
A Novel Priority-Driven Arbiter for the Router in
Reconfigurable Network-on-Chips

Hung K. Nguyen, Xuan-Tu Tran
SISLAB, VNU University of Engineering and Technology, Vietnam National University, Hanoi

144 Xuan Thuy road, Cau Giay district, Hanoi, Vietnam
Email: {kiemhung, tutx}@vnu.edu.vn

Abstract—The Network-on-Chip (NoC) paradigm has been
emerging as new communication solution for the Ultra Large-
Scale Integration System-on-Chips (SoCs). Many real-time
embedded SoCs support multi-rate applications that requires the
NoC has to offer different Quality-of-Service level. In this paper,
we propose and implement a priority-driven arbitration
mechanism for the hybrid switching router used in reconfigurable
NoCs. The router supports both guaranteed-throughput (GT)
service and best-effort (BE) service without reserving resources
for GT service. In addition, the proposed solution not only
guarantees GT-type QoS, but also enhance the average
performance for BE service by using communication resources
efficiently. The router has been modelled and then synthesized on
Xilinx technology (using Virtex-7 FPGA). The obtained results
show that this router can guarantee reliability and enhance
significantly the average performance of BE load compared with
the generic router while the overheads in terms of area and power
consumption are acceptable.

Keywords—Priority-driven arbitration; Quality-of-Service
(QoS); Reconfigurable Network-on-Chip; System-on-Chip

I. INTRODUCTION

Emerging System-on-Chips (SoCs) are typically battery-
powered systems and must support a wide range of applications
such as communication baseband processing or multimedia
processing. The high performance and low power consumption
are becoming two key requirements when designing such
devices. New SoC architectures should be able to support
multiple applications with a high performance, while
maintaining low-power consumption, low area cost, low non-
recurring engineering cost, and shorter time-to-market. These
architectures should also offer the capability of hardware
updating after systems have been deployed and should be able
to resolve the appearance of defects or faults in the system to
guarantee the correct operation of the system.

Heterogeneous SoCs were proposed to meet the above
requirements [1]. They are usually composed of several types of
processing elements, such as software-programmable
processors, application-specific IP cores, reconfigurable
hardware, and so on. To establish the communication between
these processing elements, the Network-on-Chip (NoC)
paradigm [2],[3] has been proposed to achieve not only better
performance and lower energy consumption but also higher
flexibility in comparison with the conventional on-chip bus
architectures. When on-chip integration is more and more
increasing with billion transistors in the future, the on-chip

communication will determine the performance of a system [4].
Therefore, the on-chip communication should aim at providing
high throughput, high scalability, low latency, low power
consumption, reduced contention, ensured Quality-of-Service
(QoS), less occupied area, etc. In the literals, some design
methodologies have been proposed to deal with NoCs and can
be classified into two main categories: (i) design-time
methodologies (e.g. [5] and [6]); and (ii) run-time
methodologies (e.g. [7],[8],[9],[10], and [11]). The design-time
methodologies generally aim at designing the NoC architectures
for a specific application. Unfortunately, the application-specific
NoCs are not flexible enough to support dynamic environments
where communication characteristics need to adapt smoothly to
various contexts at runtime. In the last decade, researchers have
been focusing on the development of run-time methodologies
for reconfigurable NoCs. These methodologies provide the
techniques which allow NoCs to autonomously adapt their
structure and behavior during the operating time. The elements
of a NoC that can be modified at run-time include reconfigurable
topology [7], reconfigurable links [8], and reconfigurable router
architectures [9],[10],[11].

The main objective of NoC design is to find suitable NoC
instances to get the best trade-off between the cost (area, power)
and performance (latency, throughput, and reliability). Pratomo
et al. in [12] built scenarios for evaluating of the impact of NoC
parameters (packet rate, packet size, buffer size, routing
algorithm) on the performance of NoC. Le-Van et al. in [13] also
developed an evaluation and simulation platform at high-level
design to quickly evaluate the performance of NoC architectures
with different parameters. Liu et al. in [14] drew a comparison
between circuit-switched and packet-switched NoCs. In real-life
applications, almost most of parameters (routing algorithm,
network topology, communication load, buffer size, switching
diagram, packet rate, etc.) are determined in the NoC router.
Thus, one of the most critical issue in designing NoC is the
design of an efficient and high-performance router. In
reconfigurable NoCs, a reconfigurable router architecture is
needed to adapt to the immediate status of network so that the
performance is not degraded while the flexibility will be
increased. For example, in situation of faulty network, the
reconfigurable router can adapt the NoC to the other operation
mode by adjusting the number of virtual channels [9], or
changing the type of its routing algorithm and switching scheme
[15],[16].

In this paper, we propose a hybrid switching router
architecture with the priority-driven arbitration mechanism. This

router can dynamically reconfigure its switching scheme to the
wormhole switching, the virtual cut-through switching or
combination of both schemes depending on the traffic load and
network status. In addition, the hybrid switch arbiter which can
exchange flexibly between arbitration modes to support both
Best-Effort (BE) and Guaranteed-Throughput (GT) services
depending on the traffic scenario. The experimental results have
proven that the proposed router improves the total performance
at an acceptable expense of the implementation cost.

The rest of this paper is organized as follows. The problem
definition and the proposed solution are addressed in Section II.
Section III introduces the proposal of reconfigurable router.
Section IV presents the implementation and evaluation of the
proposed router in comparison with the related works. Finally,
some conclusions are drawn in Section 5.

II. PROBLEM AND SOLUTION

The Network-on-Chip is the communication among on-chip
components and must satisfy QoS requirements and
implementation cost [3]. Network QoS parameters consist of
latency, throughput, and reliability, whereas the implementation
cost is evaluated by power consumption, area size and efficiency
of using resources. The QoS is classified into two categories: GT
service and BE service.

The BE service implies that the network tries to achieve
minimum delay for transporting a packet from a source node to
a destination node. The actual delay is determined not only by
the distance between the resources but also on the other traffic
in the network. In the BE service, packets are forwarded as soon
as possible without the reserved resources. Most of the NoC
architectures offer BE services based on packet-switching
because it efficiently utilizes the available bandwidth.
Unfortunately, BE service may not be acceptable to real-time
applications. By contrast, the GT service assures both
throughput and latency over a finite interval and supports
uncorrupted, lossless, and ordered data transfer by reserving the
resources between source and destination. GT services are
usually provided by circuit-switching [17] or by using
connection-oriented packet-switching [18] (i.e. virtual circuit-
switching at where some virtual channels are dedicated to GT-
type packets). For example, Æthereal proposed by Goossens et
al. [17] is another mesh-based NoC that supports GS router and
a BE router in parallel to guarantee throughput traffic. It is
obvious that the area overhead of this architecture is very high.
Moreover, many real-time applications (such as capturing video
from a camera on the smartphone) produce bursty traffic that
sends large quantity of data during some intervals and less or no
data during the others. A reserving-based NoC would take a
significant part of the systems silicon area and only a fraction of
its capacity is utilized by a given application.

To trade-off between cost and high performance, recent
NoCs are usually built on the packet-switching mechanism. Two
popular packet-based switching schemes are the virtual cut-
through (VCT) and the wormhole. In wormhole switching, the
packet is divided to flits including one header flit, followed by
one or more body flits, and one tail flit. To reduce the
implementation cost, the wormhole routing scheme normally
uses just 1-flit depth for buffering. Consequently, the packet
spreads over multiple different routers along its path just like a
worm. In VCT switching, the same method as wormhole is

adopted. However, the significant difference is that the VCT
provides a buffer enough to store the whole packet at several
nodes in the network. On the other hand, each packet is also
assigned a certain priority so that the arbiter can grant the switch
to only one specific packet when many packets require the
connection to the same output port in order to ensure the QoS.
The highest priority level is assigned to the packet that requires
high throughput and low latency to response the real-time
constraints. For example, Vellanki et al. [18] proposed a VC
(virtual channel)-based router architecture for supporting QoS in
the mesh-based NoC. This proposal always reserves two of four
VCs for supporting GT services. In addition, when GT load
increases high, they can transfer through the other VCs, but not
vice versa. By this way, the QoS of GT load is ensured but at the
expense of degradation of average performance for BE load.
Moreover, the efficiency of using hardware is not high because
some reserved VCs cannot be used for BE load even if they are
not used for GT load.

The problem with the above NoC is starvation of BE load. It
happens when a packet cannot reach its destination because
some resources do not grant access to it due to its low priority.
In consequence, the starved packets can block many other
packets leading to the degradation in performance and efficiency
of using resources. This problem is extremely serious in the NoC
using the wormhole switching scheme that allows a packet to
spread over several different routers. Hybrid packet-switching
technique [19] can deal with the above issue. However, this
technique is still insufficient to improve the average
performance for BE load.

[0][0] [0][1] [0][2] [0][7]

[1][0] [1][1] [1][2] [1][7]

[2][0] [2][1] [2][2] [2][7]

[7][0] [7][1] [7][2] [7][7]

X

Fig. 1. An application scenario of the NoC-based system.

To understand this situation, let’s examine a simple NoC-
based system as shown in Fig. 1. The NoC performs three
communication connections: M1 sends packets P1 (denoted by
blue color) to S1; M2 sends packets P2 (i.e. green color) to S2;
M3 sends packets P3 (i.e. yellow color) to S3. The highest
priority is assigned to the packet P3 and the lowest priority is
assigned to the packet P1. If the routing scheme is based on the
XY-routing algorithm, so the routing path of P1, P2, and P3 is
shown by the blue, green, and yellow line, respectively.

Assuming that at time t0 there is only M1 ready, so it is
granted physical links to transfer packets P1. At time t1, M2
becomes ready, because it has a higher priority than M1, it
preempts M1 and begins transferring. At time t2, M3 are ready.
Because P3 is the highest-priority packet, it is guaranteed to
transfer until it finishes and therefore P2 must wait in the queue.
Timing diagram of transferring packets on the NoC is shown in

P1
Physical

Links

Queue

P2 P3

P1 P1, P2

P2

P1

P1

t1 t2 t3 t4 time

Delay

t0 t5

Fig. 2. Now, we zoom in the connection between Router[0][1]
and Router[0][2] as shown in Fig. 3. At interval [t2, t3], although
links from the west port to the south port of the Router[0][2] is
available for M1, but P1 cannot preempt P2 to transfer via link
Router[0][1] – Router[0][2] because of its lower priority. Only
after both M3 and M2 finish, P1 just can be transferred.
Consequently, the average performance and efficiency of using
resources are degraded. The efficiency of using resources, and
therefore average performance of P1 may be improved if the
router supports the arbitration mechanism that allows P1 to be
transferred in parallel with P3.

P1
Physical

Links

Queue

P2 P3

P1 P1, P2

P2

P1

P1

t1 t2 t3 t4 time

Delay

t0 t5

Fig. 2 Schedule of tranferring packets on NoC.

5×5 Switch

To other output
channels

Router [0][2]

5×5 Switch

Router [0][1]

Transmitter
m

Receiver
FLIT VC#2

VC#3

VC#4

VC#1

West Port

VC#2

VC#3

VC#4

VC#1

Local port

FLITVC#2

VC#3

VC#4

VC#1

Local port

FLIT

VC#2

VC#3

VC#4

VC#1

West Port

FLIT

Shared Resource

East Port

South Port

Fig. 3. The resource occupied by a blocked packet in wormhole routing.
To deal with the above problems, in this paper, we enhanced

the hybrid switching router [19] by equipping it an arbiter with
a priority-driven arbitration mechanism. The router therefore
supports both GT and BE services without reserving resources
for GT load. When a node need to inject high speed load, it
encapsulates data into GT-type packets so that these packets are
given higher priority over other packets to be transferred on the
NoC. In addition, the arbiter has two operation modes: Pre-
emptive and Priority inheritance. Pre-emptive mode helps to
guarantee the QoS for GT load, meanwhile Priority inheritance
mode helps to enhance the average performance for BE load by
using resources more efficiently.

III. THE PROPOSED ARCHITETURE

A. Router micro-architecture

In this work, we propose reconfigurable router based on the
state-of-the-art virtual channel router micro-architecture [3]
(which is referred as the generic router). Fig. 4(a) shows the
Input/Output (I/O) interface of the proposed reconfigurable

router for the 2D-mesh NoCs. Each router consists of four I/O
ports (North, East, South, and West) for connecting to four
neighbour routers and a Local port for connecting a processing
element. Compared with the generic router, each port of the
proposed router is assigned an integer-valued priority level. By
default, the Local port has the highest priority and the West port
has lowest one. However, this priority can be configured at run-
time by writing a proper configuration word to the SW arbiter
(switching arbiter).

The micro-architecture of the proposed reconfigurable router
is shown in Fig. 4(b) with only one couple of input channel and
output channel. In general, the generic architecture is partitioned
into three main modules: crossbar; input channels; and output
channels. It is popular that each router port consists of a couple
of I/O channels for exchanging data with neighbour routers or
local processing elements. The I/O channels are connected to
physical links via the receiver and transmitter that adapt the
bandwidth of the links to the flit size. The data from receiver is
written to the input buffer. The input buffer is composed of four
Virtual Channels (VCs), each with its own FIFO (First-In First-
Out) buffer. One of VCs is chosen to buffer an incoming packet
by the Write control unit. Data Flow Control (DFC) unit informs
the available status of VCs and determines which VC channel is
selected to proceed to the next stage. After a VC is ready, DFC
detects and decodes the packet’s header flit and then performs
the given protocol to establish the physical channel and control
transferring flits from the Input channel to the Output channel
through the Crossbar. Routing Computation (RC) unit takes
charge of look-ahead calculating the next router which the
packet will be forwarded to. The routing is based on the target
address in each header flit, and the XY-routing algorithm. After
traversing across the crossbar, the packet is placed in the output
buffer of the Output channel module before being sent to the
next router by the transmitter. The VC allocation logic unit finds
and assigns an available VC of the received router that the packet
will be written to.

Comparing with the generic router, our proposed router
offers a configurable input buffer, adds conflict sensing (CFS)
unit, and configuration controller to its micro-architecture [19].
These improvements allow the router to be configured between
VCT switching and wormhole switching at run-time to deal with
the network congestion. The configurable buffer is composed of
an array of storage elements that can be flexibly organized into
four VCs with variable size depending on target applications.
The CFS unit helps DFC to monitor possible conflicts when
many VCs try to access to the same shared resources. When
DFC detects a conflict, it will send a request for reconfiguring
the input buffer to the configuration controller. The
configuration controller takes in charge of controlling operation
mode of the other modules. Depending on the status information
collected during the period of the router’s operation, the
controller will make decision on switching scheme to adapt the
router to the dynamic status of the NoC. In addition, the router
is enhanced with a priority-driven SW arbiter to improve the
average performance of the NoC. The details of the arbitration

(a)

VC#2

VC#3

VC#4

Receiver
FLIT

Din
(CH#i)

Transmitter

n

Dout
(CH#j)

m

Write Control

RCInput channel

Target ID PortID

FULL_out

AVC_STA_in

Output channel

VC#1
Output Buffer

SW
Arbiter

Grant_outj(i) VC Allocation
Logic

AVC_STA_out

WE_in

AVC_UPD_out

FULL_in

WCLK_out

Rqst_inj(i)

Other Rqst
and Grants

Req_VC

Grant_VC

Enable WCLK

WE_out

WCLK

TX_Done

AVC_UPD_in

WCLK_in

DFC Logic

iDinj(k)

6×6 Switch

Configuration
Controller

Ctrl Ctrl

Crossbar

Configurable Input buffer

CFS

From other
Input ports

SW
Arbiter

(b)

Fig. 4. (a) The I/O interface; and (b) micro-architecture of the proposed reconfigurable router.

mechanism will be described in the next sub-sections.

B. Packet format

As mentioned, the packet is divided into a header flit,
followed by body flits and one tail flit. The size of a flit is 35
bits. Where, the most significant bit (i.e. bit 34th) always shows
the network layer the packet belongs to. If this is ‘1’, the packet
belongs to the application layer, so it must be forwarded to the
IP core at the destination router; otherwise the packet belongs
to communication layer, so it must be forwarded to the
configuration controller at destination router. Two next bits of
every flit (i.e. bit 33th and bit 32th) are used for the field ToF
(Type of Flit) that indicates the type of this FLIT.

Header flit contains information for controlling how the
packet is travelling on the NoC. The structure of a header flit
for the application packet is depicted in Fig. 5. Control
information in the header flit includes: (1) co-ordinate (Y, X) of
target router; (2) Port_ID that is used by next router to specify
where the packet is forwarding to; (3) Type of Packet (ToP); (4)
Length of Body (LoB); and (5) Source node ID. Especially,
header flit contains two fields, called GT/BE and Priority, to
aim at providing both GT service and BE service
simultaneously. Here,

- Bit 22 (GT/BE) specifies the QoS type of a packet. The
switch arbiter uses this bit to make decision on granting
the switch for the packet. More detail about the role of
this bit is discussed in the sub-section C.

- Bit 21 and bit 20 defines priority of a GT-type packet.
These bits are valid only when bit GT/BE=1.

010 Port_ID Y Head of Packet
02526

ToPLoB
02318

X

Y-coordinate

X-coordinate

23 21

Routing path for next router

Type of Packet
 100: Write
 010: Read Request
 001: Read Response
 Others: reserved

SID
56

2934 32 31 28
GT/BE

22

Type of Flit Type of QoS

Priority

20 19

Fig. 5. Header flit of a packet in the application layer.

C. SW Arbiter

SW arbiter determines which VC channel of Input Port is
selected to traverse over the switch. The judgment of the arbiter

is based on the bits, GT/BE and Priority, in the Header flit of a
packet. The arbiter support two operation modes:

 Round-robin mode: providing BE-type QoS. Ready VCs
are kept in a queue and scheduled one after the other.
Round-robin mode provides a form of fairness in that all
VCs get a chance to send data to the next stage. However,
it does not guarantee the throughput of any packet. Once
being granted channel, the VC occupies the channel till
entire packet is transmitted.

 Priority mode: providing GT-type QoS. Each GT-type
packet is assigned an integer-valued priority that
determines the priority of the VC in which the packet is
being buffered. Because a VC can buffer various packets,
therefore, the priority of each VC changes in time. The VC
granted the switch is the highest priority one in the list of
ready VCs. This mode, in turn, is divided into two sub-
modes to not only guarantees QoS of GT load but also
enhance the average performance for BE load by using
resources more efficiently as follows:
o Pre-emptive mode allows a packet to preempt a lower-

priority packet. This mode deals with the case at which
a higher-priority packet is blocked because the
resource it requires has been granted to a lower-
priority packet, and therefore guarantees QoS in real-
time applications. This mode is only provided for GT
packets which are distinguished from PE packets by
setting the bit GT/BE in the header flit.

o Priority inheritance mode allows a BE packet can be
promoted temporarily to the priority of the GT packet
that is blocked by a higher-priority GT packet. As soon
as the priority has been upgraded, the BE packet can
establish a channel for transmission until it is
completed, or the blocked GT packet becomes
unblocked.

The functional block diagram of the arbiter is shown in Fig.
6. At the priority mode, the scheduler takes charge of assigning
proper priorities to VCs depending on the QoS type of each
packet. Based on the priority assigned to VCs, the Priority
Decoding Logic arbitrates which VC is served. In addition, the
scheduler also makes decisions about whether upgrading the
priority of a package or not, depending on the conflict signal
from the CFS block.

Priority
Decoding

Logic

Grant1

Grant2
Grant3

Grant4

 Scheduler

CLK
Dout

QoS3QoS0

Rqst1

Grant2

Grant3
Grant4

Rqst2

Grant1

Grant3
Grant4

Rqst3

Grant2

Grant1
Grant4

Rqst4

Grant2

Grant3
Grant1

VC0

nReset

W[3:0] G[3:0]

nReset CLK Enablew1
w2
w3
w4

nReset

nReset CLK Enable

CFS Logic

PR_UPD

VC3

CLK

Fig. 6. SW arbiter.

D. Conflict sensing unit

The function of Conflict Sensing (CFS) unit is to detect possible
conflicts on the output channel when there are many requests
sent to the same shared resource. CFS unit basically includes
two main units that are slot timer and counter. Each request is
assigned a short interval, called time slot and defined by slot
timer, to wait for the grant signal. If the request is not granted
after the assigned time slot, it will be changed to the pending
state and others request will continue to be processed. Each the
failed request is tried again to get grant signals in N times that
is determined by the counter. Once a request is failed, the
counter associated with it will be started. When counter count
to N and the request still has not get the grant signal, this means
the request is not granted after N tries, CFS will send the
configuration controller a request to reconfigure the operation
mode of the router. The count value of slot timer and counter
can be re-configured by the configuration controller.

IV. IMPLEMENTATION AND EVALUATION

A. Simulation Enviroment

The proposed router has been evaluated in terms of
performance and implementation cost using the HDL-based
simulator. To do that, a 2D-mesh 8×8 NoC evaluation platform
(as shown in Fig. 1) have been built from the RTL model.
Besides, we also developed a Network Interface (NI) [19] with
built-in dummy IP cores.

Based on the platform in Fig. 1, we defined a script to
evaluate the performance and implementation cost of the
proposed router. The packet size is set to ten 35-bit flits. The
buffer size of each input port is equal to sixteen 35-bit flits;
therefore, the depth of each virtual channel is 4 flits in normal
operations. There are three scenarios have been defined in our
scripts as follows:

 Scenario 1: Only M1 transmits data to S1 at the
maximum rate of 0.04 packets per cycle.

 Scenario 2: In addition to the settings of Scenario 1, M2
is also enabled to transmit data to S2 at the maximum rate
of 0.04 packets per cycle. The number of packets P2 is set
to a half of the number of packets P1.

 Scenario 3: In addition to the settings of Scenario 1 and
Scenario 2, M3 is also enabled to transmit data to S3 at
the maximum rate of 0.04 packets per cycle. The number
of packets P3 is set to a quarter of the number of packets
P1.

B. Experimental Results

The proposed router have been synthesized by the Vivado
Design Suite (Xilinx). The synthesis result of the proposed
router using the Virtex-7 XC7VX485 FPGA chip is shown in
TABLE I. It takes about 0.4%, 1.13%, and 0.26% of the
XC7VX485 chip resource in terms of Flip-Flop, LUTs, and
Memory LUT, respectively. Compared with the generic router,
the resource utilization overhead of our proposed router
increases about 12.35%, 15.15%, and 13.7% in terms of Flip-
Flop, LUTs, and Memory LUT, respectively. The maximum
frequency of the proposed router is approximate to 108MHz. The
average latency for transferring the header flit and body flit
through one router is 12.5 and 5.5 cycles, respectively. The
power consumption is estimated about 0.246W, increasing 6%
compared with the generic router.

TABLE I. SYNTHESIS RESULT ON VIRTEX-7 FPGA TECHNOLOGY

Resource Type
Used Resource Area overhead

(%)
Used/Available

Ratio (%) Generic Configurable

Flip-Flop 2181 2450 +12.35 0.40

LUTs 2976 3427 +15.15 1.13

Memory LUT 295 335 +13.7 0.26

Power (W) 0.232 0.246 +6.03 -

The comparison in respect of throughput and latency
between the generic wormhole router and the reconfigurable
router is provided in TABLE II. In this table, the latency is
defined as the time taken for one packet to travel from a source
to a destination while the throughput is the network’s transfer
rate and is evaluated as flits per cycle. These values of each
communication pairs (M1-S1, M2-S2, and M3-S3) are measured
at the target nodes S1, S2, and S3, respectively. From the
definition of scenarios, it is obvious that Scenario 1 has no
conflict, therefore, there is no difference between the generic
router and the reconfigurable router. In Scenario 2, M1-S1
communication must compete the link between Router[0][1] and
Router[0][2] with the M2-S2 communication. Because the
priority of M2-S2 communication is higher than M1-S1
communication, the performance of M1-S1 communication is
decreased. There is not a significant difference in terms of
throughput and latency between the generic router and
reconfigurable router. In Scenario 3, M2-S2 communication
also must compete with M3-S3 communication. Theoretically,
there is no conflict between the M3-S3 communication and M1-
S1 communication. However, the appearance of the M3-S3
communication not only degrades throughput and latency of the
M2-S2 communication but also affect these of M1-S1
communication in the case of the generic router as shown in
TABLE II. The reason for this situation was explained in Section
II. This problem is overcome in the reconfigurable router by two
operations as follows. Firstly, the buffer size of the VC assigned

TABLE II. EVALUATION IN TERMS OF THROUGHPUT AND LATENCY.

Scenario

Average throughput (flits/cycle) Average latency (cycles)

Generic router Reconfigrable router Generic router Reconfigrable router

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

1 0,139 - - 0,139 - - 558 - - 558 - -

2 0,081 0,096 - 0,081 0,096 - 610,0 930,1 - 610,0 930,1 -

3 0,070 0,071 0,139 0,080 0,071 0,139 645,9 966,0 496,2 610,5 966,0 496,2

to the M2-S2 communication is reconfigured to release the
resources occupied by the M2-S2 communication. Secondly, the
priority of the M1-S1 communication is promoted to equal to
that of the M2-S2 communication. After these, the M1-S1
communication is performed in parallel with the M3-S3
communication. In consequence, the throughput and latency of
the M1-S1 communication has been improved about 13.8% and
5.5%, respectively, for the case where the number of packets P3
is set to a quarter of the number of packets P1. The improvement
in performance depends on the number of packets in a message
of M3-S3 and M2-M2. The bigger the number of packets P3 is,
the higher the improvement in performance is.

V. CONCLUSION

The paper presented our proposal, implementation and
evaluation of a hybrid switching router with the priority-driven
arbitration for the reconfigurable NoCs. In the proposed
solution, router’s resource is effectively exploited by
dynamically switching scheme in order to improve the network
total performance. Experimental results show that our proposal
is reliable and can enhance significantly the average
performance of BE load compared with generic router when the
congestion happening. In terms of implementation cost, our
proposed router consumes an insignificant ratio of the
XC7VX485 FPGA (Xilinx Virtex-7) chip’s resources. The
router is feasible to apply for high-flexibility and high-
performance on-chip embedded systems.

ACKNOWLEDGMENT

This work has been supported by Vietnam National
University, Hanoi under Project No. QG.16.33.

REFERENCES
[1] Jimson Mathew, Rishad A. Shafik, Dhiraj K. Pradhan: “Energy-Efficient

Fault-Tolerant Systems”, Springer, 2014, pp211-240.

[2] Wen-Chung Tsai, Ying-Cherng Lan, Yu-Hen Hu, and Sao-Jie Chen:
“Networks on Chips: Structure and Design Methodologies”, Journal of
Electrical and Computer Engineering, 2012, doi:10.1155/2012/509465.

[3] N. E. Jerger, L. S. Peh, “On-Chip Networks”, Morgan and Claypool,
2009.

[4] M. Duranton et al., “The HiPEAC Vision,” HiPEAC Roadmap”, 2015.
[Online]. Available: www.hipeac.net/system/files/hipeacvision.pdf.

[5] M. Janidarmian, A. R. Fekr, V. S. Bokharaei, "Application-Specific
Networks-on-Chips Design", IAENG International Journal of Computer
Science, 38:1, pp16-25, 2011.

[6] F. K. Koupaei, A. Khademzadeh, and M. Janidarmian, “Fault-Tolerant
Application-Specific Network-on-Chip”, Proceedings of the World
Congress on Engineering and Computer Science 2011, Vol II, WCECS
2011, October 19-21, 2011, San Francisco, USA.

[7] M. B. Stensgaard, and J. Spars, “ReNoC: A Network-on-Chip Architecture
with Reconfigurable Topology”, The second ACM/IEEE International
Symposium on Networks-on-Chip, 2008.

[8] M.A. Al Faruque, T. Ebi, J. Henkel, “Configurable Links for Runtime
Adaptive On-chip Communication”, Design, Automation & Test in
Europe Conference & Exhibition, 2009. DATE '09.

[9] C.A. Nicopoulos, D. K. Park, J.M Kim, N. Vijaykrishnan, M.S. Yousif,
C.R. Das, “ViChaR: A Dynamic Virtual Channel Regulator for Network-
on-Chip Routers”, The 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 2008. MICRO-39.

[10] A. F. Beldachi, M. Hosseinabady, J. L. Nunez-Yanez, “Configurable
Router Design for Dynamically Reconfigurable Systems based on the
SoCWire NoC”, International Journal of Reconfigurable and Embedded
Systems (IJRES), Vol. 2, No. 1, March 2013, pp. 27~48, ISSN: 2089-
4864.

[11] G. Kumaran, S. Gokila, “Dynamic Router Design for Reliable
Communication”, In Proceedings of 2014 International Conference On
Global Innovations In Computing Technology (ICGICT’14).

[12] I. Pratomo and S. Pillement, “Impact of design parameters on
performance of adaptive network-on-chips”, International Conference on
High Performance Computing and Simulation (HPCS), pp 724-725, July
2012.

[13] Thanh-Vu Le-Van, Xuan-Tu Tran, “Simulation and Performance
Evaluation of a Network-on-Chip Architecture based on SystemC”, The
5th International Conference on Advanced Technologies for
Communications (ATC), pp. 170-175, Hanoi, October 2012.

[14] S. T. Liu, A. Jantsch, Z. H Lu,: “Analysis and Evaluation of Circuit
Switched NoC and Packet Switched NoC”, The 2013 Euromicro
Conference on Digital System Design (DSD), pp21-28.

[15] Modarressi, M, Sarbazi-Azad, H. ; Arjomand, M.: A hybrid packet-circuit
switched on-chip network based on SDM, Conference & Exhibition on
Design, Automation & Test in Europe, 2009 (DATE '09).

[16] G . Chen, M.A. Anders, et al.: “A 340 mV-to-0.9 V 20.2 Tbs Source-
Synchronous Hybrid Packet Circuit-Switched 16×16 Network-on-Chip in
22 nm Tri-Gate CMOS”, IEEE Journal of Solid-State Circuits (Issue: 1),
pp. 59-67, 2015.

[17] Goossens Kees, John Dielissen, and Andrei Radulescu: "Æthereal
network on chip: concepts, architectures, and implementations", IEEE
Design & Test of Computers 22.5 (2005): 414-421.

[18] Vellanki, Praveen, Nilanjan Banerjee, and Karam S. Chatha. "Quality-of-
service and error control techniques for mesh-based network-on-chip
architectures." INTEGRATION, the VLSI journal 38.3 (2005): 353-382.

[19] Kiem Hung Nguyen, Xuan Tu Tran (2016) Design and Implementation of
a Hybrid Switching Router for the Reconfigurable Network-on-Chip. In:
the 2016 International Conference Advanced Technologies for
Communications (ATC), 12-14 October 2016, Hanoi, Vietnam.

