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Abstract– A multistage automatic detection system for epileptic spikes is introduced as an assistant tool for epileptic analysis
and diagnosis based on electroencephalogram (EEG). The system consists of four stages: preprocessing, feature extraction,
classifier and expert system. Multiple state-of-the-art signal processing and machine learning techniques including wavelet
transform, spectral filtering, artificial neural network are utilized in order to improve the ability of the overall system,
stage by stage. Compared to other works, our contributions are three-fold: peaks in the EEG recording are categorized into
two groups of non-epileptic spikes and possible epileptic spikes by a committee of three perceptrons; appropriate mother
wavelet and wavelet scales are selected for the best system performance; and, based on the neurological fact that an epileptic
spike is usually followed by a slow wave, a simple expert system is presented to eliminate pseudo-spikes which are closely
analogous to true epileptic spikes. Experimental results show that the proposed system is capable of detecting epileptic
spikes efficiently.

Keywords– Epilepsy, electroencephalogram (EEG), spike, time-frequency, continuous wavelet transform, artificial neural
network, expert system, neurology.

1 Introduction

Epilepsy is a set of chronic neurological disorders,
which can be characterized by seizures and epilep-
tiforms. Epileptic seizures result from abnormal, ex-
cessive or hyper synchronous neuronal activity in the
brain. Epileptiforms are waveforms related to epilepsy,
such as spikes, sharp waves and spike-wave complexes
and occur before or after a seizure [1]. Scalp electroen-
cephalogram (EEG), which is the recording of electrical
activity of the brain, measures voltage fluctuations re-
sulting from ionic current flows within the neurons of
the brain by using electrodes placed on the scalp.

Among different tools for epilepsy analysis, scalp
EEG remains the most accessible method. Despite li-
mited spatial resolution, EEG continues to be a valu-
able tool for research and diagnosis, especially when
millisecond-range temporal resolution is required. Un-
like 24-hour monitoring where one aims to record the
occurrence of seizures of a patient, in clinical recording
often only epileptiforms are observed. This paper consi-
ders the analysis of epileptic spikes in clinical recording
in Vietnam.

In the procedure of epilepsy diagnosis, automatic
spike detection is important because it can provide
much information, such as spike density and patient
syndrome. Much effort has been spent on spike de-

tection over the last 40 years. The reader is refer-
red to excellent reviews on the topic that can be
consulted in [2–4].

While manual spike detection via visual identifica-
tion by neurologists is very time consuming, state-of-
the-art automatic spike detection remains difficult for a
number of reasons. First, neurologist-based definitions
of a spike are not simplistic [2]. Two human neuro-
logists often do not mark the same events as spikes
leading to a large ratio of candidate spike events to
actual spike events. Second, spike morphology and
background vary widely between patients, and well
defined training sets are time consuming and expensive
to develop. In Vietnam, the application of EEG recor-
ding in epilepsy diagnosis is still at a rudimentary stage
due to (i) scarcity of professional neurologists who can
provide high-quality analysis based on electrical neural
information, (ii) shorter period (10 minutes) of clinical
recording compared to standard conventional period
(20 minutes) and (iii) abundance of artefacts caused by
atypical recording environment. The last two reasons
often make the job of Vietnamese neurologists become
harder than their international colleagues, leading to
high rates of false visual identification of epileptiforms.
Thus, it is important for Vietnamese biomedical signal
processing community to develop a system capable
of identifying epileptiforms automatically, in order to

1859-378X–2018-1201 c© 2018 REV



2 REV Journal on Electronics and Communications, Vol. 8, No. 1–2, January–June, 2018

assist neurologists to improve the quality of epilepsy
analysis and diagnosis.

Over the past decades, various methods have been
proposed to solve the problem of automatic epilepsy
spike detection. Some methods compared the measure-
ments of electrographic parameters of EEG waveforms
with representative thresholds of typical true spike
(e.g., [5, 6]). Some others (e.g, [7]) proposed some filte-
ring techniques for spike detection. In another appro-
ach, the authors in [8] developed a different system for
spike detection, which is sensitive to the different states
of EEG such as active wakefulness, quiet wakefulness,
desynchronized EEG, phasic EEG, and slow EEG.

In several recent reviews, automatic detection met-
hods are categorized into different groups based on
neuro-physiological [1] or engineering [4] characteris-
tics of the methods. However, none of the existing ca-
tegorizations provides an adequate and exact overview
for readers on the entire set of spike detection systems.

In this work, automatic detection systems for epi-
leptic spikes are categorized based on their structure
into two groups: simplex and multi-stage. On the one
hand, systems in the simplex group are the ones with
a simple structure, normally consisting of one or two
engineering techniques. On the other hand, those in the
multi-stage group are built up by combining multiple
signal processing and machine learning techniques in
order to take advantages of each specific technique
over capturing and extracting suited features and over
processing and classifying information. Usually, the
multi-stage systems outperform the simplex systems in
identifying epileptic spikes.

In the simplex group, one of the very first works is
the application of an autoregressive model for spike
detection. The criteria and the decision making pro-
cess that the neurologist used in identifying spikes
were imitated in [9] for the same task based on the
information provided by decomposing EEG signals into
elementary waves. In another work [10], EEG signals
are analyzed by Independent Component Analysis, and
then, components resembling epileptic activities are se-
lected and interpreted by neurologists. Morphological
Filters are employed in [11] for the task of epileptic
spike detection using geometric characteristics. Some
machine learning techniques such as Artificial Neural
Networks (ANN) [12, 13], K-means clustering [14] and
Support Vector Machines [15] have been used as ef-
fective tools for spike classification and detection based
on two main approaches, whether using raw EEG or
features extracted from raw EEG for model training
and testing.

In the multi-stage group, three existing systems were
presented by Liu et al. in [16], Hassanpour and Bo-
ashash in [17], and Acır and Güzeliş in [18], and,
comprising of multiple stages of different signal pro-
cessing and machine learning models and proved
to be effective.

The system in [16] is for 24-hour monitoring and
combines multiple signal-processing methods in a mul-
tistage scheme that integrates adaptive filtering, wavelet
transform, an ANN and an expert system. Inputs of

the ANN in the first stage of the system are features
extracted after the wavelet transformation of the raw
EEG. By doing that, nonstationary components inclu-
ding pseudo-spike artifacts like electromyogram (EMG)
artifacts are identified and reduced.

In [17], a two-stage spike detection technique is
introduced based on time–frequency distributions to
account for the nonstationarity exhibited in EEG sig-
nals. In the first stage, noise is reduced in the time–
frequency domain based on a singular value decom-
position based method, resulting in an enhanced time–
frequency distribution of the signal. In the second stage,
two frequency slices of this enhanced distribution are
extracted and then become the input of the smoothed
nonlinear energy operator (SNEO) for spike detection.
The system has a high computational complexity be-
cause of calculations in the time–frequency domain for
the entire data. This is not however a problem if one
uses parallel processing efficiently.

Meanwhile, the system in [18] is for clinical monito-
ring and uses a three-stage procedure for the automatic
detection of epileptiform events in a multichannel EEG
signal. In the first stage, three discrete perceptrons are
fed by six spike features that are used for classifying
EEG peaks into three subgroups: (i) definite epilep-
tiform transients (ETs), (ii) definite non-ETs, and (iii)
possible ETs and possible non-ETs. Peaks in the third
group are further processed. However, time–frequency
methods like wavelet transformation or quadratic time-
frequency distributions are not utilized, leading to its
weak capability in identifying pseudo-spikes which are
nonstationary. Nonetheless, multistage systems often
provide better performance then simplex systems.

Taking advantage of multi-stage systems, we propose
in this paper a multistage system for automatic spike
detection that can offer good performance. Our contri-
butions are three-fold. First, EEG peaks are categorized
into two groups of (i) non-epileptic spikes and (ii)
possible epileptic spikes, by a committee of three per-
ceptrons; each committee is fed by six different features
characterizing an epileptic spike. Spikes resulting from
EMG-like artefacts, which are continuous within 40 ms
(i.e., 10 data samples for the sampling frequency of
256 Hz), are also eliminated by the perceptrons. Second,
wavelet transformation is utilized with a Mexican mot-
her wavelet and its corresponding scales from 4 to 8 for
the best efficiency. Third, closely located pseudo-spikes
are removed, thanks to the neurological fact that an epi-
leptic spike is often followed by slow waves rather than
by another epileptic spike [19]. Experimental results are
obtained from analyzing the clinical EEG recordings of
17 epileptic patients.

The paper is organized as follows. Section 2 descri-
bes the proposed automatic epileptic seizure detection
system. Section 3 gives detailed information on the
proposed system and related theoretical foundations.
Experimental results and their analysis are presen-
ted in Section 4. Section 5 discusses the results and
Section 6 concludes the paper with some remarks for
future works.
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Figure 1. Block diagram of the proposed multi-stage automatic spike detection system, with 4 stages: preprocessing, feature extraction, classifier
and expert system.

2 Proposed System Model

Figure 1 shows the block diagram of the proposed spike
detection system. It consists of 4 stages: Preprocessing,
Feature extraction, Classifier and Expert system. The
tasks in each stage are briefly given as follows.

In the preprocessing stage, all peaks in an EEG signal
are first automatically detected. Then, negligible peaks
are identified and removed. Next, for each significant
peak, six spike features depicting the amplitudes, dura-
tions and slopes associated with the morphology of an
epileptic spike are calculated. These features are then
fed into three different perceptrons which then separate
the significant peaks into two groups of (i) non-epileptic
spikes and (ii) possible epileptic spikes.

Next, in the feature extraction stage, the possible
epileptic spikes are analyzed by continuous wavelet
transform. The proposed system then calculates seven
wavelet features of each wavelet scale, which resembles
an epileptic spike. Then, in the classifier stage, the
extracted features are fed into a trained ANN yielding
a spike score at its output. The spike score values are in
the range [0, 1]. If a spike score value is closer to 1 or 0,
then the corresponding spike is likely to be an epileptic
spike or non-epileptic spike, respectively.

Finally, in the expert system stage, to ensure that the
spike detected by the ANN is a true epileptic spike, we
apply a simple rule in order to eliminate the pseudo-
spikes which are located near an epileptic spike.

3 Methods

3.1 Preprocessing
Epileptic spikes last for a short duration, typically

between 20 to 70 ms, and are characterized by a steep
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Figure 2. Some epileptic spikes in our EEG data set.

curve, going up and then down immediately [20].
Spikes appear irregularly and may manifest as inde-
pendent or combined forms. They are often recorded
in areas close to the impaired area of the brain and
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Figure 3. Six features parameterizing a significant peak [18] as inputs
to the perceptron network in the preprocessing stage: First Half Wave
Amplitude (a1), First Half Wave Duration (d1), Second Half Wave
Amplitude (a2), Second Half Wave Duration (d2), First Half Wave
Slope (s1) and Second Half Wave Slope (s2).

usually appear before a slow wave which lasts from 150
to 350 ms [19]. The morphology of spikes is diverse and
complex depending on the patient and EEG recording
conditions. Some epileptic spikes from our own data
set are shown in Figure 2. It is not rare that different
neurologists give different opinions about the appea-
rances of the spikes on the same EEG signal. As such,
evaluation results not only depend on the complexity
of the EEG signals themselves but also on the level of
expertise of the neurologists.

Since an epileptic spike has the shape of a peaky
signal, to detect epileptic spikes accurately it is useful
for the system in the preliminary stage to recognize all
the peaks. In our system, a sample value is compared
with its two nearest neighbors. If the sample value is
largest, it is defined as a positive peak, and if the sample
value is smallest, it is then defined as a negative peak.

After peak detection, the small peaks which are
certainly not epileptic candidates are recognized as neg-
ligible peaks and removed based on the following thres-
hold criteria: the distance between a pair of adjacent
peaks is smaller than the distances between pairs of
adjacent peaks right before and after. That is, given that
peaks pi−1, pi, pi+1, pi+2 appear at times ti−1, ti, ti+1,
ti+2, if the distance from pi to pi+1 is smaller than that
from pi−1 to pi and that from pi+1 to pi+2, then pi and
pi+1 are removed. The duration of the peak (i.e., d1 + d2)
and the mean of its two relative amplitudes (a1, a2) (as
shown in Figure 3) are less than 20 ms and 17.5 µV,
respectively. The reason for these thresholds is that the
duration of epileptic spikes ranges from 20 to 70 ms and
the amplitude of epileptic events normally lies between
20 µV and 200 µV [20]. This process makes it easier for
the system to recognize epileptic spikes while a large
number of peaks resulting from unwanted artefacts
such as EMG (with small amplitude) are removed.

As mentioned earlier, neural network perceptrons
are applied to classify the significant peaks into two
groups: either non-epileptic spikes or possible epileptic
spikes. Similar to the work in [18], we use six features
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Figure 4. The proposed perceptron network for identifying possible
spikes among significant EEG peaks. The inputs are six features
determined as in Figure 3.

characterizing the amplitudes, durations, and slopes
of a general epileptic spike as shown in Figure 3.
They are First Half Wave Amplitude (a1), First Half
Wave Duration (d1), Second Half Wave Amplitude (a2),
Second Half Wave Duration (d2), First Half Wave Slope
(s1) and Second Half Wave Slope (s2). These are the
inputs to the perceptrons. Determining the number
of perceptrons, the structure of the network and the
proper procedure to train the perceptrons is non-trivial.
Unlike [18], we propose to use a committee of three
perceptrons (Figure 4), each is fed by two features (out
of six) extracted from each significant peak. As shown
in Figure 4, the output of each perceptron is either 0 or 1
and it is sent to an AND logic gate, so a significant peak
is classified as a possible spike (belonging to group 2) if
and only if the output of the AND logic gate equals 1,
meaning that all three perceptrons must return the
same classification result of 1.

3.2 Feature Extraction
Due to the nonstationary characteristics of EEG [21,

22], feeding the classifier with raw EEG signals often
lead to poor classification results. Thus, in order to
extract sufficient information from EEG signals, some
time–frequency signal processing method should be
utilized in advance. Various methods to represent sig-
nals in the joint time–frequency domain using time–
frequency distributions were presented in [23]. The
main difference among time–frequency methods is the
way they handle the problem of uncertainty. Time–
frequency methods have been used in various works
for nonstationary signal analysis [24, 25] and for seizure
detection [26, 27].

A frequently used time–frequency analysis technique
is the wavelet transform which represents a signal by
a set of well-defined basis functions known as wave-
lets [28, 29]. Wavelets are well localized in both time
and frequency domains; that is, the wavelet distribu-
tion shows good resolution at a given small time–
frequency region. Nowadays, wavelet transform have
been successfully applied to the analysis of EEG signals
as in [30–32], for epileptic spike detection as in [3, 33–
35] and seizure as in [36–39].

However, different choices of wavelets and scales
could lead to different results and/or the degree of
accuracy. In general, continuous wavelet transform is
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Figure 5. Illustration of wavelet scales of a particular epileptic spike candidate. Original spike signal has a length of 219 ms (equivalent to 56
samples).

better than the discrete wavelet transform for time–
frequency analysis of EEG signals because they al-
lows us to examine a signal at any arbitrary wavelet
scales (and, thus, frequencies) of interest while the
latter can only provide information at specific discrete
scales [23]. Taking advantages of wavelet transform, in
our work, we use continuous wavelet transform for
feature extraction.

Constructed from a single function ψ(t), named mot-
her wavelet or analyzing wavelet, wavelets are defined
as

ψa,τ(t) =
1√
a

ψ

(
t− τ

a

)
, (1)

where a and τ are dilation and translation factors,
respectively.

Continuous wavelet transform (CWT) of a signal is
defined as the correlations between the wavelet and the
signal itself at different frequency scales and can be
realized by the following formula:

CWT(x(t); a, τ) =
1√
a

∫ ∞

−∞
x(t)ψ∗a,τ(t)dt, (2)

where (·)∗ denotes the complex conjugate operator.
In our work, the Mexican hat wavelet is selected as
the mother wavelet due to its heuristic efficiency in
exploiting nonstationary information of epileptic spi-
kes [34]. The Mexican hat mother wavelet, ψ(t), can be
defined as

ψ(t) =
2√

3σπ1/4

(
1− t2

σ2

)
e−t2/2σ2

, (3)

where σ is a constant that has the same role as the
standard deviation of a statistical distribution [40].

In [16], EEG signals with different lengths are analy-
zed by CWT. This process may yield errors in classifica-
tion because the distribution of peaks in the segmented
data is arbitrary and the threshold estimated by the
background amplitude of the wavelet coefficients may
not share consistent property. We recognize that the
number of samples, the wavelet scales for decompo-
sition and the wavelet coefficient selection for feature
calculation should be carefully selected in order to
achieve the best performance for the CWT.

In our experimental study, CWT is implemented over
EEG segments of fixed length of 56 samples (25 samples
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Figure 6. Wavelet features determined from a wavelet scale as inputs
to the classifier stage [16].

before and 30 samples after each possible epileptic
spike) at eight scales from 1 to 8, obtained by varying
the values of the dilation factor a. Spike information is
found to be dominant in five highest scales (from scale
4 to 8). As shown in Figure 5, wavelet coefficients at
those scales resemble the morphological characteristics
of epileptic spike most.

These five scales are further utilized for calculating
the features, as opposed to the 8 scales proposed in [16].
Specifically, seven types of features (aCA, aCD, aCE, aCB,
WFG, WDE, WAB) are computed for each scale coefficient
set as characterized in Figure 6. More detailed expla-
nation of the features can be found in [16]. After this
step, those features are fed into the classifier stage for
the task of epileptic spike classification.

3.3 Classifier
In a multi-stage system, the classifier is an integra-

ted part in which the information after the feature
extraction stage is utilized for determining whether
the EEG peaks are candidate epileptic spikes. There
are various types of classifiers: Support Vector Machi-
nes [41], Gaussian Mixture Model [42], Bayesian [43],
Conditional Random Field [44], just to name a few.
In our work, we use ANNs due to their well-known
efficiency for classification [45].

An ANN is a bio-inspired mathematical model in
which it mimics the structure of the human brain [46].
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It is typically composed of three components including
an input layer, one or more hidden layers and an
output layer. Each layer is a set of neuronal units,
called neurons, which are connected by weights to its
previous and next layer units. The weight adjustment
of network neuron connections are realized iteratively
with a training scheme by minimizing the difference
between desired output and actual output.

In this research, a “twice-learning” backpropagation-
based method [16] is utilized as the training method for
our three layer fully-connected ANNs. The structure of
our ANN is illustrated in Figure 7. The inputs for each
scale are seven features including aCA, aCD, aCE, aCB,
WFG, WDE, WAB. We use five scales (from 4 to 8), so the
number of nodes of our ANN is 41.

There are two separate phases in the “twice-learning”
training method. Spikes and non-spikes are used to
train the ANN network. In the first phase, the ANN
is trained by setting the desired output to be in the set
{0, 1} in which 0 and 1 are corresponding to non-spike
and spike, respectively. Feeding the testing data to an
ANN yields the output with value in the range from 0
to 1. In the second phase, the outputs y from the first
phase are categorized into two groups of spikes and
non-spikes. The output samples after the first training
phase are then sorted for minimum and maximum
values {ys

max, ys
min} for spike group and {yn

max, yn
min} for

non-spike group, and re-calculated as in [16] to yield

ys = 0.45
y− ys

min
ys

max − ys
min

+ 0.55, (4)

yn = 0.45
y− yn

min
yn

max − yn
min

. (5)

After this step, all the spike output samples ys have
the corresponding desired outputs in the range [0.55, 1]

and all the non-spike output samples yn have the
desired outputs in the range [0, 0.45].

Another ANN is trained with the new desired out-
puts. The same testing data as used in the first phase
is then passed through the ANN for a regression pro-
cess. The output returned by the network reflects the
property of the corresponding EEG data input. After
the classifier stage (i.e., the ANN), peaks having their
outputs greater than a threshold will be sent to the
expert system for further analysis.

In our experiment, the threshold for the ANN is set
to 0.5 in order to achieve the best trade-off between
specificity and sensitivity. In both phases, weights of the
ANNs are updated using a backpropagation training
scheme [46]. Often, a Receiver Operating Characteristic
(ROC) curve is used to show the performance of a
classifier at different thresholds. Figure 9 shows the
performance of our ANN classifier, in which the above
threshold value of 0.5 corresponds to the point on the
curve that is closest to the top left corner. At that point,
the performance is the best in the sense that the trade-
off between the specificity (SEN) and the sensitivity
(SPE), as defined later in Section 4.2, is optimized
(SEN = 93%; 1− SPE = 81%).

3.4 Expert System
In this section, we propose an expert system to

remove pseudo (false) spikes which have not been
identified previously. The expert system analyzes the
spikes, previously marked by the classifier, to see if
they are truly epileptic spikes, by exploiting the spatial
and temporal contextual information. Specifically, there
exists a neurological fact that an epileptic spike is often
followed by slow waves rather than by another epileptic
spike, and this is often called “spike and slow-wave
complex" [19]. The slow-wave duration ranging from
150 to 350 ms indicates that there exist no more than
two spikes in such a time interval [19].

The expert system is designed to then perform the
following steps:
(a) Initiate a moving window with length of 350 ms.
(b) Calculate the weighting parameter for every spike

existing in the window as

ρ =
a1 + a2

2
,

where a1 and a2 are the First Half Wave Amplitude
and Second Half Wave Amplitude of a spike, as
shown in Figure 3.

(c) Remove the spikes whose weight ρ fall below
kρmax, where 0 ≤ k ≤ 1, and ρmax is the local
maximum of ρ within the window of interest.

(d) Continue with the next window.

4 Experimental Results and Analysis

4.1 Data Acquisition
In this research, a 10–20 standard EEG recording

system was used, providing 19-channel data, recorded
at a sampling rate of 256 Hz. The duration for each
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Table I
Training Data Set

Pat. Gen. Age Duration Spikes

1 Male 21 23m57s 8

2 Male 6 22m25s 635

3 Male 9 11m24s 6

4 Male 4 19m21s 8

5 Male 15 22m0s 4

6 Male 12 17m49s 22

7 Male 72 15m26s 2

8 Male 16 22m58s 11

9 Female 16 20m14s 8

10 Female 13 18m53s 5

11 Female 20 14m32s 324

12 Female 10 17m7s 2

Pat.= Patient, Gen.=Gender

Table II
Testing Data Set

Pat. Gen. Age Duration Spikes

1 Male 9 11m24s 16

2 Male 20 27m13s 1

3 Male 11 16m16s 351

4 Female 28 5m31s 12

5a Female 22 27m 37s 19

5b Female 22 27m 37s 9

Pat.= Patient, Gen.=Gender

recording varies from 6 to 28 minutes. Attached to the
EEG system is a video recorder that can simultaneously
track the movements of the patient, facilitating the
neurologist task to discriminate the artifacts in the
evaluation process.

We carried out measurements on patients who were
clinically diagnosed to have epilepsy. There were 17
epileptic patients in total, with 11 males and 6 females.
The data from 12 patients were used for system training
(Table I) and the data from the other 5 patients (spe-
cifically, patient 5 has two durations: 5a and 5b) were
used for evaluation of the performance of the proposed
automatic detection system (Table II). The age of the
patients ranges from 6 to 72.

The average and bipolar montages were viewed du-
ring recording for verification but only signals obtained
by the average montage were used for later evaluation.
Due to the recording conditions, the EEG signals were
highly contaminated by various types of artifacts. The
epileptic spikes were recognized and labeled by one
highly experienced neurologist from Vietnam National
Children’s Hospital.

After signal acquisition, the raw data were filtered
by a band-pass filter with cut-off frequencies of 0.5 and
75 Hz, and a notch filter of 50 Hz to remove the effect
of the power-line frequency.

4.2 Evaluation Metrics
The sensitivity (SEN) and specificity (SPE) are used

as the metrics for evaluating the performance of our
proposed system; they are defined in [47] as follows:

SEN =
TP

TP+ FN
× 100, (6)

SPE =
TN

TN+ FP
× 100, (7)

where true positive (TP) and true negative (TN) are
the number of peaks that both the system and the
neurologist agree to be, and, not to be epileptic spikes,
respectively, the false positive (FP) is the number of
peaks that the system labels as epileptic spikes but
the neurologist considers as normal, and false negative
(FN) is the number of peaks that the neurologist labels
as epileptic spikes but the system does not recognize so.

To evaluate the system performance, the sensitivity is
averaged across different records. We use four methods
presented in [47], which give accurate characterisation
of interictal spike detection algorithms. Denote by Ti
the duration of i-th record, Mi the number of spikes
marked by the neurologist, and Ci the number of
correctly detected spikes. Then, the sensitivity of the
i-th record is given by Ci/Mi. The average sensitivity
of N records is calculated by four different methods
as follows:

Arithmetic mean: SEN =
1
N

N

∑
i=1

Ci
Mi

(8)

Time-weighted average: SEN =
1

N
∑

i=1
Ti

N

∑
i=1

Ci
Mi

Ti (9)

Total sensitivity average: SEN =
1

N
∑

i=1
Mi

N

∑
i=1

Ci (10)

Time/event-weighted average: SEN =
1

N
∑

i=1

Ti
Mi

N

∑
i=1

Ci
Mi

Ti
Mi

(11)

4.3 Results
In this section, the experimental results are reported

graphically and statistically. Figure 8 illustrates the
performance of the system stage by stage on an original
EEG segment as in Figure 8(a).

The results suggest that the number of spikes are
significantly reduced after each step. The system starts
the screening process with a very simple function,
identifying all the peaks over the data segment (Fi-
gure 8(b)). However, not all the peaks are candidate
epileptic spikes and many of them are “negligible” and
absolutely not the ones we are seeking for (Figure 8(c)).
Those negligible peaks are totally removed in the next
step of the preprocessing stage (Figure 8(d)). In the last
step of the preprocessing stage, three perceptrons are
utilized efficiently for removing a large portion of the
peaks (Figure 8(e)). After the preprocessing stage, all
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Figure 8. Illustrative results obtained by the proposed spike detection system. The original EEG segment (a) has the length of 5.86 seconds
(equivalent to 1500 samples). Preprocessing the original signal results in possible epileptic spikes (e). Combination of the two classifiers, the
ANN and the expert system, in identifying epileptic spikes (f), which also shows the comparison between the spikes detected by the system
and the epileptic spikes labeled by the neurologist.

of the spike candidates for epilepsy are recognized and
passed to the next stage of classifying by an ANN.

The task of the ANN becomes harder because the
morphological characteristics of the candidate spikes
are so analogous. That is why a careful “twice lear-
ning” scheme is used to greatly facilitate the system in
removing non-epileptic spikes [16].

Last but not least, a simple expert system is proposed
to exclude pseudo-spikes. In our data, the value of
k was set to be 0.95 for the best performance of the
expert system. This value was obtained emperically via
preliminary experiments, which are not discussed here.

The final result is given in Figure 8(f), which also
shows the difference between the results returned by
the system and the neurologist. It is easily recognized
that all the epileptic spikes labeled by the neurologist
were identified by the proposed multi-stage system.
However, not all the spikes detected by the system are
truly epileptic according to the neurologist judgment.

The performance of the proposed system in terms
of quantitative analysis also shows that the number of
candidate epileptic spikes were naturally reduced after
each step. Specifically, there is a significant decrease
in the number of peaks/spikes after the preprocessing
and ANN stages. The expert system stage (the overall
result) slightly decreases the number of spikes; clearly
this depends on the different data and if there exist
many pseudo-spikes near an epileptic spike or not.

In the feature extraction stage, all 10 wavelet scales of
a candidate epileptic spike are shown in Figure 5. By ex-
amining various candidate epileptic spikes, we choose
to use only scales from 4 to 8, which reflects well the

Table III
System Detection Results by Stages

Patient Preprocessing ANN ES

all sig. pos. epil. sure

1 1795728 1269227 36885 7160 6276
2 1266464 477319 6975 945 840
3 3701808 2388564 36361 4697 4357
4 2540528 1829433 24942 3913 3403
5a 1120848 607211 13251 3827 3144
5b 1224816 979726 14226 4589 3683

sig.= significant, pos. = possible, epil. = epileptic

Table IV
Sensitivity and Specificity Calculations
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Figure 8. Illustrative results obtained by the proposed spike detection system. The original EEG segment (a) has the length of 5.86 seconds
(equivalent to 1500 samples). Preprocessing the original signal results in possible epileptic spikes (e). Combination of the two classifiers, the
ANN and the expert system, in identifying epileptic spikes (f), which also shows the comparison between the spikes detected by the system
and the epileptic spikes labeled by the neurologist.

utilized efficiently for removing a large portion of the
peaks (Figure 8(e)). After the preprocessing stage, all
of the spike candidates for epilepsy are recognized and
passed to the next stage of classifying by an ANN.

The task of the ANN becomes harder because the
morphological characteristics of the candidate spikes
are so analogous. That is why a careful “twice learn-
ing” scheme is used to greatly facilitate the system in
removing non-epileptic spikes [16].

Last but not least, a simple expert system is proposed
to exclude pseudo-spikes. In our data, the value of
k was set to be 0.95 for the best performance of the
expert system. This value was obtained emperically via
preliminary experiments, which are not discussed here.

The final result is given in Figure 8(f), which also
shows the difference between the results returned by
the system and the neurologist. It is easily recognized
that all the epileptic spikes labeled by the neurologist
were identified by the proposed multi-stage system.
However, not all the spikes detected by the system are
truly epileptic according to the neurologist judgment.

The performance of the proposed system in terms
of quantitative analysis also shows that the number of
candidate epileptic spikes were naturally reduced after
each step. Specifically, there is a significant decrease
in the number of peaks/spikes after the preprocessing
and ANN stages. The expert system stage (the overall
result) slightly decreases the number of spikes; clearly
this depends on the different data and if there exist
many pseudo-spikes near an epileptic spike or not.

In the feature extraction stage, all 10 wavelet scales
of a candidate epileptic spike are shown in Figure 5.

Table III
System Detection Results by Stages

Patient Preprocessing ANN ES

all sig. pos. epil. sure

1 1795728 1269227 36885 7160 6276
2 1266464 477319 6975 945 840
3 3701808 2388564 36361 4697 4357
4 2540528 1829433 24942 3913 3403
5a 1120848 607211 13251 3827 3144
5b 1224816 979726 14226 4589 3683

sig.= significant, pos. = possible, epil. = epileptic

Table IV
Sensitivity and Specificity Calculations

Pat. Dur. Spk TP FP FN TN SEN SPE

1 11m24s 16 14 6262 2 30609 87.50 83.01

2 27m13s 1 1 839 0 6135 100.00 87.97

3 16m16s 351 323 4034 28 32004 92.02 88.80

4 5m31s 12 12 3391 0 21539 100.00 86.40

5a 27m37s 19 18 3126 1 10107 94.74 76.37

5b 27m37s 9 9 3674 0 10543 100.00 74.16

Pat.= Patient, Dur. = Duration, Spk = number of spikes.

By examining various candidate epileptic spikes, we
choose to use only scales from 4 to 8, which reflects well
the morphological property of the original epileptic
spikes.

morphological property of the original epileptic spikes.
Tables III show the number of spikes detected by the

proposed multistage system, stage by stage, evaluated
on the testing data set of 5 patients. As a result, the
sensitivity and specificity were calculated as shown in
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Table V
Sensitivity Averaging Methods

Methods SEN

Arithmetic mean 96.75
Time-weighted average 95.99
Total sensitivity average 92.64

Time/event-weighted average 99.38

STD 2.77

Table IV. It can be seen that the sensitivity is very
different among the patients (the smallest is 87.5% and
largest is 100%). The main reason is the difference in
the epileptic characteristics among the patients that are
clearly seen in Table IV via the recording time (Dur.)
and the number of epileptic events (Spikes). For exam-
ple, patient #2 has 1 spike labeled by the neurologist
for a recording time of 27m13s while patient #3 has
351 spikes for 16m16s. Therefore, it is most appropriate
to use the time/event-weighted average method for
evaluating the sensitivity for the underlying data, as
compared to the three other methods. Accordingly, the
sensitivity of the proposed system is 99.38%, as shown
in Table V. Comparing the results between Table IV and
Table VI, we can see that the expert system removes
pseudo (false) spikes, thus significantly increasing the
system specificity.

As briefly mentioned in Section 3.3, the ROC curve
is a powerful tool for measuring the performance of a
classifier, and has been successfully applied in various
applications such as biomedical research, data science
or machine learning. The curve is created by plotting
the sensitivity (which is the true positive rate) against
the false positive rate (equal to 1 − SPE) at different
thresholds. Overall, the area under the ROC curve
(AUC) allows us to estimate how efficiently a classifier
is. The AUC value lying between 0.9 and 1 indicates an
excellent classifier, between 0.8 and 0.9 shows a good
classifier, between 0.7 and 0.8 presents a fair classifier,
and between 0.6 and 0.7 denotes a poor classifier.

The ROC curve of our classifier is visualized in
Figure 9. The blue curve shows the ROC on the training
data set and the red curve shows the ROC on the testing
data set of our classifier. As shown in Figure 9, the
AUC of the training data set is 0.972 and the AUC
of the testing data set is 0.945. This means that the
performance of our ANN classifier is excellent on all
data set.

5 Discussions

The evaluation and comparison of different automatic
spike detection systems are not easy tasks since the data
sets applied for different systems are not the same [3]. It
means that there is a chance for a system to have good
performance on a certain data set, but still produce a
very different performance on another data set. Anot-
her problem is that different neurologists often have
different perspectives on epileptic spikes. In addition,

Table VI
Results, without Using the Expert System
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Table V
Sensitivity Averaging Methods

Methods SEN

Arithmetic mean 96.75
Time-weighted average 95.99
Total sensitivity average 92.64

Time/event-weighted average 99.38

STD 2.77

on the testing data set of 5 patients. As a result, the
sensitivity and specificity were calculated as shown in
Table IV. It can be seen that the sensitivity is very
different among the patients (the smallest is 87.5% and
largest is 100%). The main reason is the difference in
the epileptic characteristics among the patients that are
clearly seen in Table IV via the recording time (Dur.)
and the number of epileptic events (Spikes). For exam-
ple, patient #2 has 1 spike labeled by the neurologist
for a recording time of 27m13s while patient #3 has
351 spikes for 16m16s. Therefore, it is most appropriate
to use the time/event-weighted average method for
evaluating the sensitivity for the underlying data, as
compared to the three other methods. Accordingly, the
sensitivity of the proposed system is 99.38%, as shown
in Table V. Comparing the results between Table IV and
Table VI, we can see that the expert system removes
pseudo (false) spikes, thus significantly increasing the
system specificity.

As briefly mentioned in Section 3.3, the ROC curve
is a powerful tool for measuring the performance of a
classifier, and has been successfully applied in various
applications such as biomedical research, data science
or machine learning. The curve is created by plotting
the sensitivity (which is the true positive rate) against
the false positive rate (equal to 1 − SPE) at different
thresholds. Overall, the area under the ROC curve
(AUC) allows us to estimate how efficiently a classifier
is. The AUC value lying between 0.9 and 1 indicates an
excellent classifier, between 0.8 and 0.9 shows a good
classifier, between 0.7 and 0.8 presents a fair classifier,
and between 0.6 and 0.7 denotes a poor classifier.

The ROC curve of our classifier is visualized in
Figure 9. The blue curve shows the ROC on the training
data set and the red curve shows the ROC on the testing
data set of our classifier. As shown in Figure 9, the
AUC of the training data set is 0.972 and the AUC
of the testing data set is 0.945. This means that the
performance of our ANN classifier is excellent on all
data set.

5 Discussions

The evaluation and comparison of different automatic
spike detection systems are not easy tasks since the data
sets applied for different systems are not the same [3]. It
means that there is a chance for a system to have good
performance on a certain data set, but still produce a
very different performance on another data set. An-

Table VI
Results, without Using the Expert System

Pat. Dur. Spk TP FP FN TN SEN SPE

1 11m24s 16 14 7146 2 29725 87.50 80.60

2 27m13s 1 1 944 0 6030 100.00 86.46

3 16m16s 351 323 4374 28 31664 92.02 87.86

4 5m31s 12 12 3901 0 21029 100.00 84.35

5a 27m37s 19 19 3808 0 9424 100.00 71.22

5b 27m37s 9 9 4580 0 9637 100.00 67.78

Pat.= Patient, Dur. = Duration, Spk = number of spikes.
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Figure 9. ROC curves. The solid line shows the ROC on the training
data set and the dash line shows the ROC on the testing data set of
the ANN classifier. The AUC of the solid line is 0.972 and of the dash
one is 0.945.

other problem is that different neurologists often have
different perspectives on epileptic spikes. In addition,
the performance of an automatic spike detection system
relies on the characteristics of the recording. Seemingly,
if the EEG recording contains more epileptic events the
performance is better [48].

In fact, there is currently no perfect independent
engineering method at detecting spikes, so a good sys-
tem must combine various methods at multiple stages
based on information about shape, frequency, time and
context in which spikes appear [16, 49].

Our proposed system is trained and tested on EEG
recording data from patients who have been diagnosed
to have epilepsy. The averaged sensitivity of the system
is 99.38%, indicating that the system is capable of
detecting epileptic spikes efficiently.

Meanwhile, as mentioned in Section 4 the results
returned by the system on EEG data from all other
patients are stable and could be used for our initial
purpose of providing an assisting tool for neurologists
in epileptic diagnosis. The fact that our system per-
forms well in some cases while not so well in other
cases (rarely) is explainable. That is, our proposed
multi-stage system consists of multiple perceptrons and
ANNs which are well-known for their universal ap-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te
 

 

 

Training data set
Testing data set

Figure 9. ROC curves. The solid line shows the ROC on the training
data set and the dash line shows the ROC on the testing data set of
the ANN classifier. The AUC of the solid line is 0.972 and of the dash
one is 0.945.

the performance of an automatic spike detection system
relies on the characteristics of the recording. Seemingly,
if the EEG recording contains more epileptic events the
performance is better [48].

In fact, there is currently no perfect independent
engineering method at detecting spikes, so a good sy-
stem must combine various methods at multiple stages
based on information about shape, frequency, time and
context in which spikes appear [16, 49].

Our proposed system is trained and tested on EEG
recording data from patients who have been diagnosed
to have epilepsy. The averaged sensitivity of the system
is 99.38%, indicating that the system is capable of
detecting epileptic spikes efficiently.

Meanwhile, as mentioned in Section 4 the results
returned by the system on EEG data from all other
patients are stable and could be used for our initial pur-
pose of providing an assisting tool for neurologists in
epileptic diagnosis. The fact that our system performs
well in some cases while not so well in other cases (ra-
rely) is explainable. That is, our proposed multi-stage
system consists of multiple perceptrons and ANNs
which are well-known for their universal approximate
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capability. Thus, the system also inherits that universal
approximation characteristic. Furthermore, as mentio-
ned previously, the recording conditions in Vietnam are
not standardized so our data contamination level may
vary significantly and thus the system performance
may be poor when the contamination level in the
recording is high.

In some previous works, perfect SENs [18] (on EEG
data of several patients) or Accuracy [50] are reported
for their system performances. Those results might not
be applicable to a larger unseen data.

The multistage system for automatic detection and
classification of epileptiform in [16] consists of adaptive
filtering, wavelet transform, artificial neural network,
and expert system. EEG signals are analyzed by the
wavelet transform at 32 scales and the detection of
epileptic spikes is performed on the extracted featu-
res, as inputs to the classifier stage, from the wavelet
coefficients of 8 lowest scales. They use a very complex
expert system which requires a lot of information. The
AUC is around 0.95 and the SEN for detection spikes,
sharp waves, and complexes is 92.4%.

In [18], a three-stage system was proposed for au-
tomatic detection of epileptiform transient (ET) based
on artificial neural networks. In its pre-classification
stage, they use two discrete perceptrons fed by six
features to classify EEG peaks. In the second stage,
possible ETs and possible non-ETs are classified by a
nonlinear artificial neural network. In the third stage,
multichannel information is integrated to identify an
epileptiform event (EV) by the electroencephalograp-
hers. The best performance of their system is based
on a radial basis support vector machine (RB-SVM)
providing an average sensitivity of 89.1%. In this work,
the AUC value was not given.

The work in [51] using a new technique, called
convolutional neural network (CNN), did not apply any
feature extraction method. The value of AUC achieved
in [51] is 0.947 but the SEN value is not provided.

Compared to other works, our proposed system uses
a committee of three perceptrons, appropriate mot-
her wavelet and wavelet scales by which the wavelet
transform is implemented only at eight scales and the
features are calculated from the coefficients of only 5
scales (from scale 4 to scale 8). Thus, the implementa-
tion of the proposed system requires less computational
power. The sensitivity of the proposed system is 99.38%
and the AUC is around 0.947, which is as high as the
AUC reported in [51].

The EEG data in our experiment were labeled by only
one neurologist and then used as the golden standard
to train our system. If the neurologist did not correctly
recognize an epileptic spike, it is likely that the system
repeats the misjudgment. Thus, the performance of the
current system could be improved when more neuro-
logists are involved in the expert judgement process.

The functionality of the expert system, which is
added as the last stage of the multistage system, is to
recognize pseudo-spikes out of epileptic spike candida-
tes identified in previous stages. An appropriate expert
system should be selected in such a way that it does not

eliminate true epileptic spikes and, at the same time,
recognizes as many pseudo-spikes as possible. That
selection is non-trivial. In addition, the performance
of the expert system depends largely on the selection
of thresholding value kρmax. A lower threshold allows
more spikes to be detected by the system, and therefore
increases true positive but also increases false positive.
Thus, there lies always a trade-off between sensitivity
and specificity. In our data, the threshold is selected to
be 0.95 for the best performance of the expert system.
Note that the expert system proposed in [16] is rather
complex, including various types of information in
the decision making process. Our expert system only
focuses on the use of morphological information.

In terms of morphological characteristic of epileptic
spikes, Boos et al. [19] reported that on the occurrence
of an epileptic event, there is always a slow wave to
follow a spike. However, it is not always true in terms
of neurological perspective based on our neurologist ex-
perience. In fact, there could be appearances of multiple
spikes in a single epileptic event. Fortunately, we do not
have to handle that (rare) phenomenon (which certainly
leads to high rate of false recognition of epileptic spikes
by our expert system) in our experimentation thanks
to the way we selected epileptic patients for EEG re-
cording. Accordingly, the too severe epileptic patients,
whose EEG signals are likely to contain multiple epi-
leptic spikes, were not selected.

6 Conclusions

In summary, this paper introduces a novel multis-
tage system for epileptic spike detection as an as-
sistant tool for epileptic diagnosis, especially useful
in Vietnam where recording conditions are limited.
The system consists of four main stages: preproces-
sing, feature extraction, classifier and expert system.
At each stage, different engineering techniques, from
basic signal processing methods in spatial domain to
advanced time–frequency and machine learning ones,
have been employed. Specifically, spectral filtering is
integrated into the preprocessing stage, wavelet trans-
form is implemented for the feature extraction, different
neural networks are utilized at the classifier stage, and
a novel set of rules are built in the expert system.
The system has been successfully implemented and
validated on real EEG data of epileptic patients. further,
in the experiments conducted, the EEG data that were
available contain artefacts and the proposed system was
capable of detecting the spikes even in the presence of
contaminated data.

The results also indicate that the epileptic spike am-
plitudes were not always stronger than the background
EEG signal. In fact, sometimes epileptic spikes were
not so distinguishable due to its low voltage amplitude.
Our expert system might have made mis-judgment in
these cases. This is a limitation to the entire system and
need to be investigated carefully in future work.

The comparison of our proposed method with other
multistage methods [16–18, 51, 52] is subject to a sub-
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sequent study, using the same data set. Additionally,
extension to multi-channel analysis, taking into account
the spike spatial correlation, is expected to improve
the classification (see, e.g. [1, 26]). Finally, one can ex-
pect further improvements with the methods presented
in [53, 54] as there is a comparison between wavelets
and quadratic TFDs for classification.
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