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Abstract—Protein structure prediction (PSP) is considered
as one of the most long-standing and challenging problem
in bioinformatic. In this paper, we present an efficient ant
colony optimization algorithm to predict the protein structure on
three-dimensional face-centered cubic lattice coordinates, using
hydrophobic-polar (HP) model and MiyazawaJernigan (MJ)
model to calculate the free energy. The reinforcement learning
information is expressed in the k-order Markov model, the
heuristic information is determined based on the increase of the
total energy. On a set of benchmark proteins, the results show
a remarkable efficiency of our algorithm by comparing with the
state-of-the-art algorithms.

I. INTRODUCTION

Proteins are essential components of all living cells and
play a vital role in biological processes of living organisms.
They are sequential chains of amino acid connected by single-
peptide bonds, and therefore also known as polypeptides.
The three-dimensional (3D) structure of a protein exposes its
properties and features. A misfolded protein can cause many
dangerous diseases, such as Alzheimer, diabetes, cancer [1],
[2]. Analyzing the structure of proteins allow us to understand
their features and produce medicines for diseases caused by
protein misfolding [3], [4]. Unfortunately, it is very complex
and difficult to simulate a protein nature into 3D structure [5]–
[7]. Therefore, predicting the protein structure still remains
as a highly challenging problem for both the biological and
computational communities.

Several in-vitro methods were proposed to study proteins
at atom-level like, such as X-ray crystallography [8], nuclear
magnetic resonance (NMR) [9]. However, these methods is
time-consuming and costly, unsuitable for large-scale situ-
ations. For this reason, computational methods [10], [11]
for predicting the structure of proteins are receiving great
attentions. So far, there are three computational approaches:
homology modeling, threading and ab initio. The first two
approaches can only be used when compatible labels exist
in the Protein Data Bank [12], limiting their applications.
Methods in the ab initio approach predict the 3D structure
of proteins, relying only on its primary amino acid sequence.
From a given amino acid sequence, they predict the 3D
structure of the protein by finding a unique 3D conformation
with minimal interaction energy [6]. The model for solving
this problem has been optimized by the search space and the
target function. In real-time, the search space is very large and
determining the energies [OF WHAT] is a complex and costly
task. High-resolution methods can only handle proteins with
length below 150 amino acids. That is why the lattice structure

is used, wherein every amino acid corresponds to a node to
discretized the search space. This simplicity allows developing
highly efficient algorithms, especially when applied to longer
proteins. Many methods to apply the lattice structure have
been considered [13]–[15], and among them, 3D face-centered
cubic lattice (3D-FFC) possesses many advantages over other
methods [16] [17] and have been used by many researchers
[14] [18] [19] [20].There are two popular energy models
for finding the approximately optimal structure of proteins.
They are Hydrophobic-Polar (HP) energy model [21] [14]
and MiyazawaJernigan (MJ) energy model [22] [23]. In HP-
model, every amino acid is considered a bead labelled as
hydrophobic (H) and polar (P), energy is determined from
the physical interactions between H-nodes, P-nodes are seen
as neutral. MJ-model takes interactions between specific pairs
of amino acids, thus is closer to the realistic model of free
energy. PSP has been classified as an NP-hard problem [24]
[25], and so heuristic and metaheuristic algorithms have been
proposed to solve it. Many of those are based on population,
such as artificial learning system [26], generic algorithm [27]
[28] [29], population-based algorithm [30], firefly algorithm
[18], particle swarm optimization [31], ant colony optimiza-
tion (ACO) [32]. Especially, Rashid has been proposed two
methods based on genetic algorithm: GAplus [19](HP energy
model) and MH-GA [20](graded energystrategically mixes
the MJ energy with the HP energy). The performance of
these algorithms is outstanding in comparison with several
the state of the art algorithms. In this paper, we present K-
ACOPSP algorithm to tackle PSP, in which the pheromone
trail is calculated according to k-order Markov model, which
is suitable for 3D structure reception. When using the HP
energy model, a local search algorithm is applied to the best
solution at each iteration step. Its effectiveness is shown by
comparing the simulation study against GAPlus [19], TLS [33]
MH-GA [20], Hybrid [34], Local Search [35]. The rest of
this paper is organized as follow. In section 2, we introduce
brief background knowledge about FCC lattice, HP-model,
MJ-model and some related works. Section 3 is dedicated for
new algorithm k-ACOPSP. The simulation study is shown in
section 4. The conclusion is presented in the last section.

II. PROBLEM STATEMENT AND RELATED WORKS

In this section, we briefly present the protein structure
prediction from its native amino acid sequence in the FCC
lattice representation of protein, objective functions(HP and
MJ), some related works, and ACO method.



TABLE I: Energy values between every protein pairs

CYS MET PHE ILE LEU VAL TRP TYR ALA GLY THR SER GLN ASN GLU ASP HIS ARG LYS PRO
CYS -1.06 0.19 -0.23 0.16 -0.08 0.06 0.08 0.04 0.0 -0.08 0.19 -0.02 0.05 0.13 0.69 0.03 -0.19 0.24 0.71 0.0
MET 0.19 0.04 -0.42 -0.28 -0.2 -0.14 -0.67 -0.13 0.25 0.19 0.19 0.14 0.46 0.08 0.44 0.65 0.99 0.31 0.0 -0.34
PHE -0.23 -0.42 -0.44 -0.19 -0.3 -0.22 -0.16 0.0 0.03 0.38 0.31 0.29 0.49 0.18 0.27 0.39 -0.16 0.41 0.44 0.2
ILE 0.16 -0.28 -0.19 -0.22 -0.41 -0.25 0.02 0.11 -0.22 0.25 0.14 0.21 0.36 0.53 0.35 0.59 0.49 0.42 0.36 0.25
LEU -0.08 -0.2 -0.3 -0.41 -0.27 -0.29 -0.09 0.24 -0.01 0.23 0.2 0.25 0.26 0.3 0.43 0.67 0.16 0.35 0.19 0.42
VAL 0.06 -0.14 -0.22 -0.25 -0.29 -0.29 -0.17 0.02 -0.1 0.16 0.25 0.18 0.24 0.5 0.34 0.58 0.19 0.3 0.44 0.09
TRP 0.08 -0.67 -0.16 0.02 -0.09 -0.17 -0.12 -0.04 -0.09 0.18 0.22 0.34 0.08 0.06 0.29 0.24 -0.12 -0.16 0.22 -0.28
TYR 0.04 -0.13 0.0 0.11 0.24 0.02 -0.04 -0.06 0.09 0.14 0.13 0.09 -0.2 -0.2 -0.1 0.0 -0.34 -0.25 -0.21 -0.33
ALA 0.0 0.25 0.03 -0.22 -0.01 -0.1 -0.09 0.09 -0.13 -0.07 -0.09 -0.06 0.08 0.28 0.26 0.12 0.34 0.43 0.14 0.1
GLY -0.08 0.19 0.38 0.25 0.23 0.16 0.18 0.14 -0.07 -0.38 -0.26 -0.16 -0.06 -0.14 0.25 -0.22 0.2 -0.04 0.11 -0.11
THR 0.19 0.19 0.31 0.14 0.2 0.25 0.22 0.13 -0.09 -0.26 0.03 -0.08 -0.14 -0.11 0.0 -0.29 -0.19 -0.35 -0.09 -0.07
SER -0.02 0.14 0.29 0.21 0.25 0.18 0.34 0.09 -0.06 -0.16 -0.08 0.2 -0.14 -0.14 -0.26 -0.31 -0.05 0.17 -0.13 0.01
GLN 0.05 0.46 0.49 0.36 0.26 0.24 0.08 -0.2 0.08 -0.06 -0.14 -0.14 0.29 -0.25 -0.17 -0.17 -0.02 -0.52 -0.38 -0.42
ASN 0.13 0.08 0.18 0.53 0.3 0.5 0.06 -0.2 0.28 -0.14 -0.11 -0.14 -0.25 -0.53 -0.32 -0.3 -0.24 -0.14 -0.33 -0.18
GLU 0.69 0.44 0.27 0.35 0.43 0.34 0.29 -0.1 0.26 0.25 0.0 -0.26 -0.17 -0.32 -0.03 -0.15 -0.45 -0.74 -0.97 -0.1
ASP 0.03 0.65 0.39 0.59 0.67 0.58 0.24 0.0 0.12 -0.22 -0.29 -0.31 -0.17 -0.3 -0.15 0.04 -0.39 -0.72 -0.76 0.04
HIS -0.19 0.99 -0.16 0.49 0.16 0.19 -0.12 -0.34 0.34 0.2 -0.19 -0.05 -0.02 -0.24 -0.45 -0.39 -0.29 -0.12 0.22 -0.21

ARG 0.24 0.31 0.41 0.42 0.35 0.3 -0.16 -0.25 0.43 -0.04 -0.35 0.17 -0.52 -0.14 -0.74 -0.72 -0.12 0.11 0.75 -0.38
LYS 0.71 0.0 0.44 0.36 0.19 0.44 0.22 -0.21 0.14 0.11 -0.09 -0.13 -0.38 -0.33 -0.97 -0.76 0.22 0.75 0.25 0.11
PRO 0.0 -0.34 0.2 0.25 0.42 0.09 -0.28 -0.33 0.1 -0.11 -0.07 0.01 -0.42 -0.18 -0.1 0.04 -0.21 -0.38 0.11 0.26

A. FCC lattice and presentation of protein

FCC lattice is discretized from three-dimensional space,
formed around triangles.Each node only has 12 neighbours
with relative coordinates to the current node equal to (1, 1, 0),
(1, 1, 0), (1, 1, 0), (1, 1, 0), (0, 1, 1), (0, 1, 1), (1, 0, 1), (1, 0,
1), (0, 1, 1), (1, 0, 1), (0, 1, 1) and (1, 0, 1). This is illustrated
in Fig. 1. Representation of protein on FFC lattice: Given a

Fig. 1: The 12 basis vectors of the neighbors of the origin
(0,0,0)

primary amino acids sequence, a feasible protein sequence is
a sequence where any pair of consecutive amino acids in the

primary sequence are neighbors.
Compared to other lattices, the FCC lattice is close to the

natural structure of proteins, with many advantages [16] [17]
such as highest packing density, root mean square deviation
values are smaller.

B. The energy models

Two energy models frequently used to determine the target
function of this problem are HP-model and MJ-model.

1) HP energy model: The HP energy model proposed by
Lau and Dill (1972) [21].In this model, the amino acids
Gly, Ala, Pro, Val, Leu, Ile, Met, Phe, Tyr, Trp are labelled
as hydrophobic (H), others are labelled as polar (P). Two
consecutive H-labelled amino acids will create negative energy
(-1). The complete HP energy of the model is calculated by
equation (1):

EHP =
∑
i<j−1

cij ∗ eij (1)

where:

cij =
{ 1 if node i and j are not consecutive but are neighbor

0 otherwise
(2)

eij =
{ -1: if amino acids i and j are both hydrophobic

0 otherwise
(3)

2) MJ energy model: Relies on the interactive trend of
amino acids, Miyazawa and Jernigan proposed the MJ enery
model in 1985 [22]. The complete MJ energy is calculated by
equation (4):

EMJ =
∑
i<j−1

cij ∗ eij (4)

Where: cij is determined by euqation (2) and Eij is taken
from table I.



C. The optimal problem and related algorithms
Optimal problem: for each given protein with the native

amino acid sequence of length m, PSP problem is transformed
into finding the representation with optimal EHP or EMJ

energy. Most recently, MH-GA [20] is proven to be the most
efficient algorithm to solve PSP by comparing its experiment
result with MJ-model against other state-of-the-art algorithms,
such as Hybrid algorithm [34], and Local Search [35].

III. K-ACOPSP ALGORITHM

Ant colony optimization (ACO) is a stochastic metaheuristic
method proposed by Dorigo [36] for traveling salesman prob-
lem (TSP). Till today, many variants have been developed to
tackle difficult optimization problems. In this algorithm, we
build a structure graph and transform the original problem
into a problem where solutions can be found by sequentially
executing a certain procedure on the built structure graph. An
ant colony executes the said procedure based on heuristic and
reinforcement learnings information (pheromone) in a random
fashion. When a solution is found, the algorithm appraises it
then update the pheromone to improve the chance of finding
better solutions on the next searches, this is repeated till the
terminate requirement is met. The properties affect the quality
of the algorithm are:
• A suitable structure graph.
• Heuristic information.
• How pheremone is stored and updated.

A. Construction graph
Without loss of generality, the first amino acid is put at

the origin of the space (0,0,0) and start there. Neighbours of
each node are indexed from 1 to 12. The structure graph for
a protein with the length of m has m-1 columns put in order
after the start vertex. There are arcs directed from each vertex
to all vertices in the next column. Illustrated in Fig. 2 With
this, any feasible sequence of length m will correspond to a
path on this graph.

Fig. 2: Construction Graph

B. Randomized procedure to find solution
Each ant will begin at the start vertex and randomly select a

vertex on the next column to go. Suppose the ant is on vertex
i of column n (or the start vertex), it will select vertex j out
of 12 vertices on the next column with the probability Pi,j
calculated by formula:

Pi,j =
[τi,j(k)]

α[ηi,j ]
β∑

l∈Coln+1
[τi,l(k)]α[ηi,l]β

(5)

Where:

• ηi,j is the heuristic information (see III-C).
• τi,j(k) is the pheromone information of k-degree Markov

model (see III-D).
• Colt is the set of vertices on column t.
• α, β are parameters of ACO system, deciding the impact

of heuristic and pheromone information on making deci-
sions.

Note: To ensure self-avoiding walk constraint, we set Pi,j = 0
when selecting vertex would cause 2 amino acids to have the
same coordinate on the protein representation.

C. Heuristic information

After the first i−1 amino acid were successfully represented
and vector j is the selected direction to go next, then:

• Let ηij be the heuristic value.
• Let Eij be the amount of increased energy.
• Let Emax = MAX(Eij)

Then: ηij = EMAX−Eij+eps , where eps is a small positive
number to ensure ηij is always positive. In our implements,
we set it to 0.01.

D. Pheromone update

Instead of making choice only based on pheromone
information in the current column, we can also take
previously selected vertices into consideration too. Let
τi,j,vi−1,vi−2,···,vi−k+1

be the pheromone when vertices
(i, j), (i − 1, v(i − 1)), · · · , (i − k + 1, vi−k+1) are selected.
This way, the pheromone will give more accurate information
during the searches.
Let τi,j(k) = τi,j,vi−1,vi−2,···,vi−k+1

.
After every round of search, we update pheromone with
SMMAX [37] formula:

τi,j(k) = (1− ρ)τi,j(k) + ∆ij (6)

where:

∆ij =
{ ρτmin if(i, j) ∈ T
ρτmin if(i, j) /∈ T (7)

T is the set of selected vertices in the best solution found in
this round.

E. Local Search

At each step of the local search procedure, we first identify
the hydrophobic core center (HCC) as the center of the
hydrophobic amino acid (H). The coordinates of HCC are
determined as follows:

xHCC =
1

nH

nH∑
i=1

xi; yHCC =
1

nH

nH∑
i=1

yi; zHCC =
1

nH

nH∑
i=1

zi

(8)
Where nH is the number of amino acids H.
Then, we choose an amino acid H to move closer to the HCC
so as not to increase the free energy of the protein..



TABLE II: The result when HP energy model were used

Protein details State-of-the-art ACO
SEQ size HS LBFE TLS GA plus

best avg best avg time(s) best avg time(s) RI(%)
H1 48 24 -69 -68 -66 -69 -69

1800

-69 -69 308 0.00
H2 48 24 -69 -68 -65 -69 -69 -69 -69 321 0.00
H3 48 24 -72 -69 -66 -72 -72 -72 -72 316 0.00
H4 48 24 -71 -70 -65 -71 -71 -71 -71 316 0.00
H5 48 24 -70 -68 -65 -70 -70 -70 -70 321 0.00
H6 48 24 -70 -69 -66 -70 -69 -70 -70 324 1.45
H7 48 24 -70 -69 -66 -70 -70 -70 -70 320 0.00
H8 48 24 -69 -67 -64 -69 -69 -69 -69 320 0.00
H9 48 24 -71 -68 -66 -71 -71 -71 -71 313 0.00

H10 48 24 -68 -68 -65 -68 -68 -68 -68 324 0.00
F90 1 90 50 -168 -164 -160 -168 -166

7200

-168 -166 584 0.00
F90 2 90 50 -168 -165 -158 -168 -165 -167 -165 589 0.00
F90 3 90 50 -167 -165 -159 -167 -164 -165 -163 596 -0.61
F90 4 90 50 -168 -165 -159 -168 -165 -167 -163 592 -1.21
F90 5 90 50 -167 -165 -159 -167 -166 -167 -166 590 0.00

S1 135 100 -357 -351 -341 -355 -348 -357 -354 878 1.72
S2 151 100 -360 -355 -343 -356 -349 -356 -352 996 0.86
S3 162 100 -367 -355 -340 -361 -348 -359 -353 1062 1.44
S4 164 100 -370 -354 -343 -364 -352 -360 -355 1077 0.85

F180 1 180 100 -378 -338 -326 -351 -341

18000

-352 -343 1194 0.59
F180 2 180 100 -381 -345 -333 -362 -346 -350 -343 1185 -0.87
F180 3 180 100 -378 -352 -338 -361 -350 -363 -357 1189 2.00

R1 200 100 -384 -332 -318 -355 -345 -353 -341 1341 -1.16
R2 200 100 -383 -337 -324 -360 -346 -347 -337 1359 -2.60
R3 200 100 -385 -339 -323 -363 -344 -346 -337 1342 -2.03

3MSE 179 84 -323 -268 -251 -292 -278 -286 -278 1312 0.00
3MR7 189 93 -355 -304 -287 -330 -316 -326 -318 1324 0.63
3MQZ 215 120 -474 -404 -384 -427 -412 -426 -415 1547 0.73
3NO6 229 116 -455 -390 -372 -423 -402

28800
-410 -400 1689 -0.50

3NO3 258 122 -494 -388 -372 -421 -404 -425 -411 1751 1.73
3ON7 279 146 u/k -491 -461 -519 -490 -510 -495 1803 0.00

Algorithm 1 Procedure of Local Search

1: while stop conditions not satisfied do
2: Caculate the HCC coordinates;
3: Move← SeclectMove();
4: if Move = Null then
5: Break;
6: ApllyMove();

Algorithm 2 Procedure of k-ACO algorithm

1: Initialize pheromone trail matrix and set A of p ants;
2: while stop conditions not satisfied do
3: for a ∈ A do
4: Ant a build a solution by random walk procedure;
5: Update pheromone trail follows SMMAS rule;
6: Use local search on the best solution;
7: Update the best solution;
8: Decode solution and save the best solution;

IV. SIMULATION STUDY

A. Different values of K

MJenergy is the average of energy values returned by our
algorithm and Loops is the average of the number of loops
that our algorithm will be convergent.

TABLE III: The result when trying multiple values of K

K 3NO3 3NO6 3ON7
MJenergy Loops MJenergy Loops MJenergy Loops

1 -110.29 494 -118.56 456 -120.18 565
2 -128.36 1043 -134.67 1126 -136.8 1247
3 -141.03 2230 -150.13 2371 -154.8 2612
4 -141.99 3104 -150.44 3462 -154.26 3790
5 -141.24 3407 -148.62 3821 -154.34 4207

From the table III we see that the number of loops needed
for convergence increases when K increases. Howevr, the
value of MJenergy increases significantly when K increases
from 1 to 3. Values of MJenergy when K ∈ {3, 4, 5} do not
differ much.

The larger K, the more running time and memory our
algorithm needed to complete. Hence, we choose K = 3 as
default for the algorithm.

B. HP energy model

The data sets were used are H,F90,S,F180,R (taken from
Peter Clote laboratory website1) and 3MSE, 3MR7, 3MQZ,
3NO6, 3NO3, 3ON7 from Critical Assessment of Protein

1http://bioinformatics.bc.edu/clotelab/FCCproteinStructure

http://bioinformatics.bc.edu/clotelab/FCCproteinStructure


TABLE IV: The benchmark proteins used in our experiments with MJ model

ID Length Protein sequence
4RXN 54 MKKYTCTVCGYIYNPEDGDPDNGVNPGTDFKDIPDDWVCPLCGVGKDQFEEVEE
1ENH 54 RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI
4PTI 58 RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA
2IGD 61 MTPAVTTYKLVINGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE
1YPA 64 MKTEWPELVGKAVAAAKKVILQDKPEAQIIVLPVGTIVTMEYRIDRVRLFVDKLDNIAQVPRVG
1R69 69 SISSRVKSKRIQLGLNQAELAQKVGTTQQSIEQLENGKTKRPRFLPELASALGVSVDWLLNGTSDSNVR
1CTF 74 AAEEKTEFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSKDDAEALKKALEEAGAEVEVK
3MX7 90 MTDLVAVWDVALSDGVHKIEFEHGTTSGKRVVYVDGKEEIRKEWMFKLVGKETFYVGAAKTKATINIDAISGFA YEYTLE-

INGKSLKKYM
3NBM 108 SNASKELKVLVLCAGSGTSAQLANAINEGANLTEVRVIANSGAYGAHYDIMGVYDLIILAPQVRSYYREMKVDA

ERLGIQIVATRGMEYIHLTKSPSKALQFVLEHYQ
3MQO 120 PAIDYKTAFHLAPIGLVLSRDRVIEDCNDELAAIFRCARADLIGRSFEVLYPSSDEFERIGERISPVMIAHGSY

ADDRIMKRAGGELFWCHVTGRALDRTAPLAAGVWTFEDLSATRRVA
3MRO 142 SNALSASEERFQLAVSGASAGLWDWNPKTGAMYLSPHFKKIMGYEDHELPDEITGHRESIHPDDRARVLAALKA

HLEHRDTYDVEYRVRTRSGDFRWIQSRGQALWNSAGEPYRMVGWIMDVTDRKRDEDALRVSREELRRL
3PNX 160 GMENKKMNLLLFSGDYDKALASLIIANAAREMEIEVTIFCAFWGLLLLRDPEKASQEDKSLYEQAFSSLTPREA

EELPLSKMNLGGIGKKMLLEMMKEEKAPKLSDLLSGARKKEVKFYACQLSVEIMGFKKEELFPEVQIMDVKEYL
KNALESDLQLFI

3MSE 180 GISPNVLNNMKSYMKHSNIRNIIINIMAHELSVINNHIKYINELFYKLDTNHNGSLSHREIYTVLASVGIKKWD
INRILQALDINDRGNITYTEFMAGCYRWKNIESTFLKAAFNKIDKDEDGYISKSDIVSLVHDKVLDNNDIDNFF
LSVHSIKKGIPREHIINKISFQEFKDYMLSTF

3MR7 189 SNAERRLCAILAADMAGYSRLMERNETDVLNRQKLYRRELIDPAIAQAGGQIVKTTGDGMLARFDTAQAALRCA
LEIQQAMQQREEDTPRKERIQYRIGINIGDIVLEDGDIFGDAVNVAARLEAISEPGAICVSDIVHQITQDRVSE
PFTDLGLQKVKNITRPIRVWQWVPDADRDQSHDPQPSHVQH

3MQZ 215 SNAMSVQTIERLQDYLLPEWVSIFDIADFSGRMLRIRGDIRPALLRLASRLAELLNESPGPRPWYPHVASHMRRR
VNPPPETWLALGPEKRGYKSYAHSGVFIGGRGLSVRFILKDEAIEERKNLGRWMSRSGPAFEQWKKKVGDLRDFG
PVHDDPMADPPKVEWDPRVFGERLGSLKSASLDIGFRVTFDTSLAGIVKTIRTFDLLYAEAEKGS

3NO3 238 GKDNTKVIAHRGYWKTEGSAQNSIRSLERASEIGAYGSEFDVHLTADNVLVVYHDNDIQGKHIQSCTYDELKDLQ
LSNGEKLPTLEQYLKRAKKLKNIRLIFELKSHDTPERNRDAARLSVQMVKRMKLAKRTDYISFNMDACKEFIRLC
PKSEVSYLNGELSPMELKELGFTGLDYHYKVLQSHPDWVKDCKVLGMTSNVWTVDDPKLMEEMIDMGVDFITTDL
PEETQKILHSRAQ

3NO7 248 MGSDKIHHHHHHENLYFQGMTFSKELREASRPIIDDIYNDGFIQDLLAGKLSNQAVRQYLRADASYLKEFTNIYA
MLIPKMSSMEDVKFLVEQIEFMLEGEVEAHEVLADFINEPYEEIVKEKVWPPSGDHYIKHMYFNAFARENAAFTI
AAMAPCPYVYAVIGKRAMEDPKLNKESVTSKWFQFYSTEMDELVDVFDQLMDRLTKHCSETEKKEIKENFLQSTI
HERHFFNMAYINEKWEYGGNNNE

3ON7 280 GMKLETIDYRAADSAKRFVESLRETGFGVLSNHPIDKELVERIYTEWQAFFNSEAKNEFMFNRETHDGFFPASIS
ETAKGHTVKDIKEYYHVYPWGRIPDSLRANILAYYEKANTLASELLEWIETYSPDEIKAKFSIPLPEMIANSHKT
LLRILHYPPMTGDEEMGAIRAAAHEDINLITVLPTANEPGLQVKAKDGSWLDVPSDFGNIIINIGDMLQEASDGY
FPSTSHRVINPEGTDKTKSRISLPLFLHPHPSVVLSERYTADSYLMERLRELGVL

Structure Prediction (CASP) competition2. These date were
also used in [Rashid1].

To compare and evaluate the performance of k-ACO algo-
rithm with the state-of-the-art approaches, we use the measure
Relative Improvement (RI). Let denote EA and EB is the
average energy values achieved by k-ACO algorithm and the
state-of-the-art approaches.

RI =
EA − EB

EB

TABLE V: Comparison between GA and ACO when the
running time of ACO has been increased

Protein details GA plus ACO
SEQ size HS LBFE best avg time(s) best avg time(s)

F90 3 90 50 -167 -167 -164 7200 -165 -164 1763
F90 4 90 50 -168 -168 -165 7200 -167 -165 1782

F180 2 180 100 -381 -362 -346 18000 -350 -346 3496
R1 200 100 -384 -355 -345 18000 -353 -345 4107
R2 200 100 -383 -360 -346 18000 -348 -340 4092
R3 200 100 -385 -363 -344 18000 -346 -340 4128

3NO6 229 116 -455 -423 -402 28800 -411 -404 5092

2http://predictioncenter.org

k-ACO was compared with 2 other algorithms TLS [33] and
GA [19]. For each protein, each of 3 algorithms were run 50
times. The table below shows the best and the average result
of 50 runs for each protein.

From the table II, it is straightforward to see that k-ACO
finds the better result when compared to TLS. However, the
results of k-ACO and GA are nearly the same, the difference
between them always below 3%. K-ACO performed better
than GA in 10 protein sequences while GA found better results
than k-ACO in 7 protein sequences.

To further compare with GA, we increased the number of
loops to 60000 and applied this new change for those 7 protein
sequences where GA did better.

We see that, when increasing the number of loops, k-ACO
performance improved and approximately as good as GA.

C. MJ energy model

In this section, data in table IV were used for MJ energy
model. These data were also used in [20].

We run k-ACO on the dataset above and compare the result
with other algorithms, namely Hybrid (Ullah,2010), Local
search (Shatabda,2013), GA(Rashid,2016). This is the best and
average result taken from 50 runs for each protein sequence.

From the column RI of Table VI, we see that for all proteins
sequences, our algorithm improves the average energy ranging
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Fig. 3: New best Structure found by k-ACO for two largest datasets

TABLE VI: Comparing k-ACO algorithm against other proposed algorithms. The bold values are the best one in their row

Protein details Hybrid Local search GA ACO
SEQ size H best avg best avg best avg best avg RI(%)

4RXN 54 27 -32.61 -30.94 -33.33 -31.21 -36.36 -33.6 -37.98 -36.84 9.64
1ENH 54 19 -35.81 -35.07 -29.03 -28.18 -38.39 -35.67 -37.51 -36.49 2.3
4PTI 58 32 -32.07 -29.37 -31.16 -28.33 -35.65 -31.01 -37.2 -33.35 7.55
2IGD 61 25 -38.64 -32.54 -32.36 -28.29 -36.49 -33.75 -36.77 -35.09 3.97
1YPA 64 38 n/a n/a -33.33 -32.15 -40.14 -36.33 -40.52 -38.93 7.16
1R69 69 30 -34.2 -31.85 -33.35 -32.2 -40.85 -36.28 -39.73 -38.59 6.37
1CTF 74 42 -38 -35.28 -45.83 -40.94 -51.5 -47.29 -53.72 -51.09 8.04
3MX7 90 44 n/a n/a -44.81 -42.32 -56.32 -50.95 -58.1 -56.04 9.99
3NBM 108 56 n/a n/a -52.44 -49.51 -49.51 -49.9 -59.71 -57.5 15.23
3MQO 120 68 n/a n/a -64.04 -58.84 -62.25 -54.56 -70.62 -67.5 14.72
3MRO 142 63 n/a n/a -87.38 -82.24 -90.05 -82.32 -101.34 -98.2 19.29
3PNX 160 84 n/a n/a -103.04 -96.86 -102.55 -88.06 -116.31 -112.18 15.82
3MSE 180 83 n/a n/a n/a n/a -92.61 -84.6 -110.9 -106.44 25.82
3MR7 189 88 n/a n/a n/a n/a -93.65 -83.93 -120.64 -115.02 37.04
3MQZ 215 115 n/a n/a n/a n/a -104.29 -95.22 -132.09 -126.62 32.98
3NO3 238 102 n/a n/a n/a n/a -122.97 -108.7 -151.84 -147.86 36.03
3NO7 248 112 n/a n/a n/a n/a -133.95 -117.11 -163.89 -156.01 33.22
3ON7 280 135 n/a n/a n/a n/a -116.88 -96.64 -167.12 -160.29 65.86

from 2.3% to 65.86%.

TABLE VII: Running time of ACO and GA

Protein details ACO GASEQ size H
4RXN 54 27 706.97

3600

1ENH 54 19 708.4
4PTI 58 32 770.32
2IGD 61 25 798.04
1YPA 64 38 848.82
1R69 69 30 916.28
1CTF 74 42 991.53
3MX7 90 44 1183.9
3NBM 108 56 1414.94
3MQO 120 68 1584.95
3MRO 142 63 1831.22
3PNX 160 84 2061.74
3MSE 180 83 2337.52

7200

3MR7 189 88 2461.5
3MQZ 215 115 2806.42
3NO3 238 102 3053.11
3NO6 248 112 3154.14
3ON7 280 135 3576.92

V. CONCLUSION

In this paper, we presented the k-ACOPSP algorithm to
predict the protein structure on FCC lattice, using two different
energy models: HP model and MJ model. This algorithm has
a simple structure graph, the use of pheromone information in
the k-order Markov model is more suitable for the 3D structure
prediction and increase the efficiency of the ACO method.
The simulation study shows that the proposed algorithm out-
performs the state-of-the-art algorithms both in quality and
running time. The algorithm can be improved by applying
local search techniques according to memetic schemes. In this
algorithm, the pheromone trail in the k-order Markov model
with k = 3 is appropriate. Increasing k costs more memory and
time, but the efficiency is not much improved. This technique
can be applied to ant colony optimization algorithms for other
similar problems.

REFERENCES

[1] A. Smith, “Protein misfolding,” Nature Reviews Drug Discovery, vol.
426, no. 6968, pp. 78–102, 2003.

[2] C. M. Dobson, “Protein folding and misfolding,” Nature 426, pp. 884–
890, 2003.

[3] A. Breda and N. F. Valadares, “Protein structure, modelling and appli-
cations,” Bioinformatics in Tropical Disease Research: A Practical and
Case-Study Approach, 2007.



[4] P. Veerapandian, Structure-based drug design, 1997.
[5] B. Alberts, A. Johnson, M. Lewis, Julianand Raff, K. Roberts, and

P. Walter, “The shape and structure of proteins,” Molecular Biology of
the Cell, 4th edition, 2002.

[6] C. Anfinsen, “The principles that govern the folding of protein chains,”
Science 191(4069), pp. 223–230, 1973.

[7] “So much more to know,” The Science Editorial, vol. 309, no. 5731,
2005.

[8] L. Bragg, The Development of X-Ray Analysis, 1st Edition, 1975.
[9] E. T. Baldwin, I. T. Weber, and R. S. Charles, “Crystal structure of

interleuk in 8: symbiosis of nmr and crystallography,” Proc Natl Acad
Sci USA, pp. 502–506, 1991.

[10] C. A. Floudas, “Computational methods in protein structure prediction,”
Biotechnology and Bioengineering, vol. 97, pp. 207–213, 2007.

[11] C. M. Dobson, “Computational biology: protein predictions,” pp. 176–
177, 2007.

[12] H. Berman, “The protein data bank,” Nucleic Acids Res, pp. 235–242,
2000.

[13] A. Bechini, “On the characterization and software implementation of
general protein lattice models,” PLoS ONE, 2013.

[14] I. Dotu, M. Cebrian, P. V. Hentenryck, and P. Clote, “On lattice protein
structure prediction revisited,” IEEE/ACM Trans Comput Biol Bioinform,
2011.

[15] M. Mann and R. Backofen, “Exact methods for lattice protein models,
bio-algorithms and med-systems,” vol. 10, pp. 213–225, 2014.

[16] D. Covell and R. Jernigan, “Conformations of folded proteins in re-
stricted spaces,” Biochemistry, pp. 3287–94, 1990.

[17] T. C. Hales, “A proof of the kepler conjecture,” The Annals of Mathe-
matics, vol. 162, no. 3, pp. 1065–1185, 2005.

[18] B. Maher, A. A. Albrecht, M. Loomes, X.-S. Yang, and K. Steinhfel, “A
firefly-inspired method for protein structure prediction in lattice models,”
Biomolecules, pp. 56–75, 2014.

[19] M. A. Rashid, F. Khatib, M. T. Hoque, and A. Sattar, “An enhanced
genetic algorithm for ab initio protein structure prediction,” IEEE
Transactions on Evolutionary Computation, vol. 20, pp. 627–644, 2016.

[20] M. A. Rashid, S. Iqbal, F. Khatib, M. T. Hoque, and A. Sattar, “Guided
macro-mutation in a graded energy based genetic algorithm for protein
structure prediction,” Computational Biology and Chemistry, pp. 162–
177, 2016.

[21] K. F. Lau and K. A. Dill, “A lattice statistical mechanics model of
the conformational and sequence spaces of proteins,” Macromolecules,
vol. 22, pp. 3986–3997, 1989.

[22] S. Miyazawa and R. L. Jernigan, “Estimation of effective interresidue
contact energies from protein crystal structures: quasi-chemical approx-
imation,” Macromolecules 18(3), pp. 534–552, 1985.

[23] S. Miyazawa and R. Jernigan, “Residueresidue potentials with a favor-
able contact pair term and an unfavorable high packing density term,
for simulation and threading,” J Mol Biol, pp. 623–644, 1996.

[24] R. Unger and J. Moult, “Finding the lowest free energy conformation
of a protein is an np-hard problem: Proof and implications,” Bulletin of
Mathematical Biology, pp. 1183–1198, 1993.

[25] M. Paterson and T. Przytycka, “On the complexity of string folding,”
Discrete Applied Mathematics, vol. 71, pp. 217–230, 1996.

[26] V. Cutello, G. Nicosia, M. Pavone, and J. Timmis, “An immune
algorithm for protein structure prediction on lattice models,” IEEE
Transactions on Evolutionary Computation, vol. 11, pp. 101–117, 2007.

[27] M. T. Hoque, M. Chetty, and A. Sattar, “Protein folding prediction in
3d fcc hp lattice model using genetic algorithm,” IEEE Congress on
Evolutionary Computation, pp. 4138–4145, 2007.

[28] S. R. D. Torres, D. C. B. Romero, L. F. N. Vasquez, and Y. J. P.
Ardila, “A novel ab-initio genetic-based approach for protein folding
prediction,” A novel ab-initio genetic-based approach for protein folding
prediction, pp. 393–400, 2007.

[29] “A genetic algorithm for 3d protein folding simulations. in: The 5th
international conference on genetic algorithms.”

[30] L. Kapsokalivas, X. Gan, A. Albrecht, and K. Steinhfel, “Population-
based local search for protein folding simulation in the mj energy model
and cubic lattices,” Comput Biol Chem, pp. 283–294, 2009.

[31] N. Mansour, “Particle swarm optimization approach for protein structure
prediction in the 3d hp model,” Interdiscip Sci 4, pp. 190–200, 2013.

[32] A. Shmygelska and H. H. Hoos, “An ant colony optimisation algorithm
for the 2d and 3d hydrophobic polar protein folding problem,” BMC
Bioinformatics, 2005.

[33] P. Clote, M. Cebrian, I. Dotu, and P. V. Hentenryck, “Protein structure
prediction on the face centered cubic lattice by local search,” Proceed-
ings of the Twenty-Third AAAI Conference on Artificial Intelligence, pp.
241–246, 2008.

[34] A. D. Ullah and K. Steinhfel, “A hybrid approach to protein folding
problem integrating constraint programming with local search,” Selected
articles from the Eighth Asia-Pacific Bioinformatics Conference, vol. 11,
2010.

[35] S. Shatabda, M. A. H. Newton, and A. Sattar, “Mixed heuristic local
search for protein structure prediction,” Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, 2013.

[36] M. Dorigo and C. A. Maniezzo, Vittorio and, “Positive feedback as a
search strategy,” Tech. Rep., 1991.

[37] D. D. Dong, H. X. Huan, and D. Q. Huy, “On the pheromone update
rules of ant colony optimization approaches for the job shopscheduling
problem,” pp. 153–160, 2008.

Dang Thanh Hai: The problem of 3D protein structure
prediction is an important and challenge task in Bioinformtics.
This paper presents an efficient ant colony optimization based
algorithm for predicting the protein structure on a three-
dimensional face-centered cubic lattice coordinate. The algo-
rithm use the hydrophobic-polar (HP) model and Miyazawa-
Jernigan (MJ) model to calculate the free energy as the score
of the objective function. The approach descirbed in the paper
is highly potential for a publication in the follow-up.
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