table 1

Poisson’s ratio vq, in auxetic honeycomb layer of the composite cylindrical panel at

the limit value of small deformation.

Fig. 2. Geometric of the cell of honeycomb core layer.

=1 h-1s =2 h=25 h—3
6=-35  —27434  —12628 ~0.8201 —0.6073  —0.4821
6=-45  —24142 08918  —05469  -03944  —0.3084
0=-50  —23054  —07349  —04371 -03111 —0.2414
0=-60  —21547 —-04553  —0.3401 ~0.1767 ~0.1353
6=-75  —20353  —0.1299 ~0.0671 00452  —0.0341

Formulas in reference [3] are adopted for calculation of honey-
comb core material property
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where symbol “c” represents core material, E, G and p are Young’s
moduli, shear moduli and mass density of the origin material.

To investigate the effect of geometry of the cylindrical panels
with negative Poisson’s ratio vi, at the limit of small deformation
are presented in Table 1 for the combinations of 6 and ’} From
Table 1, it can be seen that Poisson’s ratio vi; increased when
geometric parameters of ’Tl increases and vice versa. The same for
in the case geometric parameters of 6 decreases, Poisson’s ratio
v1y increased and vice versa.

3. Theoretical formulations

In this work, Reddy’s first order shear deformation theory
(FSDT) is used to determine the dynamic response and natural fre-
quency of the panels.

The strain-displacement relations taking into account the von
Karman nonlinear terms are [23]

Ex 8)9 8)1
0 1
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0 1
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where in the above equations u,v,w are displacement compo-
nents corresponding to the coordinates (x, y, z), and ¢y, ¢, are the
rotations of normals to the mid-surface with respect to the x and
y axes, respectively.

Hooke’s law for the sandwich cylindrical panel with negative
Poisson’s ratio in auxetic honeycomb core layer is defined as fol-
lows:

T T T

OXT Ql] Q]Z 0 Ex
“}; =|Qf; Q; O &y (>
Oxy 0 0 QM
UyTz _ Qz{4 0 Vyz

O’XTZ 0 QST5 Vxz

UXC Qlcl Q1Cz 0 i Ex
U}E =|Qp Q35 O &y [
Oy 0 0 Qsce_ Vxy (4)
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Oyz | _ Qy O Vyz

O’XCZ 0 QSC5 Vxz

sz QlTl QITZ 0 i Ex
031/; =1 Qf Q, 0 &y (-
oy 0 0 QM
ay%}_ e, o (7]

ol 0 QL ||

where above index T, C, B are Top outer skin, Core material, Bot-
tom outer skin respectively.
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The forces and moments of the cylindrical panel can be ex-
pressed in terms of stress components across the cylindrical panel
thickness as [21,23]:

=

_hy 2

2
(Ni, Mj) = / af(1,z)dz+/af(1,z)dz

hy
)

hy

2

—hs
2+

+ / ol (1,2)dz, i=xy,xy
hy
2

h h h
% 7 F+h
Qi=K oBdz + K oldz + K oldz, i=x
1 iz iz iz s
h h h

(6)

Substitution of Eqs. (4) into Eqgs. (6) gives the constitutive rela-
tions as
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where K is the shear correction factors, and K = g.
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According to the first-order shear deformation theory, the equa-
tions of motion for the cylindrical panels are [23]:
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where ¢ is the damping coefficient [24], and

TZidz (i=0,1,2)

=

2
2
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(10)

The blast load p(t) is a short-term load and generated by an
explosion or by a shock-wave disturbance produced by an aircraft
flying at supersonic speed, or by a supersonic projectile, rocket or
missile operating in its vicinity. It can be expressed as [32-35]

p(t) = 1.8PSmax - L exp —bt , (11)
T, T,

where the “1.8” factor accounts for the effects of a hemispherical
blast, Pspyax is the maximum (or peak) static over-pressure, b is the
parameter controlling the rate of wave amplitude decay and T is
the parameter characterizing the duration of the blast pulse.

From the constitutive relations in Eq. (7), one can write
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1 A
0 _ 8.1
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(12)
The stress function f(x, y,t) is introduced as
3 f 32 f 3 f
Ny =—=, Ny=—, Ny = ———. 13
T 9y YT ax2 X axay (13)
Replacing Eq. (13) into Egs. (9a) and (9b) gives
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Substituting Eqs. (14a) and (14b) into Eqs. (9¢)-(9e) yields
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By substituting Eqs. (12) into Eqs. (7) and then into Egs. (15),
the system of motion Eqgs. (15) is rewritten as follows
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The geometric compatibility equation for a cylindrical panel is
written as [6,23]

02 ey Py (0Pw\?
ay? axz  9xdy x0y

2w w1 02w

Set Egs. (13) and (12) into the deformation compatibility equa-
tion (17), we obtain
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Egs. (16) and (18) are nonlinear equations in terms of variables
W, ¢x, ¢y and f and are used to investigate the nonlinear vibra-
tion and dynamic stability of the cylindrical panels with negative
Poisson’s ratio in auxetic honeycombs using the first order shear
deformation theory.

Considering the following boundary condition [5], four edges of
cylindrical panel are simply supported; immovable edges is under
blast load p. Thus, the boundary conditions are

W= Nyy =¢y =My =0,
W= Nyy =¢x=My =0,

Ny=—Pxhatx=0,a,

Ny=—-Pyhaty=0,b. (19)

The mentioned conditions in (19) can be satisfied identically if
the approximate solutions are represented by:
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where Ap =22 5, = b ,m,n=1,2,... are the natural numbers
of half waves m the corresponding direction x, y, and W, &y, @, -
the amplitudes which are functions dependent on time.
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Replacing Egs. (19)-(21) into Eqgs. (16), and then applying the
Galerkin method to the resulting equations yields:
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2 T T T T T T

Ref [35]

Table 2
Effect of elastic foundation and mechanical load on natural frequencies w(1/s) of
the cylindrical panels with auxetic core layer (vi; = —0.4371).

= = = Present
1.5 H

-
|
§05 8 A 'y |
i\ ¢
L [ [ -
R AR ADA AN !
R PR LR N ANATAK
0 o g Dl HAUANL
FELEPELRNERE IRURUAREYAYE
FELE o Y Y LTRWANRE
VTR
0.5+ ,‘ 4
\
1 . | L . . .
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

t(s)

Fig. 3. Comparison of nonlinear dynamic response of plate on elastic foundations
subjected to blast load with results in [35].

82
hotW + hoy @y + has @y + haaW? = p; agx (23b)
2 3¢y
h31W + h3 @y + h33 @y + h3yW* = py (23¢)

a2

in which the detail of coefficients hq;(i =1, 8), hj(G=2,3,k=
1,4), p1 may be found in Appendix.

Taking linear parts of the set of Eqs. (23), the natural frequen-
cies of the shell can be determined directly by solving determi-
nant

hi1 + Iow? hiz h13
ha21 h + p1w? ha3 =0 (24)
h3; h3z hs3 + p1w?

Solving Eqgs. (24) yields three angular frequencies, the smallest
one is being considered.

4. Numerical results and discussion

The parameters for the geometric parameters of sandwich
cylindrical panels with negative Poisson’s ratio in core layer were
chosen as below:

m=n=1, bj/a=1, b/h=20, h/l=2,
t/1=0.0138751, b/R=1/2, 6=-50°,
E=682GPa, v=0.33, p=2700kg/m>,
G=26GPa  h;=h3=0.00667m, hy=0.02.

4.1. Numerical verification

To evaluate the reliability of the method used in the paper, we
have compared our results with the findings in Ref. [35]. If we
chose R — oo, the nonlinear dynamic response of panel cylindri-
cal will turn into the nonlinear dynamic response of plate. Fig. 3
shows the comparison between present of the nonlinear dynamic
response of plate with only made of ceramic (N = 0) on the elastic
foundations subjected to blast load and the result of Duc et al in
[35]. In this work, the authors considered the nonlinear dynamic
and vibration of FGM plates subjected to blast loads with the vol-
ume fraction index N = 0. From Fig. 3, it can be seen that a good
agreement is obtained in this comparison.

The geometry parameters and material parameters in Fig. 3 are
chosen as follows [22]

ko =0 k2 =0.02 GPam k2 =0.04 GPam
Py=0
k1 =0 7259 8717 9964
k1 =0.3 GPa/m 7782 9157 10351
k1 =0.5 GPa/m 8112 9439 10602
Py =0.3 GPa
k1 =0 6846 8376 9667
k1 =0.3 GPa/m 7398 8834 10066
k1 =0.5 GPa/m 7745 9126 10323
Py=0.5 GPa
ki =0 6557 8141 9464
k1 =0.3 GPa/m 7131 8611 9871
k1 =0.5 GPa/m 7490 8910 10134
3
25240 . . ; . ; : . :
~, Bh=20, (m;n)=(1,1), h /1=2, 1=0.0138751, § =-50°, [ —-—-- alb=2
2+ - ——ab=1 |-
R=1/2, k =k _=0, P =P =0.
(DREVZ K =, =0. P, y 0 ——ab=05

.
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Fig. 4. Effects of ratio a/b on the nonlinear dynamic response of the cylindrical
panels with negative Poisson’s ratio in core layer under blast load.

N=0, m=n=1, b/a=1, b/h=20,

k1 =0.3 GPa/m, k> =0.02 GPam, T =(300+350)K

E{=ES=E=38443x1090 x T~ +1-3.07 x 107T
+2.16 x 107772 —8.94 x 10-11T3) Pa,

Gi;=Gl3=0Cy3=GC= 2(15—v)’

p = pe =2370 kg/m>.

4.2. Nonlinear dynamic response

The effect of elastic foundations and pre-loaded axial on the
natural frequency of the cylindrical panel with auxetic core are
shown in Table 2 (vi; = —0.4371). The value of the natural fre-
quency increases when the values ki and k; increase and the
natural frequency decreases when the value Py increases. It can
be seen that elastic foundations have positive effect whilst Py has
negative effect on the natural frequency value. Furthermore, the
Pasternak elastic foundation influences on the natural frequency
larger than the Winkler foundation.

Fig. 4 shows the influence of ratio a/b = (0.5,1,2) on the
nonlinear dynamic response of the sandwich cylindrical panels
(v12 = —0.4371) under blast loads. From Fig. 4, it can be seen that
when a/b is increased, the value of the panels amplitude increases
and vice versa.

Fig. 5 shows the effects of ratio b/h = (20, 30, 40) on the non-
linear dynamic response of the sandwich cylindrical panels (v =
—0.4371) under blast loads. It is obvious that, the higher the ratio
b/h, the higher the amplitude of the panels.
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Fig. 5. Effects of ratio a/b on the nonlinear dynamic response of the cylindrical
panels with negative Poisson’s ratio in core layer under blast load.

4

8 X 10 T T T T T T T T T
b/h=20, (m.m)=(1,1), h /1=2, V1=0.0138751, § =-50°, [= = =k -0
oL 1 ab=1,bR=1/2,k =0,P =P =0. | =—- k,=03 GPam| |
LY. 2oy k,= 0.5 GPa/
"\ 1= 0- a/m
W

———,

'
1
'
[}
1
1
[
[/

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
t(s)

Fig. 6. Effect of the linear Winkler foundation on the nonlinear dynamic response of
the sandwich composite cylindrical panels.

Figs. 6 and 7 consider the effects of coefficients ki, k, of the
linear Winkler and Pasternak foundations, respectively, on the non-
linear dynamic response of the sandwich panels under blast loads.
From the figures, we can see that the amplitude fluctuation of
the panels with negative Poisson’s ratio (vi; = —0.4371) decreases
when the coefficients of elastic foundations increase. In addition,
compared with the case of corresponding to the coefficient k; of
the Winkler model, the Pasternak type elastic foundation with co-
efficient k, has a stronger effect.

Fig. 8 illustrates the effect of parameter characterizing the du-
ration of the blast pulse on nonlinear response of the cylindrical
panels for three cases T = (0.005, 0.01, 0.02). From this figure, as
our expectation, the amplitude of vibration increases with increase
in the value of the parameter characterizing the duration of the
blast pulse T and vice versa.

Fig. 9 shows the variation of nonlinear dynamic response am-
plitudes of the sandwich panels (vi3 = —0.4371) with various val-
ues of pre-loaded axial compression Py. It can be seen that the
amplitude fluctuation of the panels increases when the value of
pre-loaded axial compression force Py increases.

Fig. 10 illustrates the effect of damping on amplitude-time
curves for nonlinear dynamic response of the sandwich panels
with three values of damping coefficient ¢ = (0.1,5,8). From

4
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b/h=20, (m.m)=(1,1), h /1=2, 1=0.0138751, 0 =509 - — _1 =0
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Fig. 7. Effect of the Pasternak foundation on the nonlinear dynamic response of the
sandwich composite cylindrical panels.
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Fig. 8. Effect of parameter characterizing the duration of the blast pulse Ts on non-
linear response of the sandwich composite cylindrical panels.
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Fig. 9. Effect of pre-loaded axial Py compression on nonlinear response of the sand-
wich composite cylindrical panels.
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Fig. 10. Effect of damping coefficient ¢ on the nonlinear dynamic response of the
sandwich composite panels under blast loads.

Fig. 10, it can be observed that the damping influences on the
nonlinear response of the shell are very small in the first vibra-
tion periods.

5. Conclusion

Auxetic material with negative Poisson’s ratio is a special and
fascinating material. In this work, using analytical approach, the
nonlinear dynamic response and vibration of the sandwich com-
posite cylindrical panels on elastic foundations with negative Pois-
son’s ratio core layer under mechanical, blast and damping loads
are studied. Reddy’s first order shear deformation theory, the Airy
stress function and Galerkin method are used to form the ba-
sic equations to determine the dynamic response and the natural
frequencies of the composite panels. The numerical results are in-
vestigated by the Runge-Kutta procedure.

The work has analyzed and discussed the effects of material
and geometrical properties, elastic foundations, mechanical, blats
and damping loads on the natural frequencies and the nonlinear
dynamic response of the sandwich composite panels. Our most im-
portant finding by analytical solution is the dynamic response and
natural frequency could be explicitly represented in these input
parameters. As the result, we are able to design a suitable auxetic
composite structures under the blast and other mechanical loads.

A point to be emphasized is that within the framework of this
work, we only consider a certain case in which the middle core
layer is an auxetic layer (having cell structure as shown in Fig. 2).
When the middle layer consists of a number of auxetic layers that
are connected together in the form of a honeycomb, the effect of
reducing shocks will be stronger [29-34]. However, in that case,
it is important to know exactly how many independent elastic
modulus the honeycomb structure has, how strain-displacement
relation is so that we can apply the analytical solutions. Unfortu-
nately, until now, there have been no experimental and theoretical
publishments covering all mechanical-physical parameters of this
multi-layered structures.
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