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Abstract—Protein structure prediction is considered as one of the most

long-standing and challenging problem in bioinformatics. In this paper,

we present an efficient ant colony optimization algorithm to predict

the protein structure on three-dimensional face-centered cubic lattice

coordinates, using the hydrophobic–polar model and the Miyazawa–

Jernigan model to calculate the free energy. The reinforcement learning

information is expressed in the k-order Markov model, and the heuristic

information is determined based on the increase of the total energy. On

a set of benchmark proteins, the results show a remarkable efficiency of

our algorithm in comparison with several state-of-the-art algorithms.

I. INTRODUCTION

Proteins are essential components of all living cells and play a vital

role in biological processes of living organisms. They are sequential

chains of amino acid connected by single-peptide bonds, and therefore

also known as polypeptides. The three-dimensional (3D) structure of

a protein exposes its properties and features. A misfolded protein

can cause many dangerous diseases, such as Alzheimer, diabetes,

cancer [1]. Analyzing the structure of proteins allow us to understand

their features and produce medicines for diseases caused by protein

misfolding [2], [3].

Unfortunately, it is complex and difficult to simulate a protein

nature into 3D structure [4], [5]. Therefore, protein structure pre-

diction (PSP) remains as a highly challenging problem for both the

biological and computational communities. Several in-vitro methods

were proposed to study proteins at atom-level like, such as X-ray

crystallography, nuclear magnetic resonance (NMR). However, these

methods is time-consuming and costly, unsuitable for large-scale

situations. For this reason, computational methods for predicting the

structure of proteins are promising alternatives [6], [7].

So far, there are three computational approaches: homology model-

ing, threading and ab initio. The first two approaches can only be used

when compatible labels exist in the Protein Data Bank [8], limiting

their applications. Methods in the ab initio approach predict the 3D

structure of proteins, relying only on its primary amino acid sequence.

From a given amino acid sequence, they predict the 3D structure

of the protein by finding a unique 3D conformation with minimal

interaction energy [4]. The model for solving this problem has been

optimized by the search space and the target function.

In practice, the search space is very large and determining in-

teraction energies is a complex and costly task. High-resolution

methods can only handle proteins with length below 150 amino acids.

That is why the lattice structure is used, wherein every amino acid

corresponds to a node in a discretized search space. This simplicity

allows developing highly efficient algorithms, especially when applied

to longer proteins.

Many methods to apply the lattice structure have been consid-

ered [9]–[11], and among them, 3D face-centered cubic lattice (3D-

FFC) possesses many advantages over other methods [12], [13] and

have been used by many researchers [10], [14]–[16].

There are two popular energy models, aproximating the optimal

structure of proteins: Hydrophobic–Polar (HP) energy model [10],

[17] and Miyazawa–Jernigan (MJ) energy model [18]. In the HP

model, every amino acid is considered a bead labelled as hydrophobic

(H) and polar (P), and energy is determined from the physical

interactions among H-nodes, whereas P-nodes are seen as neutral.

The MJ model considers interactions between specific pairs of amino

acids, thus being closer to the realistic model of free energy.

PSP has been classified as an NP-hard problem [19], [20], and so

heuristic and metaheuristic algorithms have been proposed to solve it.

Many of those are based on population, such as: ant colony optimiza-

tion (ACO) [21], artificial learning system [22], generic algorithm

(GA) [23]–[25], population-based algorithm [26], particle swarm

optimization (PSO) [27], firefly algorithm [14]. Recently, Rashid et al.

has proposed two methods based on the GA: GAplus [15] (HP energy

model) and MH-GA [16] (graded energy, strategically mixing the MJ

energy with the HP energy). The performance of these algorithms is

outstanding in comparison with several the state of the art algorithms.

In this paper, we propose the K-ACO algorithm for PSP, in which

the pheromone trail is calculated according to k-order Markov model,

which is suitable for 3D structure reception. When using the HP

energy model, a local search algorithm is applied to the best solution

at each iteration step. Its effectiveness is shown by comparing the

simulation study against GAPlus [15], TLS [28] MH-GA [16], Hybrid

[29], Local Search [30].

The rest of this paper is organized as follows. In Section II, we

briefly provide the background knowledge about the FCC lattice

protein representation, the HP and MJ models and some related

works. Section III is dedicated for the new algorithm, K-ACO. The

simulation study is shown in Section IV. The conclusion is presented

in the last section.

II. PROBLEM STATEMENT AND RELATED WORKS

In this section, we briefly describe PSP from its native amino acid

sequence in the FCC lattice representation of proteins, the objective

functions (HP and MJ), some related works, and the ACO method.

A. FCC lattice and presentation of protein

The FCC lattice is obtained by discretizing the 3D space, formed

around triangles. Each node only has 12 neighbors whose relative co-

ordinates to the current node are (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0),
(0, 1, 1), (0, 1, 1), (1, 0, 1), (1, 0, 1), (0, 1, 1), (1, 0, 1), (0, 1, 1) and

(1, 0, 1). This is illustrated in Fig. 1. Given a primary amino acids

sequence, a feasible protein sequence is a sequence where any pair

of consecutive amino acids in the primary sequence are neighbors.

Compared to other lattices, the FCC lattice is close to the natural

structure of proteins, with many advantages [12], [13], such as highest

packing density, smaller root mean square deviation values.

B. The energy models

Two energy models frequently used to determine the target function

of this problem are the HP and MJ models.
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TABLE I: Energy values between every protein pairs

CYS MET PHE ILE LEU VAL TRP TYR ALA GLY THR SER GLN ASN GLU ASP HIS ARG LYS PRO

CYS -1.06 0.19 -0.23 0.16 -0.08 0.06 0.08 0.04 0.0 -0.08 0.19 -0.02 0.05 0.13 0.69 0.03 -0.19 0.24 0.71 0.0

MET 0.19 0.04 -0.42 -0.28 -0.2 -0.14 -0.67 -0.13 0.25 0.19 0.19 0.14 0.46 0.08 0.44 0.65 0.99 0.31 0.0 -0.34

PHE -0.23 -0.42 -0.44 -0.19 -0.3 -0.22 -0.16 0.0 0.03 0.38 0.31 0.29 0.49 0.18 0.27 0.39 -0.16 0.41 0.44 0.2

ILE 0.16 -0.28 -0.19 -0.22 -0.41 -0.25 0.02 0.11 -0.22 0.25 0.14 0.21 0.36 0.53 0.35 0.59 0.49 0.42 0.36 0.25

LEU -0.08 -0.2 -0.3 -0.41 -0.27 -0.29 -0.09 0.24 -0.01 0.23 0.2 0.25 0.26 0.3 0.43 0.67 0.16 0.35 0.19 0.42

VAL 0.06 -0.14 -0.22 -0.25 -0.29 -0.29 -0.17 0.02 -0.1 0.16 0.25 0.18 0.24 0.5 0.34 0.58 0.19 0.3 0.44 0.09

TRP 0.08 -0.67 -0.16 0.02 -0.09 -0.17 -0.12 -0.04 -0.09 0.18 0.22 0.34 0.08 0.06 0.29 0.24 -0.12 -0.16 0.22 -0.28

TYR 0.04 -0.13 0.0 0.11 0.24 0.02 -0.04 -0.06 0.09 0.14 0.13 0.09 -0.2 -0.2 -0.1 0.0 -0.34 -0.25 -0.21 -0.33

ALA 0.0 0.25 0.03 -0.22 -0.01 -0.1 -0.09 0.09 -0.13 -0.07 -0.09 -0.06 0.08 0.28 0.26 0.12 0.34 0.43 0.14 0.1

GLY -0.08 0.19 0.38 0.25 0.23 0.16 0.18 0.14 -0.07 -0.38 -0.26 -0.16 -0.06 -0.14 0.25 -0.22 0.2 -0.04 0.11 -0.11

THR 0.19 0.19 0.31 0.14 0.2 0.25 0.22 0.13 -0.09 -0.26 0.03 -0.08 -0.14 -0.11 0.0 -0.29 -0.19 -0.35 -0.09 -0.07

SER -0.02 0.14 0.29 0.21 0.25 0.18 0.34 0.09 -0.06 -0.16 -0.08 0.2 -0.14 -0.14 -0.26 -0.31 -0.05 0.17 -0.13 0.01

GLN 0.05 0.46 0.49 0.36 0.26 0.24 0.08 -0.2 0.08 -0.06 -0.14 -0.14 0.29 -0.25 -0.17 -0.17 -0.02 -0.52 -0.38 -0.42

ASN 0.13 0.08 0.18 0.53 0.3 0.5 0.06 -0.2 0.28 -0.14 -0.11 -0.14 -0.25 -0.53 -0.32 -0.3 -0.24 -0.14 -0.33 -0.18

GLU 0.69 0.44 0.27 0.35 0.43 0.34 0.29 -0.1 0.26 0.25 0.0 -0.26 -0.17 -0.32 -0.03 -0.15 -0.45 -0.74 -0.97 -0.1

ASP 0.03 0.65 0.39 0.59 0.67 0.58 0.24 0.0 0.12 -0.22 -0.29 -0.31 -0.17 -0.3 -0.15 0.04 -0.39 -0.72 -0.76 0.04

HIS -0.19 0.99 -0.16 0.49 0.16 0.19 -0.12 -0.34 0.34 0.2 -0.19 -0.05 -0.02 -0.24 -0.45 -0.39 -0.29 -0.12 0.22 -0.21

ARG 0.24 0.31 0.41 0.42 0.35 0.3 -0.16 -0.25 0.43 -0.04 -0.35 0.17 -0.52 -0.14 -0.74 -0.72 -0.12 0.11 0.75 -0.38

LYS 0.71 0.0 0.44 0.36 0.19 0.44 0.22 -0.21 0.14 0.11 -0.09 -0.13 -0.38 -0.33 -0.97 -0.76 0.22 0.75 0.25 0.11

PRO 0.0 -0.34 0.2 0.25 0.42 0.09 -0.28 -0.33 0.1 -0.11 -0.07 0.01 -0.42 -0.18 -0.1 0.04 -0.21 -0.38 0.11 0.26

Fig. 1: Basis vectors of 12 neighbors of the origin (0, 0, 0).

1) HP energy model: The HP energy model proposed by Lau and

Dill in 1972 [17]. In this model, the amino acids Gly, Ala, Pro, Val,

Leu, Ile, Met, Phe, Tyr, Trp are labeled as hydrophobic (H), others

are labeled as polar (P). Two consecutive H-labeled amino acids will

create negative energy (−1). The complete HP energy of the model

for two amino acids i and j is calculated by

EHP =
∑

i<j−1

cij ∗ eij , (1)

where

cij =

{

1, if i and j not consecutive but neighbors,

0, otherwise,
(2)

eij =

{

−1, if i and j both hydrophobic,

0, otherwise.
(3)

2) MJ energy model: Relying on the interactive trend of amino

acids, Miyazawa and Jernigan proposed the MJ energy model in

1985 [31]. The complete MJ energy is calculated by

EMJ =
∑

i<j−1

cij ∗ eij , (4)

where cij is determined by Eq. (2) and Eij is taken from Table I.

C. The optimal problem and related algorithms

The optimal problem: for each given protein with the native amino

acid sequence of length m, the PSP problem is transformed into

finding the representation with optimal EHP or EMJ energy.

Recently, MH-GA [16] has been proven to be the most efficient

algorithm to solve the PSP problem by comparing its experimental

results with the MJ model against other state-of-the-art algorithms,

such as Hybrid algorithm [29], and Local Search [30].

III. THE PROPOSED K-ACO ALGORITHM

ACO is a stochastic metaheuristic method proposed by Dorigo [32]

for the traveling salesman problem (TSP). Many variants have been

developed to tackle difficult optimization problems. In this paper,

we build a structure graph and transform the original problem into

a problem where solutions can be found by sequentially executing a

certain procedure on the built structure graph. An ant colony executes

the said procedure based on heuristic and reinforcement learning

information (i.e., pheromone) in a random manner. When a solution

is found, the algorithm appraises it then updates the pheromone to

improve the chance of finding better solutions on the next searches,

this is repeated till the termination requirement is met. The properties

affecting the quality of the algorithm are: (i) a suitable structure

graph, (ii) heuristic information, and (iii) how pheromone is stored

and updated.

A. Construction graph

Without loss of generality, the first amino acid is placed at the

origin (0, 0, 0) and start there. The 12 neighbors of each node are

indexed from 1 to 12. The structure graph for a protein with the
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length of m has (m− 1) columns put in order after the start vertex.

There are edges directed from each vertex to all vertices in the next

column. The graph is illustrated in Fig. 2. With this, any feasible

sequence of length m will correspond to a path on this graph.

Fig. 2: Construction graph.

B. Randomized procedure to find solution

Each ant will begin at the start vertex and randomly select a vertex

on the next column to go. Suppose the ant is on vertex i of column

n (or the start vertex), it will select vertex j out of 12 vertices on

the next column with the probability Pi,j calculated by the following

formula:

Pi,j =
[τi,j(k)]

α[ηi,j ]
β

∑

l∈Cn+1
[τi,l(k)]α[ηi,l]β

, (5)

where ηi,j is the heuristic information (see III-C), τi,j(k) is the

pheromone information of the k-degree Markov model (see III-D), Ct
is the set of vertices on column t, α and β are parameters of the ACO

system, deciding the impact of heuristic and pheromone information

on making decisions.

To ensure self-avoiding walk constraint, we set Pi,j = 0 when

selecting vertex would cause two amino acids to have the same

coordinate on the protein representation.

C. Heuristic information

After the first (i − 1) amino acids were successfully represented

and vector j is the selected direction to go next, let ηij be the

heuristic value, Eij be the amount of increased energy, and Emax =
max(Eij). Then ηij = Emax−Eij + ǫ , where ǫ is a small positive

number to ensure ηij always positive. In our implements, we set it

to 0.01.

D. Pheromone update

Instead of making choice based only on the pheromone information

in the current column, we can also take previously selected vertices

into consideration. Let τi,j(k) be the pheromone when vertices

(i, j), (i−1, vi−1), . . . , (i−k+1, vi−k+1) are selected. This way, the

pheromone will give more accurate information during the searches.

After every round of search, we update pheromone using the

SMMAS algorithm [33], by

τi,j(k) = (1− ρ)τi,j(k) +∆ij , (6)

where

∆ij =

{

ρτmin, if (i, j) ∈ T,

ρτmin, otherwise.
(7)

Above, T is the set of selected vertices in the best solution found in

this round.

E. Local Search

At each step of the local search procedure, we first identify the
hydrophobic core center (HCC) as the center of the hydrophobic
amino acid (H). The coordinates of HCC are determined as follows:

xHCC =
1

nH

nH
∑

i=1

xi, yHCC =
1

nH

nH
∑

i=1

yi, zHCC =
1

nH

nH
∑

i=1

zi, (8)

where nH is the number of amino acids H. Then, we choose an

amino acid H to move closer to the HCC so as not to increase the

free energy of the protein.

Algorithm 1 Procedure of Local Search

1: while stop conditions not satisfied do

2: Calculate the HCC coordinates

3: Move← SeclectMove()
4: if Move = Null then

5: Break

6: ApllyMove()

Algorithm 2 Procedure of K-ACO algorithm

1: Initialize pheromone trail matrix and set A of p ants

2: while stop conditions not satisfied do

3: for a ∈ A do

4: Ant a build a solution by random walk procedure

5: Update pheromone trail follows SMMAS rule

6: Use local search on the best solution

7: Update the best solution

8: Decode solution and save the best solution

IV. SIMULATION

A. Different values of K

EMJ is the average of energy values returned by our algorithm and

Nloops is the average of the number of loops that our algorithm will be

convergent. From Table II, we see that the number of loops needed

for convergence increases when K increases. However, the value of

EMJ increases significantly when K increases from 1 to 3. Values of

EMJ when K ∈ {3, 4, 5} do not differ much. The larger K, the more

running time and memory our algorithm needed to complete. Hence,

we choose K = 3 as default for the algorithm.

B. HP energy model

The data sets were used are H,F90,S,F180,R (Peter Clote labora-

tory1) and 3MSE, 3MR7, 3MQZ, 3NO6, 3NO3, 3ON7 from Critical

Assessment of Protein Structure Prediction competition2, used in [15].

1http://bioinformatics.bc.edu/clotelab/FCCproteinStructure.
2http://predictioncenter.org.

TABLE II: The result when trying multiple values of K

K
3NO3 3NO6 3ON7

EMJ Nloops EMJ Nloops EMJ Nloops

1 -110.29 494 -118.56 456 -120.18 565

2 -128.36 1043 -134.67 1126 -136.8 1247

3 -141.03 2230 -150.13 2371 -154.8 2612

4 -141.99 3104 -150.44 3462 -154.26 3790

5 -141.24 3407 -148.62 3821 -154.34 4207
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TABLE III: Results when HP energy model was used

Protein details State-of-the-art
ACO

SEQ size HS LBFE
TLS GA plus

best avg best avg time(s) best avg time(s) RI(%)

H1 48 24 -69 -68 -66 -69 -69

1800

-69 -69 308 0.00
H2 48 24 -69 -68 -65 -69 -69 -69 -69 321 0.00
H3 48 24 -72 -69 -66 -72 -72 -72 -72 316 0.00
H4 48 24 -71 -70 -65 -71 -71 -71 -71 316 0.00
H5 48 24 -70 -68 -65 -70 -70 -70 -70 321 0.00
H6 48 24 -70 -69 -66 -70 -69 -70 -70 324 1.45
H7 48 24 -70 -69 -66 -70 -70 -70 -70 320 0.00
H8 48 24 -69 -67 -64 -69 -69 -69 -69 320 0.00
H9 48 24 -71 -68 -66 -71 -71 -71 -71 313 0.00

H10 48 24 -68 -68 -65 -68 -68 -68 -68 324 0.00

F90 1 90 50 -168 -164 -160 -168 -166

7200

-168 -166 584 0.00
F90 2 90 50 -168 -165 -158 -168 -165 -167 -165 589 0.00
F90 3 90 50 -167 -165 -159 -167 -164 -165 -163 596 -0.61
F90 4 90 50 -168 -165 -159 -168 -165 -167 -163 592 -1.21
F90 5 90 50 -167 -165 -159 -167 -166 -167 -166 590 0.00

S1 135 100 -357 -351 -341 -355 -348 -357 -354 878 1.72
S2 151 100 -360 -355 -343 -356 -349 -356 -352 996 0.86
S3 162 100 -367 -355 -340 -361 -348 -359 -353 1062 1.44
S4 164 100 -370 -354 -343 -364 -352 -360 -355 1077 0.85

F180 1 180 100 -378 -338 -326 -351 -341

18000

-352 -343 1194 0.59
F180 2 180 100 -381 -345 -333 -362 -346 -350 -343 1185 -0.87
F180 3 180 100 -378 -352 -338 -361 -350 -363 -357 1189 2.00

R1 200 100 -384 -332 -318 -355 -345 -353 -341 1341 -1.16
R2 200 100 -383 -337 -324 -360 -346 -347 -337 1359 -2.60
R3 200 100 -385 -339 -323 -363 -344 -346 -337 1342 -2.03

3MSE 179 84 -323 -268 -251 -292 -278 -286 -278 1312 0.00
3MR7 189 93 -355 -304 -287 -330 -316 -326 -318 1324 0.63
3MQZ 215 120 -474 -404 -384 -427 -412 -426 -415 1547 0.73

3NO6 229 116 -455 -390 -372 -423 -402

28800
-410 -400 1689 -0.50

3NO3 258 122 -494 -388 -372 -421 -404 -425 -411 1751 1.73
3ON7 279 146 u/k -491 -461 -519 -490 -510 -495 1803 0.00

To evaluate the performance of K-ACO, we use Relative Improve-

ment (RI), defined as

RI =
EA − EB

EB

, (9)

where EA and EB are the average energy values achieved by the K-

ACO algorithm and by the state-of-the-art one, respectively. K-ACO

was compared with two other algorithms: TLS [28] and GA [15].

For each protein, each of the three algorithms were run 50 times.

Table III shows the best and the average result of 50 runs for each

protein. It can be seen that K-ACO performed better as compared to

TLS. However, K-ACO and GA performed similarly; the difference

between them always below 3%. K-ACO performed better than GA

in 10 protein sequences while GA better than K-ACO in 7 protein

sequences. To further compare with GA, we increased the number

of loops to 60, 000 and applied this new change for those 7 protein

sequences where GA did better. We see that, when increasing the

number of loops, K-ACO performance improved and approximately

as good as GA, as shown in Table V.

C. MJ energy model

In this section, data in Table IV were used for the MJ energy model.

These data were also used in [16].

We run K-ACO on the above dataset and compare the result with

other algorithms, namely Hybrid [29], Local search [30] and GA [15].

This is the best and average result taken from 50 runs for each protein

sequence. From the column RI in Table VII, we can see that for all

proteins sequences, our algorithm improved the average energy.

V. CONCLUSION

In this paper, we presented the K-ACO algorithm to predict the

protein structure on the FCC lattice, using two different energy

models– HP and MJ. This algorithm has a simple structure graph, the

use of pheromone information in the k-order Markov model is more

suitable for the 3D structure prediction and increase the efficiency

of the ACO method. The simulation study shows that the proposed

algorithm outperforms the state-of-the-art algorithms both in quality

and running time. The algorithm can be improved by applying local

search techniques according to memetic schemes. In this algorithm,

the pheromone trail in the k-order Markov model with k = 3
is appropriate. Increasing k costs more memory and time, but the

efficiency is not much improved. This technique can be applied to

ACO algorithms for other similar problems.

TABLE V: K-ACO vs GA with increased running time

Protein details GA plus K-ACO

SEQ size HS LBFE best avg time(s) best avg time(s)

F90 3 90 50 -167 -167 -164 7200 -165 -164 1763

F90 4 90 50 -168 -168 -165 7200 -167 -165 1782

F180 2 180 100 -381 -362 -346 18000 -350 -346 3496

R1 200 100 -384 -355 -345 18000 -353 -345 4107

R2 200 100 -383 -360 -346 18000 -348 -340 4092

R3 200 100 -385 -363 -344 18000 -346 -340 4128

3NO6 229 116 -455 -423 -402 28800 -411 -404 5092
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TABLE IV: Benchmark proteins used in our experiments with MJ model

ID Length Protein sequence

4RXN 54 MKKYTCTVCGYIYNPEDGDPDNGVNPGTDFKDIPDDWVCPLCGVGKDQFEEVEE

1ENH 54 RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI

4PTI 58 RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

2IGD 61 MTPAVTTYKLVINGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE

1YPA 64 MKTEWPELVGKAVAAAKKVILQDKPEAQIIVLPVGTIVTMEYRIDRVRLFVDKLDNIAQVPRVG

1R69 69 SISSRVKSKRIQLGLNQAELAQKVGTTQQSIEQLENGKTKRPRFLPELASALGVSVDWLLNGTSDSNVR

1CTF 74 AAEEKTEFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSKDDAEALKKALEEAGAEVEVK

3MX7 90 MTDLVAVWDVALSDGVHKIEFEHGTTSGKRVVYVDGKEEIRKEWMFKLVGKETFYVGAAKTKATINIDAISGFA YEYTLE-

INGKSLKKYM

3NBM 108 SNASKELKVLVLCAGSGTSAQLANAINEGANLTEVRVIANSGAYGAHYDIMGVYDLIILAPQVRSYYREMKVDA

ERLGIQIVATRGMEYIHLTKSPSKALQFVLEHYQ

3MQO 120 PAIDYKTAFHLAPIGLVLSRDRVIEDCNDELAAIFRCARADLIGRSFEVLYPSSDEFERIGERISPVMIAHGSY

ADDRIMKRAGGELFWCHVTGRALDRTAPLAAGVWTFEDLSATRRVA

3MRO 142 SNALSASEERFQLAVSGASAGLWDWNPKTGAMYLSPHFKKIMGYEDHELPDEITGHRESIHPDDRARVLAALKA

HLEHRDTYDVEYRVRTRSGDFRWIQSRGQALWNSAGEPYRMVGWIMDVTDRKRDEDALRVSREELRRL

3PNX 160 GMENKKMNLLLFSGDYDKALASLIIANAAREMEIEVTIFCAFWGLLLLRDPEKASQEDKSLYEQAFSSLTPREA

EELPLSKMNLGGIGKKMLLEMMKEEKAPKLSDLLSGARKKEVKFYACQLSVEIMGFKKEELFPEVQIMDVKEYL

KNALESDLQLFI

3MSE 180 GISPNVLNNMKSYMKHSNIRNIIINIMAHELSVINNHIKYINELFYKLDTNHNGSLSHREIYTVLASVGIKKWD

INRILQALDINDRGNITYTEFMAGCYRWKNIESTFLKAAFNKIDKDEDGYISKSDIVSLVHDKVLDNNDIDNFF

LSVHSIKKGIPREHIINKISFQEFKDYMLSTF

3MR7 189 SNAERRLCAILAADMAGYSRLMERNETDVLNRQKLYRRELIDPAIAQAGGQIVKTTGDGMLARFDTAQAALRCA

LEIQQAMQQREEDTPRKERIQYRIGINIGDIVLEDGDIFGDAVNVAARLEAISEPGAICVSDIVHQITQDRVSE

PFTDLGLQKVKNITRPIRVWQWVPDADRDQSHDPQPSHVQH

3MQZ 215 SNAMSVQTIERLQDYLLPEWVSIFDIADFSGRMLRIRGDIRPALLRLASRLAELLNESPGPRPWYPHVASHMRRR

VNPPPETWLALGPEKRGYKSYAHSGVFIGGRGLSVRFILKDEAIEERKNLGRWMSRSGPAFEQWKKKVGDLRDFG

PVHDDPMADPPKVEWDPRVFGERLGSLKSASLDIGFRVTFDTSLAGIVKTIRTFDLLYAEAEKGS

3NO3 238 GKDNTKVIAHRGYWKTEGSAQNSIRSLERASEIGAYGSEFDVHLTADNVLVVYHDNDIQGKHIQSCTYDELKDLQ

LSNGEKLPTLEQYLKRAKKLKNIRLIFELKSHDTPERNRDAARLSVQMVKRMKLAKRTDYISFNMDACKEFIRLC

PKSEVSYLNGELSPMELKELGFTGLDYHYKVLQSHPDWVKDCKVLGMTSNVWTVDDPKLMEEMIDMGVDFITTDL

PEETQKILHSRAQ

3NO7 248 MGSDKIHHHHHHENLYFQGMTFSKELREASRPIIDDIYNDGFIQDLLAGKLSNQAVRQYLRADASYLKEFTNIYA

MLIPKMSSMEDVKFLVEQIEFMLEGEVEAHEVLADFINEPYEEIVKEKVWPPSGDHYIKHMYFNAFARENAAFTI

AAMAPCPYVYAVIGKRAMEDPKLNKESVTSKWFQFYSTEMDELVDVFDQLMDRLTKHCSETEKKEIKENFLQSTI

HERHFFNMAYINEKWEYGGNNNE

3ON7 280 GMKLETIDYRAADSAKRFVESLRETGFGVLSNHPIDKELVERIYTEWQAFFNSEAKNEFMFNRETHDGFFPASIS

ETAKGHTVKDIKEYYHVYPWGRIPDSLRANILAYYEKANTLASELLEWIETYSPDEIKAKFSIPLPEMIANSHKT

LLRILHYPPMTGDEEMGAIRAAAHEDINLITVLPTANEPGLQVKAKDGSWLDVPSDFGNIIINIGDMLQEASDGY

FPSTSHRVINPEGTDKTKSRISLPLFLHPHPSVVLSERYTADSYLMERLRELGVL

TABLE VII: K-ACO vs other algorithms (bold values are the best one in their row)

Protein details Hybrid Local search GA K-ACO

SEQ size H best avg best avg best avg best avg RI(%)

4RXN 54 27 -32.61 -30.94 -33.33 -31.21 -36.36 -33.6 -37.98 -36.84 9.64

1ENH 54 19 -35.81 -35.07 -29.03 -28.18 -38.39 -35.67 -37.51 -36.49 2.3

4PTI 58 32 -32.07 -29.37 -31.16 -28.33 -35.65 -31.01 -37.2 -33.35 7.55

2IGD 61 25 -38.64 -32.54 -32.36 -28.29 -36.49 -33.75 -36.77 -35.09 3.97

1YPA 64 38 n/a n/a -33.33 -32.15 -40.14 -36.33 -40.52 -38.93 7.16

1R69 69 30 -34.2 -31.85 -33.35 -32.2 -40.85 -36.28 -39.73 -38.59 6.37

1CTF 74 42 -38 -35.28 -45.83 -40.94 -51.5 -47.29 -53.72 -51.09 8.04

3MX7 90 44 n/a n/a -44.81 -42.32 -56.32 -50.95 -58.1 -56.04 9.99

3NBM 108 56 n/a n/a -52.44 -49.51 -49.51 -49.9 -59.71 -57.5 15.23

3MQO 120 68 n/a n/a -64.04 -58.84 -62.25 -54.56 -70.62 -67.5 14.72

3MRO 142 63 n/a n/a -87.38 -82.24 -90.05 -82.32 -101.34 -98.2 19.29

3PNX 160 84 n/a n/a -103.04 -96.86 -102.55 -88.06 -116.31 -112.18 15.82

3MSE 180 83 n/a n/a n/a n/a -92.61 -84.6 -110.9 -106.44 25.82

3MR7 189 88 n/a n/a n/a n/a -93.65 -83.93 -120.64 -115.02 37.04

3MQZ 215 115 n/a n/a n/a n/a -104.29 -95.22 -132.09 -126.62 32.98

3NO3 238 102 n/a n/a n/a n/a -122.97 -108.7 -151.84 -147.86 36.03

3NO7 248 112 n/a n/a n/a n/a -133.95 -117.11 -163.89 -156.01 33.22

3ON7 280 135 n/a n/a n/a n/a -116.88 -96.64 -167.12 -160.29 65.86
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Fig. 3: New best structure found by K-ACO for two largest datasets.

TABLE VI: Running time of K-ACO and GA

Protein details
K-ACO GA

SEQ size H

4RXN 54 27 706.97

3600

1ENH 54 19 708.4
4PTI 58 32 770.32
2IGD 61 25 798.04
1YPA 64 38 848.82
1R69 69 30 916.28
1CTF 74 42 991.53
3MX7 90 44 1183.9
3NBM 108 56 1414.94
3MQO 120 68 1584.95
3MRO 142 63 1831.22
3PNX 160 84 2061.74

3MSE 180 83 2337.52

7200

3MR7 189 88 2461.5
3MQZ 215 115 2806.42
3NO3 238 102 3053.11
3NO6 248 112 3154.14
3ON7 280 135 3576.92
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