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Abstract—Tensor decomposition is a popular tool to analyse
and process data which can be represented by a higher-order
tensor structure. In this paper, we consider tensor tracking in
challenging situations where the observed data are streaming and
incomplete. Specifically, we proposed a non-linear formulation of
the PETRELS cost function and based on which we proposed
NL-PETRELS subspace and tensor tracking algorithms. The
non-linear function allows us to improve the convergence rate.
We also illustrated the use of our proposed tensor tracking for
incomplete multi-channel electroencephalogram (EEG) data in a
real-life experiment in which the data can be represented by a
third-order tensor.

I. INTRODUCTION

Tensor decomposition is a popular tool to analyse and
process data which can be represented by a higher-order tensor
structure [1], [2]. In this paper, we are interested in using tensor
decomposition in challenging situations where observed data
are either streaming [3], [4] and/or incomplete [5]–[7].

Incomplete (missing, partial) observation of data occurs
when we passively acquire the data partially, or when it is
difficult or impossible to acquire all information. It also occurs
when we actively schedule to acquire only a certain fraction
of data, because of limitation in power consumption, storage
and/or computational complexity. In such cases, the percent-
age of observed data can be moderate to very low, making
classical processing approaches difficult to handle. Moreover,
when data are of streaming (online) nature, processing them
often requires fast updating instead of recalculating from the
beginning due to time constraints.

In this paper, we are also interested in the use of tensor
decomposition for a special type of data– electroencephalogra-
phy (EEG). EEG records the electrical activity of the brain via
electrodes adhered to the scalp [8]. EEG is used for diagnosis
and treatment of various brain disorders, for example localizing
the lesion in the brain that causes an epileptic seizure. Tensor
decomposition has been shown to successfully represent and
analyse EEG signals [9]–[12]. The reason for the success is
that EEG signals are multi-dimensional while tensors provide
a natural representation of multi-dimensional signals. Each
single-channel EEG signal (i.e., recorded from one electrode)
is a record in time of the brain activity, and thus provides a
dimension of time. Each EEG record includes recordings from
all electrodes, which is a multi-channel EEG signal, and hence
has two dimensions of time and space. We often analyse each

single-channel EEG signal in the joint time-frequency domain,
thus adding an extra dimension of frequency. In special situa-
tions, there could be even 7 dimensions: time, frequency, space,
trial, condition, subject and group [10]. Tensor decomposition
reveals interactions among multiple dimensions, improving
the quality and interpretation of the analysis. Other reasons
for using tensor decomposition is to exploit its uniqueness,
versatile representation and superior performance [12].

Incomplete observation of EEG signals can occur as well,
when for example electrodes become loose or disconnected
during the recording process. This is due to difficulty of
keeping the head fixed (e.g., EEG recording for children)
or reduced quality of conductive gels when the recording is
done in a long time (e.g., 24-hour monitoring). In such cases,
signals recorded from one or several electrodes do not correctly
describe the electrical activity of the brain and thus can be
discarded, making the observed data incomplete.

Most existing methods for EEG analysis by tensor decom-
position are based on batch processing [10], [13] (i.e., data
are stored and processed offline). However, when data are of
streaming nature like EEG signals in long recordings, adaptive
processing is more suitable. This is due to the fact that process-
ing such kinds of data often requires fast updating instead of
recalculating from the beginning or processing the whole data
as batch method, because of time and storage constraints. To
the best of our knowledge, tensor tracking from streaming EEG
data has only been considered in [14]. However, the situation
of incomplete data was not taken into account.

In this paper, we aim to improve on existing tensor tracking
algorithms from incomplete tensors and to apply such an
improvement to multi-channel EEG analysis. While there
are different models of tensor decomposition, we focus here
Parallel Factor (PARAFAC) decomposition. This is inspired by
our two recent works. The first one is on adaptive PARAFAC
tracking [6], which combines the Parallel Subspace Estimation
and Tracking by Recursive Least Squares (PETRELS) algo-
rithm proposed by Chi et al. [15] for subspace tracking and
the adaptive PARAFAC decomposition algorithm proposed by
Nion and Sidiropoulos [3] for streaming third-order tensors.
The second one is on a new formulation of PETRELS cost
function, which we will provide details in a subsequent pub-
lication for subspace tracking from incomplete data.



The contributions are three-fold. First, we propose a nonlin-
ear formulation of the PETRELS cost function. The resulting
nonlinear subspace tracking algorithm, referred to as NL-
PETRELS, can converge faster than PETRELS while achiev-
ing a similar performance. Second, by replacing the subspace
tracking step in our adaptive PARAFAC decomposition [6]
with NL-PETRELS, we propose a non-linear tensor tracking
algorithm for incomplete data. Third, we show how our tensor
tracking algorithm can be used to track incomplete multi-
channel EEG data.

Notations: Calligraphic letters are used for tensors. Boldface
uppercase, boldface lowercase, and lowercase denote matrices,
(row and column) vectors, and scalars respectively. Operators
b, d, ˚, ˝, p¨qT and p¨q# denote the Kronecker product,
the Khatri-Rao product, the Hadamard product (element-wise
matrix product), and the outer product, the transpose and the
pseudo-inverse, respectively.

II. PROPOSED ALGORITHMS FOR INCOMPLETE DATA

A. Non-linear subspace tracking from incomplete data

Consider the standard linear data model [15] of rptq P Rn,
given by

rptq “ Dsptq ` nptq, (1)

where D P Rnˆp is the system matrix of full column rank,
sptq P Rp is the signal vector randomly distributed according
to the Gaussian distribution with zero mean and unit variance,
and nptq P Rn is the noise vector distributed according to the
Gaussian distribution with zero mean and variance σ2.

A partial observation of rptq is given by

yptq “ pptq ˚ rptq, (2)

where pptq “ rp1ptq, p2ptq, . . . , pnptqs
T is the mask vector;

that is, piptq “ 1 if the i-th entry of rptq is observed, and
piptq “ 0 otherwise.

Our purpose is to estimate a principal subspace W of
D, given that the data were incompletely acquired according
to (2). To do so, we first propose the following general non-
linear cost function for subspace tracking in the situation of
incomplete data:

JpWq “

t
ÿ

i“t´L`1

βt´i}Ppiqrypiq´Wg
`

pPpiqWq#ypiq
˘

s}2,

(3)
where L is the length of a window applied to the signal, β
is known as the forgetting factor with 0 ă β ď 1, Pptq “
diagppptqq, and gpxq is a non-linear function.

We have the following observations:
‚ If gpxq “ x, we obtain a linear cost function. Specifically,

the cost function in (3) corresponds to the exponential-
window cost function when L Ñ 8, and to the sliding-
window cost function when β “ 1. Moreover, for com-
plete data (i.e., Ppiq “ I for all i), (3) becomes the
well-known projection approximation subspace tracking
(PAST) cost function [16].

‚ In general, gpxq can be any non-linear function whose
specific form depends on the application at hand. For
example, in this paper, we use gpxq “ tanhpxq for
subspace and tensor tracking, aimed at accelerating the
convergence rate. We also note that (3) is essentially
compatible with non-linear principal component analysis
(PCA) investigated in [17], [18] for complete data.

In this paper, we present the proposed NL-PETRELS sub-
space tracking algorithm, only for the case of exponential-
window cost function. Accordingly, (3) is rewritten as

JEWpWq “

t
ÿ

i“1

βt´i}Ppiqrypiq ´Wg
`

pPpiqWq#ypiq
˘

s}2.

(4)
Following the derivation from [15] and [17], the proposed

algorithm can be summarised as in Algorithm 1.
The main difference, compared to PETRELS, comes from

the non-linear step at line 3 in estimating aptq under the
condition that the number of non-zero percentage (NNZP) is
less than a certain threshold (ε0), which is always relative small
and determined by the experiment. For example, it will be set
to be less than 10% in total observation in our simulation.
Otherwise, the algorithm essentially corresponds to PETRELS.

B. Non-linear PARAFAC tracking from incomplete tensors

In this section, we generalize NL-PETRELS for adaptive
tensor tracking of third-order tensors, following the PARAFAC
decomposition model. A third-order tensor X P RIˆJˆK can
be decomposed according to the PARAFAC model as [1]

X “

R
ÿ

r“1

ar ˝ br ˝ cr, (5)

Algorithm 1: Nonlinear PETRELS (NL-PETRELS)
Initialization: Random Wp0q P Rnˆp , R´1

m p0q “ Ip
1 for t “ 1 : T do
2 if NNZP ď ε0 then
3 aptq “ g

´

pPptqWpt´ 1qq
#
yptq

¯

4 end
5 else
6 aptq “ pPptqWpt´ 1qq

#
yptq

7 end
8 end
9 for m “ 1 : n do

10 αmptq “ 1` β´1aT ptqR´1
m pt´ 1qaptq

11 umptq “ β´1R´1
m pt´ 1qaptq

12 R´1
m ptq “
β´1R´1

m pt´ 1q ´ pmptqα
´1
m ptqumptqu

T
mptq

13 wmptq “ wmpt´ 1q ` rymptq ´ pmptqaptqwmpt´
1qsR´1

m ptqaptq
14 end



which is sum of R rank-one tensors1. Always, (5) is only an
approximate tensor in a noisy environment, that is,

X “

R
ÿ

r“1

ar ˝ br ˝ cr `N , (6)

where N is a noise tensor. By grouping A “ ra1 . . .aRs P
RIˆR, B “ rb1 . . .bRs P RJˆR, and C “ rc1 . . . cRs P
RKˆR, (6) can be rewritten in matrix form2 as

X “ pAdCqBT `N. (7)

Thus, given a noisy data tensor X , PARAFAC decomposi-
tion tries to perform R-rank best approximation in the least
squares sense, that is,

φpA,B,Cq “‖ X´ pAdCqBT ‖F (8)

When the data are incomplete, (8) becomes

φMpA,B,Cq “‖ M ˚
`

X´ pAdCqBT
˘

‖2F , (9)

where M is a mask matrix, defined as

Mpi, jq “

#

1, if Xpi, jq was observed,
0, otherwise.

(10)

In batch processing, the three dimensions of the tensor are
constants. In adaptive processing, we are interested in this
paper third-order tensors which have one dimension growing
in time while the other two dimensions remain constant, e.g.,
X ptq P RIˆJptqˆK , as shown at the top of Fig. 1.

Using the matrix representation in (7) and in the noiseless
case, we have the following PARAFAC decompositions at two
successive time instants t´ 1 and t:

Xpt´ 1q “ rApt´ 1q dCpt´ 1qsBT pt´ 1q (11a)

Xptq “ rAptq dCptqsBT ptq. (11b)

Thus,
Xptq “ rXpt´ 1q xptqs , (12)

where xptq is the vectorised representation of a new slice (see
the bottom of Fig. 1):

xptq “ rAptq dCptqsbT ptq “ HptqbT ptq, (13)

where bT ptq is the t-th column of BT ptq.
Consider the following exponentially weighted least-square

cost function:

ΨPptqptq “
t
ÿ

i“1

βt´i ‖ Ppiqrxpiq ´HptqbT piqs ‖2 . (14)

Estimating the loading matrices of the adaptive PARAFAC
model of (18) corresponds to

minimize
Hptq,Bptq

ΨPptqptq (15)

subject to Hptq “ Aptq dCptq. (16)

1A rank-one tensor is defined as ar ˝ br ˝ cr .
2Other matrix forms are possible.

tth slice

X(t− 1)

. . .

tth vector

X(1)(t− 1) x(t)

. . .

1

Fig. 1. Adaptive third-order tensor model for incomplete data and its
equivalent matrix form.

We also adopt the following assumptions from [6]:
‚ The loading matrices A and C are unknown but follow

slowly time-varying models, i.e., Aptq » Apt ´ 1q and
Cptq » Cpt´1q. As a consequence, since Hptq » Hpt´
1q, we obtain

BT ptq »
“

BT pt´ 1q,bT ptq
‰

, (17)

which allows us to estimate Bptq in a simple manner.
Specifically, instead of updating the whole Bptq at each
time instant, we only need to estimate the row vector bptq
and augment it to Bpt ´ 1q to obtain Bptq. In the other
words, Bptq has time-shift structure.

‚ The tensor rank, R, is constant and known in advanced.
Moreover, the uniqueness property of the new tensor is
satisfied when a new data slice is added to the old tensor.

In the situation of incomplete data, xptq is replaced by

x̃ptq “ pptq ˚ xptq, (18)

where pptq is defined in (2).
Observe that given bT ptq, estimating Hptq from incomplete

observation x̃ptq is a least-squares problem. This procedure is
known as alternating least-squares (ALS) minimization which
is used extensively in the tensor literature. We also use this
approach to develop our tensor tracking algorithm, which is
summarised in Algorithm 2.

Given Hpt´ 1q, we can estimate Hptq by first setting

bT “ g
`

pPptqHpt´ 1qq#x̃ptq
˘

, (19)

at line 3 in Algorithm 1 of our proposed NL-PETRELS
algorithm, then obtaining Hptq as the output of the algorithm.

To extract Aptq and Cptq from Hptq, we use the bi-SVD
method as in [6]:

aiptq “ HT
i ptqcipt´ 1q, (20)

ciptq “
Hiptqaiptq

‖ Hiptqaiptq ‖
, (21)



with i “ 1, . . . , R. Note that each column of Hptq is the
result of vectorising rank-1 matrix: Hiptq “ unvecpaiptq b
ciptqq. Thus, estimating vectors ciptq and aiptq corresponds
to extract the principal left singular vector and the conjugate
of the principal right singular vector of matrix Hiptq.

Finally, we re-estimate bT ptq as

bT ptq “ rPptq pAptq dCptqqs
#
x̃ptq. (22)

We note that when NNZP is small, computing
rPptq pAptq dCptqqs

# is fast because only non-zero
rows of Hptq are used in the computation.

III. EXPERIMENTS

In this section, we present selected experiments to illustrate
the effectiveness of proposed algorithms. First, we assess
tracking performance of the NL-PETRELS subspace tracking
algorithm, using simulated data. Then, we illustrate how the
NL-PETRELS-based PARAFAC tracking algorithm can be
applied to real EEG data [19].

A. NL-PETRELS subspace tracking

To assess the accuracy of subspace estimation, we use (2)
to generate simulated data and the following least-squares
performance index [20]:

SEPptq “
trtWH

i ptqrI´WexptqW
H
ex ptqsWiptqu

trtWH
i ptqpWexptqWH

ex ptqqWiptqu
, (23)

where Wi is the estimated subspace at the i-th run, and Wex
is the exact subspace weight matrix computed by orthorgonal-
ising A. The result is shown in Fig. 2.

We also assess performance through matrix completion ex-
ample [15], as shown in Fig. 3. The MATLAB implementation
of this experiment is downloaded from the web page of the
first author. To assess convergence rate, we modify the codes to
generate a sudden change of subspace at time instant 10, 000.
Moreover, a noise level at 10´3 is added. In this experiment,
normalized subspace error is used as performance index. For
more details, we refer the reader to [15].

Parameters in both experiments are summarised in Table I.
NNZP “ 0.1 corresponds to only 10% observation data

Algorithm 2: NL-PETRELS-based PARAFAC track-
ing

Initialization: Hp0q, R´1
m p0q “ IR, Ap0q, Bp0q, Cp0q

1 for t “ 1 : T do
2 rHptq,R´1

m ptq,bT ptqs “
NL-PETRELS

`

x̃ptq,Hpt´ 1q,R´1
m pt´ 1q

˘

3 for i “ 1 : R do
4 aiptq “ HT

i ptqcipt´ 1q

5 ciptq “
Hiptqaiptq

‖ Hiptqaiptq ‖
6 end
7 bT ptq “ rPptq pAptq dCptqqs

#
x̃ptq

8 end
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Fig. 2. NL-PETRELS subspace tracking performance.
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Fig. 3. Adaptive subspace tracking performance.

TABLE I
EXPERIMENTAL PARAMETERS

n p T NNZP
500 10 5000/20000 0.1

used. We used default parameters of PETRELS to have fair
comparison in both experiments.

We can see that in both experiments, when PETRELS and
NL-PETRELS converge, they have the same performance.
However, NL-PETRELS outperformed PETRELS in terms of
convergence rate (first 1, 000 samples in the first experiment,
and 2, 000 samples in the second one) and in presence of
sudden change of subspace.

For non-linear characterization of the NL-PETRELS sub-
space tracking algorithm, as discussed in [18, Chapter 12],
minimizing the non-linear cost function in (4) does not provide
a smaller least mean square error than its linear version. This
characterization also keeps in the situation of incomplete data
and was confirmed by our experiments.
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(a) CP-OPT for full data
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Figure 1: Columns of the PARAFAC factor matrices A, B, C represented in channel, time-frequency and
measument mode. The 3D head is drown by eeglab
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(b) CP-WOPT for incomplete data
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(c) NL-PETRELS based PARAFAC tracking for incomplete
data

Fig. 4. Estimates of loading matrices A, B, C using CP-WOPT and our proposed NL-PETRELS PARAFAC tracking.

B. NL-PETRELS based PARAFAC tracking from incomplete
EEG data

We use the EEG dataset provided in [19], which records
gamma activation during proprioceptive stimuli of left and
right hands. The dataset includes 28 measurements of 14
subjects. For each subject, left and right hands are stimulated
and recorded by 64 EEG channels.

The EEG data are represented by a tensor of three dimen-
sions: channel ˆ time-frequency ˆ measurement. To create the
time-frequency image from the EEG signal in each channel,
the continuous wavelet transform was used [19]. This time-
frequency matrix is then vectorised to form a vector of length
4392. Therefore, the size of the tensor is: 64ˆ 4392ˆ 28.

We compare our NL-PETRELS-based PARAFAC tracking
algorithm with the CP-WOPT algorithm in [21]. CP-WOPT is
a batch algorithm for incomplete data. Accordingly, we process
the data in a similar manner. The tensor is centered (demeaned)
across the channels. The rank of the tensor is R “ 3. To

create the situation of incomplete data, for each measurement,
data from randomly selected 20 channels are discarded. Dif-
ferent from CP-WOPT is the ability to deal with streaming
data of our proposed algorithm. The implementation of this
experiment used several MATLAB toolboxes: Tensor [22],
Poblano [23], and EEGLAB [24].

The adaptivity is done along the second dimension (time-
frequency), as if each EEG time-frequency image is vectorised
and the resulting vector of data is being streamed. To initialize
our algorithm, we run CP-WOPT with the first 1500 slices, i.e.,
tensor with size of 64 ˆ 1500 ˆ 28. This is known as batch
initialization [3] and is necessary to make algorithm converge.
We have experimentally observed that random initialization
may cause algorithm diverge for the EEG data.

The results are given in Fig. 4. Three rows in each sub-figure
correspond to three PARAFAC components (R “ 3), i.e. the
first, second and third columns of the loading matrices. In each
row, the 3-dimensional head, the time-frequency representation



and the bar plot correspond to the i-th vectors of the loading
matrices A, B and C respectively, i “ 1, 2, 3. Fig. 4 illutrates
the estimation of the loading matrices A, B, C, using CP-
WOPT in (a) for full data and (b) for incomplete data and
(c) using our proposed NL-PETRELS PARAFAC tracking for
incomplete data, showing that our algorithm can track the
loading matrices successfully.

In our experiment, for illustration purposes, the way we
created the EEG tensor is offline, that is applying the con-
tinuous wavelet transform for the whole duration of the EEG
signal in each channel and performed the tracking as if we
gradually received data from this whole time-frequency vector.
In practice, it would be more appropriate to perform the
wavelet transform in real-time [25]–[28], as the time samples
of an EEG signal is being recorded.

IV. CONCLUSION

In the context of using tensor decomposition in challeng-
ing situations where the observed data are streaming and
incomplete, we have proposed a non-linear formulation of the
PETRELS cost function and based on which we proposed NL-
PETRELS subspace and tensor tracking algorithms. While the
performance of the NL-PETRELS subspace tracking algorithm
was investigated and shown to be better than PETRELS in
terms of convergence rate, the NL-PETRELS based PARAFAC
tracking algorithm was illustrated for tracking multi-channel
incomplete EEG data, represented by a tensor of three dimen-
sions: channel ˆ vectorised time-frequency ˆ measurement.
The algorithm successfully tracked the data even when data
from 20 out ouf 64 channels were missing. Investigation on
the performance of the proposed tensor tracking algorithm by
itself and with respect to the presented type of EEG tensor is
necessary, as well as on different types of EEG tensors.
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