
122 REV Journal on Electronics and Communications, Vol. 1, No. 2, April – June, 2011

Regular Article

An Efficient Architecture of Forward Transforms and Quantization
for H.264/AVC Codecs
Xuan-Tu Tran, Van-Huan Tran

VLSI Systems Design Group, SIS Laboratory, VNU University of Engineering and Technology, Hanoi,
Vietnam

Correspondence: Xuan-Tu Tran, tutx@vnu.edu.vn
Manuscript communication: received 29 May 2011, revised 26 June 2011, accepted 28 June 2011

Abstract– Thanks to many novel coding tools, H.264/AVC has become the most efficient video compression standard
providing much better performance than previous standards. However, this standard comes with an extraordinary
computational complexity and a huge memory access requirement, which make the hardware architecture design much
more difficult and costly, especially for realtime applications.
In the framework of H.264 codec hardware architecture project, this paper presents an efficient architecture of Forward
Transform and Quantization (FTQ) for H.264/AVC codecs in mobile applications. To reduce the hardware implementation
overhead, the proposed design uses only one unified architecture of 1-D transform engine to perform all required transform
processes, including discrete cosine transform and Walsh Hadamard transform. This design also enables to share the common
parts among multipliers that have the same multiplicands. The performance of the design is taken into consideration
and improved by using a fast architecture of the multiplier in the quantizer, the most critical component in the design.
Experimental results show that our architecture can completely finish transform and quantization processes for a 4:2:0
macroblock in 228 clock cycles and the achieved throughput is 445Msamples/s at 250MHz operating frequency while the
area overhead is very small, 147755µm2 (approximate 15KGates), with the 130nm TSMC CMOS technology.

Keywords– ISO/IEC 14496-10 AVC, ITU-T Recommendation H.264, VLSI architecture for H.264 codec, Forward Transforms
and Quantization, integer DCT, quantization.

This work has been partly presented at the 2011 IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems
(IEEE DDECS 2011) at Cottbus, Germany in April 2011.

1 Introduction

THE H.264 Advanced Video Coding
(H.264/AVC) [1] is known as the lastest and

most efficient video compression standard providing
better video quality at a lower bit-rate than previous
standards. The standard is recommended by the
Joint Video Team (JVT) formed by the ITU-T Video
Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG). It contains
a rich set of video coding tools to support a variety
of applications ranging from mobile services and
video conferencing, digital broadcast, to IPTV, HDTV
and digital storage media. The general architecture
composed of functional blocks of H.264/AVC encoder
is depicted in figure 1. Compared with previous
standards such as MPEG-4 [2], H.263 [3], and MPEG-
2 [4], H.264/AVC can achieve 39%, 49%, and 64% of
bit-rate reduction, respectively [5]. To achieve high
compression ratio, H.264/AVC has adopted several
advances in coding technology to remove spatial
and temporal redundancies. However, it makes the
hardware implementation becomes more complex
and costly. Many designers have paid much attention
to the complexity reduction of motion estimation
and/or entropy coding parts [6, 7]. However, the

Figure 1. H264/AVC encoder – a functional architecture.

design and implementation of forward transforms and
quantization (FTQ) part should also be considered for
minimizing the system hardware overhead.

By specifying a set of integer transforms for small
block-sizes, which are integer Discrete Cosine Trans-
form (DCT) and Walsh Hadamard transform, it has
really reduced the computational complexity as im-
portant as blocking artifacts [8]. In addition, thanks
to the advanced procedures prensented in [9], these
transforms can be easily realized with some required
shifting and adding operations. In fact, in H.264/AVC
standard, the size of transforms is variable depend-

1859-378X–2011-0206 c© 2011 REV

X.-T. Tran, V.-H. Tran: An Efficient Architecture of Forward Transforms and Quantization for H.264/AVC Codecs 123

ing on the profile used in the encoders, where 4 × 4
block-size and 2× 2 block-size transforms are primitive
components. Larger transforms, which used in adaptive
block-size transforms (ABTs), are more suitable for
High-Definition (HD) video. In this paper, only the
4 × 4 block-size transforms will be discussed but the
same principle can be applied for the other sizes of
transforms, or even larger transforms can be converted
to the 4× 4 block-size transforms [10].

Previous works have already been successes in hard-
ware implementation of transforms and quantization.
Chih-Peng Fan and Yu-Lin Cheng [11] proposed a
design with a high through-put and low latency archi-
tecture using Canonical Signed Digit (CSD) multiplier
for shared quantization/inverse-quantization. In [12],
Yu-Ting Kuo presented an area-efficient architecture
using direct 2-D transform method. Whereas, in [13–
15] is proposed a multi-transform architecture used
for variable adaptive block-size transforms. Generally,
these works used two separate 1-D transforms in cas-
cading to carry out a 2-D transform or to implement a
direct 2-D transform. Obviously, the advantage of these
methods is that they can achieve a high throughput
in transforms. However, the disadvantage is that their
hardware implementation area could not be signifi-
cantly reduced, even in [15] the quantization parts are
intently integrated into transform steps. In addition, the
fact is that the bottleneck of encoders mostly comes
from motion estimation and/or entropy coding mod-
ules rather than transforms and quantization. Optimiz-
ing the design for throughput is therefore less impor-
tant than other objectives such as overal performance
providing real-time processing capacity or hardware
implementation area of the whole system.

In this work, we propose a transform architecture us-
ing only one unified 1-D transform module in order to
trade-off between throughput and area overhead. With
some improvements in control part, this architecture
is able to perform integer DCT-based transforms as
well as Hadamard transforms. In addition, to improve
the system performance and get more area-efficiency,
we also present a particular architecture of multiplier
in the quantizer. In where, a shared module (called
pre-multiplier) is intently used for multipliers have the
same multiplicands. The FTQ architecture is designed
to be used as part of a low power H.264/AVC encoder
for mobile applications. The proposed architecture is
then implemented using the 130nm TSMC CMOS tech-
nologies. It can completly finish the transform and
quantization processes for a 4:2:0 macroblock in 228
clock cycles and therefore can achieve a throughput of
445Msamples/s at 250MHz operating frequency while
the area overhead is very small, approximate 15KGates.

The remaining part of this paper is organized as
follows: Section 2 briefly recalls some backgrounds of
transform and quantization algorithms in H.264/AVC
coding, including integer DCT-based transform and
Hadamard transform. The proposed architecture for a
forward transform and quantization will be presented
in Section 3. Experimental results will be presented
and discussed in Section 4. Finally, conclusions and

Figure 2. Transform and quantization flow diagram.

perspectives will be given in Section 5.

2 Forward Transforms and Quantization

Algorithms in H.264/AVC

In H.264/AVC video coding standard, the residual
frame of the prediction, which is the difference of the
original frame and the predicted frame, is partitioned
into fixed-size of macroblocks. As usually, a macroblock
is composed of 16× 16 luminance (Y) samples, 8× 8
chroma blue (Cb) samples, and 8× 8 chroma red (Cr)
samples in the case of 4:2:0 chroma subsampling for-
mat. At a smaller level, macroblocks are subdivided
into blocks of 4× 4 samples for encoding. Each mac-
roblock has its own information on quantization pa-
rameters (QPs), coded type (Intra mode or Inter mode)
and prediction mode. The transform and quantization
flow for those blocks can be illustrated in Figure 2.

According to this flow, the input block X is first trans-
formed using integer DCT-base method. The trans-
formed coefficients are then post-scaled and quantized.
In the 16 × 16 Intra-prediction mode, DC coefficients
of all transformed residual blocks are grouped into an
array of 4× 4 before being sent to Hadamard transform.
Details of these processes are described in mathematical
models in the following.

2.1 4× 4 Forward Transforms

Integer DCT-based Transform: The integer DCT-
based transform, which applied to a residual 4 × 4
blocks (denoted by matrix X), is defined in H.264/AVC
as the following:

Y = CXCT = C(CX)T , (1)

where

C =


1 1 1 1
2 −1 −1 −2
1 −1 −1 1
1 −2 2 −1

 .

Hadamard Transform: The Hadamard transform
which applied to a 4× 4 luminance DC block (denoted
by matrix WD) in 16 × 16 Intra-prediction mode, is
defined as the following:

YD = HWD HT = H(HWD)
T , (2)

124 REV Journal on Electronics and Communications, Vol. 1, No. 2, April – June, 2011

Figure 3. Hybrid 1-D transform architecture for integer DCT-based
and Hadamard transforms.

where

H =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 /2.

In general, both integer DCT-based transform and
Hadamard transform are normally formed by two du-
plicated cores of 1-D transform, where the core is a ma-
trix multiplication either CT or HT . The 2-D transforms
are carried out by applying the input block to the core;
the immediate results are re-arranged by transposing
operations and then re-applied to the core. Obviously,
the specification of the matrixes C and H in which only
coefficients of ±1 and/or ±2 are available. These trans-
formations are multiplication-less and purely require
a few of add and logical shift operations. On the other
hand, the dynamic range of data is also estimated to
reduce the overhead in computating processes. With 8-
bit precision of the pixel data, the dynamic range of
outcomes of integer DCT-based transform is 16-bit.

In here, we have already modified the matrix H by
scaling of 1/2 to preserve the arithmetic operations of
Hadamard transform in 16-bit precision as of integer
DCT-based transform. Then, in the quantization process
of the DC blocks, the result will be rescaled of 2. By
this way, all 4× 4 forward transforms are completely
handled in 16-bit precision.

Figure 3 shows a hybrid and fast 1-D transform
diagram for processing 4 samples. The diagram is in the
shape of butterfly diagram and is used for two types
of transform. There are some multiplexers to select the
shift factors (or scaled factors) in computations of each
transform type. This diagram is a great inspiration to
design the architecture of transform module.

2.2 Quantization

H.264/AVC standard defines a set of 52 values of
quantization steps (Qstep). These values are indexed
by QP and to be determined in the range of 0 to 51.
As introduced above, the values of quantization pa-
rameters are associated with macroblocks (also blocks
within a macroblock). Thanks to the wide range of QP,

Table I
Multiplication factor (MF)

QP%6 Positions Positions Other

(0,0),(2,0),(2,2),(0,2) (1,1),(1,3),(3,1),(3,3) positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

an encoder is able to accurately and flexibly control the
trade-off between its bit-rate and quality [16].

Basically, forward quantization can be defined as
follows:

Zij = round
(Yij

Qstep

)
, 0 ≤ i, j ≤ 3 (3)

To avoid division operations, this equation can be
represented in another way [9]:

Zij = round
(

Wij ×
MF

2qbits

)
, 0 ≤ i, j ≤ 3 (4)

In consequence, the quantization can be computed as
follows:

|Zij| =
(
|Wij| ×MF + f

)
� qbits,

sign
(
Zij
)
= sign

(
Wij
)
, 0 ≤ i, j ≤ 3,

(5)

where qbits = 15+ f loor(QP/6), MF is a multiplication
factors matrix (see Table I) and f is an additional
factor, f = 2qbits/3 if the block is coded in Intra
mode, and f = 2qbits/6 if the block is coded in Inter
mode. Especially, the quantization for a DC block is
implemented as follows (it has already rescaled by 2
due to scaling by 1/2 in transform):

|ZD(ij)| =
(
|YD(ij)| ×MF00 + 2 f

)
� qbits,

sign
(
ZD(ij)

)
= sign

(
YD(ij)

)
, 0 ≤ i, j ≤ 3,

(6)

where MF00 is the multiplication factor at position
(0, 0).

The innovation of quantization in H.264/AVC is the
definition of Qstep. In where, Qstep is non-uniform
(or non-linear according to QP) and doubled in size if
QP increases by 6. Therefore, whenever QP is changed
by the encoder, the values of MF factor matrix is also
changed as consequence, but it absolutely depends on
the value of QP%6 (as shown in Table I). Besides, it
does not require a lot of memory elements to store MF
factors, only 18 values for full range of QP.

Similar to the transform part, the quantization has
also been simplified to obtain low-complexity in a man-
ner of avoiding division and floating point operations.

3 The Proposed Architecture

In this section, we present a hybrid architecture for DCT
and Hadamard forward transforms and quantization of

X.-T. Tran, V.-H. Tran: An Efficient Architecture of Forward Transforms and Quantization for H.264/AVC Codecs 125

Figure 4. Architecture of forward transform.

4× 4 blocks. While the design of transform is only in-
tended to area-efficiency by using 1-D transform mod-
ule for all transformations of 4× 4 blocks, the design
of quantizer is carefully taken into account in order
to improve on both performance and implementation
area. This design is capable to process 4 samples at the
same time. The details will be described as follows:

3.1 Transform Module
By sharing the only 1-D transform module, the sec-

ond 1-D transform process could not be started until
the first 1-D transform process had finished on the
entire block. Therefore, it is necessary to have a memory
buffer for storing and transposing the temporary data.
Figure 4 shows the architecture of forward transform
module with the sample-width of the datapath.

The architecture is simply composed of three main
components: 1-D Transform module, Transpose RAM
module, and DC RAM module. In addition, there are
other components included in this architecture such
as multiplexer and de-multiplexer for arbitrating the
dataflow. The input data and output data of the trans-
form module are 4 samples, equivalent to 64-bit (4× 16-
bit). To have better view, some detail control signals
have been hidden.

The activity of the module can be easily realized
through the list of all states (corresponding to the
dataflow):
• State_1: Input ⇒ 1-D Transform ⇒ Transpose RAM
• State_2: Transpose RAM⇒ 1-D Transform⇒ Output
• State_3: DC RAM ⇒ 1-D Transform ⇒ Transpose

RAM
These states have a length of 4 clock cycles. By

controlling the sequence of these states, a general block
will be executed in the order of two states {state_1;
state_2}, while a DC block will be executed in the order
of two other states {state_3; state_2}.

1-D Transform: The 1-D transform module is a
hybrid transform as illustrated in Figure 3. All multi-
plexers in this module are controlled by a selection sig-
nal which configures the module’s activities as integer
DCT-based transformation or Hadamard transforma-
tion. The responsibility of this module is one clock cycle
and the throughput is therefore 4 samples/clock cycle.
A higher throughput can be easily obtained by using
several 1-D transforms in parallel.

Figure 5. Transpose RAM (left) and DC RAM (right).

Transpose RAM and DC RAM: The purpose of
Transpose RAM is to store and transpose data for
transformation processes. DC RAM is used to store lu-
minance DC coefficients of a transformed macroblock.
Basically, Transpose RAM and DC RAM are matrices
of 4 × 4 16-bit registers (as shown in Figure 5). The
input and output of Transpose RAM are 4 samples
width for reading/writing accesses to a row/column
data. Whereas the input of DC RAM is only one sample
width for writing one DC coefficient at a time and the
output is 4 samples width as Transpose RAMs.

The writing operations of Transpose RAM are en-
abled whenever valid data are ready at the output
of 1-D transform module. These occur in 4 succesive
clock cycles of the first 1-D transform process. The
reading operations occur in next 4 clock cycles to get
out the column-wise data for the second 1-D transform
process. The registers in a row of Transpose RAM are
connected in series. Thus, the data stored in a register
will be automatically shifted into the back register in
next clock. By this means, Transpose RAM will be filled
up with new data in 4 clock cycles of the writing
operations.

DC RAM is a bit different from Transpose RAM in
their structures where the registers are independent
from each other. This buffer is useful and will be active
in 16 × 16 Intra prediction mode. In that case, the
DC coefficients of any transformed luminance blocks
are extracted and written into DC RAM. Therefore,
the writing operations of DC RAM take place in only
one clock cycle at the time where the earliest data is
valid. The reading operations are enabled in 4 clock
cycles when the last block of a luminance macroblock is
completely transformed. Besides, the reading/writing
address signals of DC RAM are directly controlled by
FTQ controller.

Comparing with the cascading architecture using two
separate 1-D transform modules [17], our architecture
is required a bit challenging in designing the controller
module but it has absolutely saved the hardware re-
source by the total cost of an 1-D transform module.

3.2 Quantizer Module

The quantizer can be easily realized from equations 5
and 6, as depicted in Figure 6. It consists of four
quantization cores and some common parts: MF_ROM
module, DIVIDER_BY_6 module, and F_CALC mod-

126 REV Journal on Electronics and Communications, Vol. 1, No. 2, April – June, 2011

Figure 6. Quantizer architecture.

ule. These common modules are shared to the 4 quan-
tization cores. Actually, DIVIDER_BY_6 module is pos-
sible to share with de-quantizer module.

DIVIDER_BY_6 module is a combinational block to
calculate the value of QP%6 and floor (QP/6) as well. In
some related works, it was designed as common look-
up-tables (LUTs), such as [11]. This design may take
lots of memory utilization because we have up to 52
values of QP. MF_ROM module is a ROM block for
storing 18 constant values of MF factors. Accessing to
a batch of MF factors is addressed by QP%6 signal.
F_CALC module is a combinational block to calculate
the additional factor f based on the coded macroblock
type (either Intra mode or Inter mode) and the block
type (residual block or DC block).

Regarding to the multiplier design, when the size
of multipliers are large (15-bit of qdat_i and 14-bit of
MF), it can mostly impact to the performance of the
quantizer as a result of large latency. For this reason,
we have deeply investigated the design of multiplier,
which will be presented in next paragraph to minimize
the quantization latency.

A Fast and Highly Shared Multiplier: The fast multi-
plier that we proposed is a conditional multiplier. The
idea is to build a basic element (called pre-multiplier)
which is multiplier of MF factor with all possible 3-bit
numbers (as shown in Figure 7), where Ai = i ∗ MF,
with 0 ≤ i ≤ 7. In fact, we do not need to carry out A0,
A1, A2, and A4 on this module when these signals can
be directly driven from MF signal.

Consequently, the 15-bit multiplier using the pre-
multiplier element is explored as Figure 8. Each group
of 3-bit vector (so it has 5 groups) is multiplied with the
multiplicand W by controlling a multiplexer to select
the equivalent result from the pre-multiplier element.
There are some registers are inserted at the adders’
outputs to cut down the combinational paths of the

Figure 7. The pre-multiplier element.

Figure 8. Multiplier for quantizer using the pre-multiplier element.

multiplier. By this way, we have improved the perfor-
mance of the multiplier.

Obviously, the pre-multiplier can be shared among
5 groups of 3-bit multipliers. Since the pre-multiplier
takes 4 adder blocks, we save (4 × 4 = 16) adder
blocks. In addition, from the MF factors table (Ta-
ble I), qdat_i[0] and qdat_i[2] have the same MF fac-
tor, qdat_i[1] and qdat_i[3] have the same MF factor,
therefore the pre-multiplier is also possible to share
between two quantization multipliers which have the
same MF factor. In consequence, our quantizer can
be totally saved up to 2 × (16 × 2 + 4) = 72 adder
blocks. Certainly, several multiplexers will be required
to replace these adders but the hardware utilization is
significantly reduced.

3.3 Pipeline Operation
To achieve better performance, the proposed architec-

ture is controlled to operate in pipeline mode. Figure 9
shows the timeline of the whole coding process.

The pipeline has three states as identified by S_1,
S_2, and S_3. In where, S_1 (4 clock cycles) launches
the first stage of 1-D transform on block B1 while
previous block B0 is still quantized to the end. S_2 (4
clock cycles) launches the second stage of 1-D transform
while starts quantizing block B1. S_3 (1 clock cycle)
prepares loading new block B2 into transform module
while block B1 is still quantized, valid data at the
output are ready. Therefore, it normally takes 12 clock
cycles to complete transform coding for a block.

Summary, by the pipelined schedule, our design
will take 9 clock cycles on average to process a block
and this is equivalent to 228 clock cycles to complete

Figure 9. Three states of pipeline operation.

X.-T. Tran, V.-H. Tran: An Efficient Architecture of Forward Transforms and Quantization for H.264/AVC Codecs 127

Figure 10. Verification model for the design.

the transform and quantization processes for all 4× 4
blocks within a 4:2:0 macroblock.

4 Verification and Implementation

The architecture was modeled using VHDL language
and simulated on Synopsys VCS tool. To verify the
functionality of the design, we developed a simple sim-
ulation environment as described in Figure 10. Then,
this environment is also used to verify the design before
and after the layout implementation.

In this environment, we developed a software model
of FTQ architecture on Matlab, which is used for testing
purpose only. The input data used in this simulation is
a PGM (portable graymap format) image. This image is
provided to both Matlab model and hardware model.
Then, the outputs of the both hardware and Matlab-
based model will be compared to each other by using
the developed testbench.

The proposed design was first prototyped on a
Virtex-II Xilinx FPGA (XC2V1500-6) and then im-
plemented using the 130nm CMOS technology from
TSMC. The achieved operating frequency is 115MHz
with the FPGA implementation, and 250MHz with
the 130nm TSMC CMOS technology. In both cases,
the design takes 228 clock cycles to complete the
transform and quantization processes for the entire
4:2:0 macroblock. The transformation and quantiza-
tion throughput is estimated of 204Msamples/s and
445Msamples/s, respectively. The implementation area
of the proposed design is 147755µm2 with the 130nm
TSMC CMOS technology. Figure 11 presents the hard-
ware implementation overhead of each component in
the design, in where quantizer is the bigest component
and occupies 56% area cost of the FTQ design.

Table II shows the implementation report of dif-
ferent designs on hardware overhead, operating fre-
quency, and throughput. From this report, our design
has a much higher throughput and a lower hardware
overhead compared to the design presented in [15],
while both the designs have the same data width (4-
bit). The designs presented in [11, 14, 18] have higher
throughputs than our design but the data width of
these designs are 4 times (even 8 times) larger than
the data width of our design (16-bit, 16-bit, and 32-
bit, respectively). Certainly, these designs therefore oc-
cupy much more hardware implementation areas than
our design. In particular, the design presented in [19]

with 1-bit data width but the hardware overhead is
higher than ours while the throughput is much lower
than our proposal. With the achieved throughput, our
design totally responses to the need of H.264/AVC
encoders/decoders while it is very suitable for efficient
hardware implementation.

5 Conclusion

Being equipped by many advanced coding tools and
techniques, the H.264/AVC has become the most ef-
ficient video compression standard providing better
video quality at a lower bit-rate than previous ones.
However, it is very difficult and costly to implement this
standard on hardware in order to meet the requirement
of real-time applications because of its computational
complexity. In recent years, several hardware architec-
tures have been proposed for H.264/AVC codecs which
focus only on optimizing and adapting prediction algo-
rithms and/or entropy coding techniques.

We presented in this paper a cost-efficient and high-
performance forward transform and quantization hard-
ware implementation for real-time H.264/AVC en-
coders in mobile applications. To minimize the hard-
ware overhead, the proposed design used only one
unified architecture of 1-D transform engine to perform
all required transform processes, including discrete
cosin transform and Walsh Hadamard transform. In
addition, the detail architecture is also investigated
carefully to optimize as much as possible both area cost
and performance. The proposed architecture is then im-
plemented on both FPGA and ASIC technologies. It is
experimentally verified to work at 115MHz on a Xilinx
Virtex II FPGA and to work at 250MHz on a TSMC
130nm CMOS implementation. The area overhead of
this design is very small, 147755µm2 (approximate
15KGates) with ASIC implementation. In addition, the
design is able to complete transform and quantization
processes for a macroblock in 228 clock cycles. Con-
sequently, the achieved throughput is 204Msamples/s
and 445Msamples/s for FPGA and ASIC implemen-
tations, respectively, while the data width is 4-bit.
The proposed FTQ architecture is therefore proved to
achieve a high performance with a lower area cost than
the previous works.

Figure 11. Hardware implementation overhead on different compo-
nents of the FTQ architecture.

128 REV Journal on Electronics and Communications, Vol. 1, No. 2, April – June, 2011

Table II
Implementation report on hardware overhead, operating frequency, and throughput between different designs

Design name Technology Data width Operating freq. HW overhead Throughput

(bit) (MHz) (gates) (Msamples/s)

Pastuszak [14] TOWER 0.18µm 32 77 162,122 2,464

Chih-Peng Fan [11] (using CSD multi-
pliers)

Xilinx XC2V1500 16 99.15 135,306 1,586

Kordasiewicz [18] (area-optimized) TSMC 0.35µm 16 68 51.619 644

Heng-Yao Lin [15] TSMC 0.35µm 4 32 30,785 273

Tasdizen [19] ASIC 0.18µm 1 210 23,162 21.5

This work (FPGA) Xilinx XC2V1500 4 115 24,052 204

This work (ASIC) TSMC 0.13µm 4 250 15,033 445

In the framework of H.264 codec hardware archi-
tecture project, an inverse transforms and quantization
(iTQ) architecture is being developed to complete the
transforms and quantization part of H.264/AVC en-
coders. This work will be presented in an other report.

Acknowledgment

This work is partly supported by Vietnam National
University, Hanoi (VNU) through research project No.
QGDA.10.02 (VENGME). This work has been partly
presented at the 2011 IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS)
at Cottbus, Germany in April 2011 [20]. The authors
would like to thank reviewers for their constructive and
helpful comments.

References

[1] “ITU-T recommendation and international standard of
joint video specification,” ITU-T Rec. H.264/ISO/IEC
14496-10 AVC, March 2005.

[2] Information Technology – Coding of Audio-Visual Objects –
Part 2: Visual, ITU-T Std., 1999.

[3] “Video coding for low bit rate communication,” ITU-T
Recommendation H.263, February 1998.

[4] Information Technology – Generic Coding of Moving Pictures
and Associated Audio Information: Video, ITU-T Std., 1996.

[5] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and
G. J. Sullivan, “Performance comparison of video coding
standards using Lagragian coder control,” in Proc. IEEE
International Conference on Image Processing (ICIP), 2002,
pp. 501–504.

[6] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 7, pp. 560–576, July 2003.

[7] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Nar-
roschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video
coding with h.264/avc: tools, performance, and complex-
ity,” IEEE Circuits and Systems Magazine, vol. 4, no. 1, pp.
7–28, 2004.

[8] D. Marpe, T. Wiegand, and G. J. Sullivan, “The
H.264/MPEG4 advanced video coding standard and its
applications,” IEEE Communications Magazine, pp. 134–
143, August 2006.

[9] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerof-
sky, “Low-complexity transform and quantization in
H.264/AVC,” IEEE Transactions on Circuits and Systems
for Video Technology, pp. 598–603, 2003.

[10] J.-K. Lee and K.-D. Chung, “DCT block conversion for
H.264/AVC video transcoding,” in Euro-Par 2005 Parallel
Processing, Lisbon, Portugal, September 2005, pp. 919–
927.

[11] C.-P. Fan and Y.-L. Cheng, “FPGA implementations of
low latency and high throughput 4x4 block texture
coding processor for H.264/AVC,” Journal of the Chinese
Institute of Engineers, vol. 32, no. 1, pp. 33–44, 2009.

[12] Y.-T. Kuo, T.-J. Lin, C.-W. Liu, and C.-W. Jen, “Architec-
ture for area-efficient 2-D transform in H.264/AVC,” in
Proc. 2005 IEEE Int. Conference on Multimedia and Expo,
Amsterdam, Netherlands, July 2005.

[13] J. D. Bruguera and R. R. Osorio, “A unified architecture
for H.264 multiple block-size DCT with fast and low,”
in Proc. 9th EUROMICRO Conference on Digital System
Design (DSD), Cavtat near Dubrovnik, Croatia, August
2006, pp. 407–414.

[14] G. Pastuszak, “Transforms and quantization in the high-
throughput H.264/AVC encoder based on advanced
mode selection,” in Proc. IEEE Computer Society Annual
Symposium on VLSI, Montpellier, France, April 2008, pp.
203–208.

[15] H.-Y. Lin, Y.-C. Chao, C.-H. Chen, B.-D. Liu, and J.-
F. Yang, “Combined 2-D transform and quantization
architectures for H.264 video coders,” in Proc. IEEE Int.
Symposium on Circuits and Systems (ISCAS), vol. 2, May
2005, pp. 1802–1805.

[16] I. Richardson, “H.264/MPEG-4 Part 10: Transform and
quantization,” VCodex Ltd White Paper, March 2003.

[17] T.-C. Wung, Y.-W. Huang, H.-C. Fang, and L.-G. Chen,
“Parallel 4x4 2D transform and inverse transform ar-
chitecture for MPEG-4 AVC/H.264,” in Proc. IEEE Int.
Symposium on Circuits and Systems (ISCAS), May 2003,
pp. 800–803.

[18] R. C. Kordasiewicz and S. Shirani, “ASIC and FPGA im-
plementations of H.264 DCT and quantization blocks,”
in Proc. IEEE International Conference on Image Processing
(ICIP), September 2005, pp. III–1020–3.

[19] O. Tasdizen and I. Hamzaoglu, “A high performance and
low cost hardware architecture for H.264 transform and
quantization algorithms,” in Proc. 13th European Signal
Processing Conference, September 2005, pp. 4–8.

[20] X.-T. Tran and V.-H. Tran, “Cost-efficient 130nm TSMC
forward transform and quantization for H.264/AVC en-
coders,” in Proc. 14th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS),
Cottbus, Germany, April 2011, pp. 47–52.

X.-T. Tran, V.-H. Tran: An Efficient Architecture of Forward Transforms and Quantization for H.264/AVC Codecs 129

Xuan-Tu Tran was born in Nghe An, Vietnam,
in 1977. He received a B.Sc. degree in 1999
from Hanoi University of Science and a M.Sc.
degree in 2003 from Vietnam National Univer-
sity, Hanoi, all in Electronics Engineering and
Communications; and a Ph.D. degree in 2008
from the CEA-LETI, MINATEC (in collabo-
ration with Grenoble INP), France in Micro
Nano Electronics.

Xuan-Tu Tran has worked as a lecturer
at Vietnam National University, Hanoi (1999-

2003), as a research engineer at the CEA-LETI, MINATEC, France
(2003-2008), and then as an assistant professor at the University
of Engineering and Technology (UET), VNU Hanoi (2008-recent).
He was a visiting/invited professor at the University Paris-Sud 11,
France (2009, 2010), visiting professor at Grenoble INP in 2011. He is
currently deputy director of the key laboratory for Smart Integrated
Systems and head of VLSI Systems Design group. He is in charge
for CoMoSy, VENGME projects for embedded systems and multi-
media applications. His research interests include design and test
of systems-on-chips, networks-on-chips, design-for-testability, asyn-
chronous/synchronous VLSI design, and hardware architecture for
multimedia applications.

He is a member of the IEEE, IEEE CAS, and the Executive Board
of the Radio Electronics Association of Vietnam (REV).

Van-Huan Tran was born in Vietnam, in
1985. He received the Bachelor of Science in
Electronics and Telecommunication from Uni-
versity of Engineering and Technology, Viet-
nam National University, Hanoi in 2007. He
is currently working as a researcher of the
key laboratory for Smart Integrated Systems
– VLSI Systems Design group, University of
Engineering and Technology, VNU Hanoi.

His research interests include System-on-
Chip design and verification, FPGA-based de-

sign, embedded systems, VLSI systems/circuits design for multime-
dia application.

