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Abstract—The Network-on-Chip (NoC) paradigm has been 
emerging as new communication solution for the Ultra Large-
Scale Integration System-on-Chips (SoCs). Many real-time 
embedded SoCs support multi-rate applications that requires the 
NoC has to offer different Quality-of-Service level. In this paper, 
we propose and implement a priority-driven arbitration 
mechanism for the hybrid switching router used in reconfigurable 
NoCs. The router supports both guaranteed-throughput (GT) 
service and best-effort (BE) service without reserving resources 
for GT service. In addition, the proposed solution not only 
guarantees GT-type QoS, but also enhance the average 
performance for BE service by using communication resources 
efficiently. The router has been modelled and then synthesized on 
Xilinx technology (using Virtex-7 FPGA). The obtained results 
show that this router can guarantee reliability and enhance 
significantly the average performance of BE load compared with 
the generic router while the overheads in terms of area and power 
consumption are acceptable.  

Keywords—Priority-driven arbitration; Quality-of-Service 
(QoS); Reconfigurable Network-on-Chip; System-on-Chip 

I.  INTRODUCTION 

Emerging System-on-Chips (SoCs) are typically battery-
powered systems and must support a wide range of applications 
such as communication baseband processing or multimedia 
processing.  The high performance and low power consumption 
are becoming two key requirements when designing such 
devices. New SoC architectures should be able to support 
multiple applications with a high performance, while 
maintaining low-power consumption, low area cost, low non-
recurring engineering cost, and shorter time-to-market. These 
architectures should also offer the capability of hardware 
updating after systems have been deployed and should be able 
to resolve the appearance of defects or faults in the system to 
guarantee the correct operation of the system.  

Heterogeneous SoCs were proposed to meet the above 
requirements [1]. They are usually composed of several types of 
processing elements, such as software-programmable 
processors, application-specific IP cores, reconfigurable 
hardware, and so on. To establish the communication between 
these processing elements, the Network-on-Chip (NoC) 
paradigm [2],[3] has been proposed to achieve not only better 
performance and lower energy consumption but also higher 
flexibility in comparison with the conventional on-chip bus 
architectures.  When on-chip integration is more and more 
increasing with billion transistors in the future, the on-chip 

communication will determine the performance of a system [4]. 
Therefore, the on-chip communication should aim at providing 
high throughput, high scalability, low latency, low power 
consumption, reduced contention, ensured Quality-of-Service 
(QoS), less occupied area, etc. In the literals, some design 
methodologies have been proposed to deal with NoCs and can 
be classified into two main categories: (i) design-time 
methodologies (e.g. [5] and [6]); and (ii) run-time 
methodologies (e.g. [7],[8],[9],[10], and [11] ). The design-time 
methodologies generally aim at designing the NoC architectures 
for a specific application. Unfortunately, the application-specific 
NoCs are not flexible enough to support dynamic environments 
where communication characteristics need to adapt smoothly to 
various contexts at runtime. In the last decade, researchers have 
been focusing on the development of run-time methodologies 
for reconfigurable NoCs. These methodologies provide the 
techniques which allow NoCs to autonomously adapt their 
structure and behavior during the operating time. The elements 
of a NoC that can be modified at run-time include reconfigurable 
topology [7], reconfigurable links [8], and reconfigurable router 
architectures [9],[10],[11]. 

The main objective of NoC design is to find suitable NoC 
instances to get the best trade-off between the cost (area, power) 
and performance (latency, throughput, and reliability). Pratomo 
et al. in [12] built scenarios for evaluating of the impact of NoC 
parameters (packet rate, packet size, buffer size, routing 
algorithm) on the performance of NoC. Le-Van et al. in [13] also 
developed an evaluation and simulation platform at high-level 
design to quickly evaluate the performance of NoC architectures 
with different parameters. Liu et al. in [14] drew a comparison 
between circuit-switched and packet-switched NoCs. In real-life 
applications, almost most of parameters (routing algorithm, 
network topology, communication load, buffer size, switching 
diagram, packet rate, etc.) are determined in the NoC router. 
Thus, one of the most critical issue in designing NoC is the 
design of an efficient and high-performance router. In 
reconfigurable NoCs, a reconfigurable router architecture is 
needed to adapt to the immediate status of network so that the 
performance is not degraded while the flexibility will be 
increased. For example, in situation of faulty network, the 
reconfigurable router can adapt the NoC to the other operation 
mode by adjusting the number of virtual channels [9], or 
changing the type of its routing algorithm and switching scheme 
[15],[16].  

In this paper, we propose a hybrid switching router 
architecture with the priority-driven arbitration mechanism. This 



router can dynamically reconfigure its switching scheme to the 
wormhole switching, the virtual cut-through switching or 
combination of both schemes depending on the traffic load and 
network status. In addition, the hybrid switch arbiter which can 
exchange flexibly between arbitration modes to support both 
Best-Effort (BE) and Guaranteed-Throughput (GT) services 
depending on the traffic scenario. The experimental results have 
proven that the proposed router improves the total performance 
at an acceptable expense of the implementation cost. 

The rest of this paper is organized as follows. The problem 
definition and the proposed solution are addressed in Section II. 
Section III introduces the proposal of reconfigurable router. 
Section IV presents the implementation and evaluation of the 
proposed router in comparison with the related works. Finally, 
some conclusions are drawn in Section 5. 

II. PROBLEM AND SOLUTION 

The Network-on-Chip is the communication among on-chip 
components and must satisfy QoS requirements and 
implementation cost [3]. Network QoS parameters consist of 
latency, throughput, and reliability, whereas the implementation 
cost is evaluated by power consumption, area size and efficiency 
of using resources. The QoS is classified into two categories: GT 
service and BE service.  

The BE service implies that the network tries to achieve 
minimum delay for transporting a packet from a source node to 
a destination node. The actual delay is determined not only by 
the distance between the resources but also on the other traffic 
in the network. In the BE service, packets are forwarded as soon 
as possible without the reserved resources. Most of the NoC 
architectures offer BE services based on packet-switching 
because it efficiently utilizes the available bandwidth. 
Unfortunately, BE service may not be acceptable to real-time 
applications. By contrast, the GT service assures both 
throughput and latency over a finite interval and supports 
uncorrupted, lossless, and ordered data transfer by reserving the 
resources between source and destination. GT services are 
usually provided by circuit-switching [17] or by using 
connection-oriented packet-switching [18] (i.e. virtual circuit-
switching at where some virtual channels are dedicated to GT-
type packets). For example, Æthereal proposed by Goossens et 
al. [17] is another mesh-based NoC that supports GS router and 
a BE router in parallel to guarantee throughput traffic. It is 
obvious that the area overhead of this architecture is very high. 
Moreover, many real-time applications (such as capturing video 
from a camera on the smartphone) produce bursty traffic that 
sends large quantity of data during some intervals and less or no 
data during the others. A reserving-based NoC would take a 
significant part of the systems silicon area and only a fraction of 
its capacity is utilized by a given application. 

To trade-off between cost and high performance, recent 
NoCs are usually built on the packet-switching mechanism. Two 
popular packet-based switching schemes are the virtual cut-
through (VCT) and the wormhole. In wormhole switching, the 
packet is divided to flits including one header flit, followed by 
one or more body flits, and one tail flit. To reduce the 
implementation cost, the wormhole routing scheme normally 
uses just 1-flit depth for buffering. Consequently, the packet 
spreads over multiple different routers along its path just like a 
worm. In VCT switching, the same method as wormhole is 

adopted. However, the significant difference is that the VCT 
provides a buffer enough to store the whole packet at several 
nodes in the network. On the other hand, each packet is also 
assigned a certain priority so that the arbiter can grant the switch 
to only one specific packet when many packets require the 
connection to the same output port in order to ensure the QoS. 
The highest priority level is assigned to the packet that requires 
high throughput and low latency to response the real-time 
constraints. For example, Vellanki et al. [18] proposed a VC 
(virtual channel)-based router architecture for supporting QoS in 
the mesh-based NoC. This proposal always reserves two of four 
VCs for supporting GT services. In addition, when GT load 
increases high, they can transfer through the other VCs, but not 
vice versa. By this way, the QoS of GT load is ensured but at the 
expense of degradation of average performance for BE load. 
Moreover, the efficiency of using hardware is not high because 
some reserved VCs cannot be used for BE load even if they are 
not used for GT load.  

The problem with the above NoC is starvation of BE load. It 
happens when a packet cannot reach its destination because 
some resources do not grant access to it due to its low priority. 
In consequence, the starved packets can block many other 
packets leading to the degradation in performance and efficiency 
of using resources. This problem is extremely serious in the NoC 
using the wormhole switching scheme that allows a packet to 
spread over several different routers. Hybrid packet-switching 
technique [19] can deal with the above issue. However, this 
technique is still insufficient to improve the average 
performance for BE load.  
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Fig. 1. An application scenario of the NoC-based system. 

To understand this situation, let’s examine a simple NoC-
based system as shown in Fig. 1. The NoC performs three 
communication connections: M1 sends packets P1 (denoted by 
blue color) to S1; M2 sends packets P2 (i.e. green color) to S2; 
M3 sends packets P3 (i.e. yellow color) to S3. The highest 
priority is assigned to the packet P3 and the lowest priority is 
assigned to the packet P1. If the routing scheme is based on the 
XY-routing algorithm, so the routing path of P1, P2, and P3 is 
shown by the blue, green, and yellow line, respectively. 

Assuming that at time t0 there is only M1 ready, so it is 
granted physical links to transfer packets P1. At time t1, M2 
becomes ready, because it has a higher priority than M1, it 
preempts M1 and begins transferring. At time t2, M3 are ready. 
Because P3 is the highest-priority packet, it is guaranteed to 
transfer until it finishes and therefore P2 must wait in the queue. 
Timing diagram of transferring packets on the NoC is shown in 
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Fig. 2. Now, we zoom in the connection between Router[0][1] 
and Router[0][2] as shown in Fig. 3. At interval [t2, t3], although 
links from the west port to the south port of the Router[0][2] is 
available for M1, but P1 cannot preempt P2 to transfer via link 
Router[0][1] – Router[0][2] because of its lower priority. Only 
after both M3 and M2 finish, P1 just can be transferred. 
Consequently, the average performance and efficiency of using 
resources are degraded. The efficiency of using resources, and 
therefore average performance of P1 may be improved if the 
router supports the arbitration mechanism that allows P1 to be 
transferred in parallel with P3. 
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Fig. 2 Schedule of tranferring packets on NoC. 
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Fig. 3. The resource occupied by a blocked packet in wormhole routing. 
To deal with the above problems, in this paper, we enhanced 

the hybrid switching router [19] by equipping it an arbiter with 
a priority-driven arbitration mechanism. The router therefore 
supports both GT and BE services without reserving resources 
for GT load. When a node need to inject high speed load, it 
encapsulates data into GT-type packets so that these packets are 
given higher priority over other packets to be transferred on the 
NoC. In addition, the arbiter has two operation modes: Pre-
emptive and Priority inheritance. Pre-emptive mode helps to 
guarantee the QoS for GT load, meanwhile Priority inheritance 
mode helps to enhance the average performance for BE load by 
using resources more efficiently. 

III. THE PROPOSED ARCHITETURE 

A. Router micro-architecture 

In this work, we propose reconfigurable router based on the 
state-of-the-art virtual channel router micro-architecture [3] 
(which is referred as the generic router). Fig. 4(a) shows the 
Input/Output (I/O) interface of the proposed reconfigurable 

router for the 2D-mesh NoCs. Each router consists of four I/O 
ports (North, East, South, and West) for connecting to four 
neighbour routers and a Local port for connecting a processing 
element. Compared with the generic router, each port of the 
proposed router is assigned an integer-valued priority level. By 
default, the Local port has the highest priority and the West port 
has lowest one. However, this priority can be configured at run-
time by writing a proper configuration word to the SW arbiter 
(switching arbiter). 

The micro-architecture of the proposed reconfigurable router 
is shown in Fig. 4(b) with only one couple of input channel and 
output channel. In general, the generic architecture is partitioned 
into three main modules: crossbar; input channels; and output 
channels. It is popular that each router port consists of a couple 
of I/O channels for exchanging data with neighbour routers or 
local processing elements. The I/O channels are connected to 
physical links via the receiver and transmitter that adapt the 
bandwidth of the links to the flit size. The data from receiver is 
written to the input buffer. The input buffer is composed of four 
Virtual Channels (VCs), each with its own FIFO (First-In First-
Out) buffer. One of VCs is chosen to buffer an incoming packet 
by the Write control unit. Data Flow Control (DFC) unit informs 
the available status of VCs and determines which VC channel is 
selected to proceed to the next stage. After a VC is ready, DFC 
detects and decodes the packet’s header flit and then performs 
the given protocol to establish the physical channel and control 
transferring flits from the Input channel to the Output channel 
through the Crossbar. Routing Computation (RC) unit takes 
charge of look-ahead calculating the next router which the 
packet will be forwarded to. The routing is based on the target 
address in each header flit, and the XY-routing algorithm. After 
traversing across the crossbar, the packet is placed in the output 
buffer of the Output channel module before being sent to the 
next router by the transmitter. The VC allocation logic unit finds 
and assigns an available VC of the received router that the packet 
will be written to. 

Comparing with the generic router, our proposed router 
offers a configurable input buffer, adds conflict sensing (CFS) 
unit, and configuration controller to its micro-architecture [19]. 
These improvements allow the router to be configured between 
VCT switching and wormhole switching at run-time to deal with 
the network congestion. The configurable buffer is composed of 
an array of storage elements that can be flexibly organized into 
four VCs with variable size depending on target applications. 
The CFS unit helps DFC to monitor possible conflicts when 
many VCs try to access to the same shared resources. When 
DFC detects a conflict, it will send a request for reconfiguring 
the input buffer to the configuration controller. The 
configuration controller takes in charge of controlling operation 
mode of the other modules. Depending on the status information 
collected during the period of the router’s operation, the 
controller will make decision on switching scheme to adapt the 
router to the dynamic status of the NoC. In addition, the router 
is enhanced with a priority-driven SW arbiter to improve the 
average performance of the NoC. The details of the arbitration 
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Fig. 4. (a) The I/O interface; and (b) micro-architecture of the proposed reconfigurable router. 

mechanism will be described in the next sub-sections. 

B. Packet format 

As mentioned, the packet is divided into a header flit, 
followed by body flits and one tail flit. The size of a flit is 35 
bits. Where, the most significant bit (i.e. bit 34th) always shows 
the network layer the packet belongs to. If this is ‘1’, the packet 
belongs to the application layer, so it must be forwarded to the 
IP core at the destination router; otherwise the packet belongs 
to communication layer, so it must be forwarded to the 
configuration controller at destination router. Two next bits of 
every flit (i.e. bit 33th and bit 32th) are used for the field ToF 
(Type of Flit) that indicates the type of this FLIT.  

Header flit contains information for controlling how the 
packet is travelling on the NoC. The structure of a header flit 
for the application packet is depicted in Fig. 5. Control 
information in the header flit includes: (1) co-ordinate (Y, X) of 
target router; (2) Port_ID that is used by next router to specify 
where the packet is forwarding to; (3) Type of Packet (ToP); (4) 
Length of Body (LoB); and (5) Source node ID.  Especially, 
header flit contains two fields, called GT/BE and Priority, to 
aim at providing both GT service and BE service 
simultaneously. Here,  

- Bit 22 (GT/BE) specifies the QoS type of a packet. The 
switch arbiter uses this bit to make decision on granting 
the switch for the packet. More detail about the role of 
this bit is discussed in the sub-section C. 

- Bit 21 and bit 20 defines priority of a GT-type packet. 
These bits are valid only when bit GT/BE=1.  
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Fig. 5. Header flit of a packet in the application layer. 

 

C. SW Arbiter 

SW arbiter determines which VC channel of Input Port is 
selected to traverse over the switch. The judgment of the arbiter 

is based on the bits, GT/BE and Priority, in the Header flit of a 
packet. The arbiter support two operation modes: 

 Round-robin mode: providing BE-type QoS. Ready VCs 
are kept in a queue and scheduled one after the other. 
Round-robin mode provides a form of fairness in that all 
VCs get a chance to send data to the next stage. However, 
it does not guarantee the throughput of any packet. Once 
being granted channel, the VC occupies the channel till 
entire packet is transmitted. 

 Priority mode: providing GT-type QoS. Each GT-type 
packet is assigned an integer-valued priority that 
determines the priority of the VC in which the packet is 
being buffered. Because a VC can buffer various packets, 
therefore, the priority of each VC changes in time. The VC 
granted the switch is the highest priority one in the list of 
ready VCs. This mode, in turn, is divided into two sub-
modes to not only guarantees QoS of GT load but also 
enhance the average performance for BE load by using 
resources more efficiently as follows: 
o Pre-emptive mode allows a packet to preempt a lower-

priority packet. This mode deals with the case at which 
a higher-priority packet is blocked because the 
resource it requires has been granted to a lower-
priority packet, and therefore guarantees QoS in real-
time applications. This mode is only provided for GT 
packets which are distinguished from PE packets by 
setting the bit GT/BE in the header flit.  

o Priority inheritance mode allows a BE packet can be 
promoted temporarily to the priority of the GT packet 
that is blocked by a higher-priority GT packet. As soon 
as the priority has been upgraded, the BE packet can 
establish a channel for transmission until it is 
completed, or the blocked GT packet becomes 
unblocked.  

The functional block diagram of the arbiter is shown in Fig. 
6. At the priority mode, the scheduler takes charge of assigning 
proper priorities to VCs depending on the QoS type of each 
packet. Based on the priority assigned to VCs, the Priority 
Decoding Logic arbitrates which VC is served. In addition, the 
scheduler also makes decisions about whether upgrading the 
priority of a package or not, depending on the conflict signal 
from the CFS block.  
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Fig. 6. SW arbiter. 

D. Conflict sensing unit 

The function of Conflict Sensing (CFS) unit is to detect possible 
conflicts on the output channel when there are many requests 
sent to the same shared resource. CFS unit basically includes 
two main units that are slot timer and counter. Each request is 
assigned a short interval, called time slot and defined by slot 
timer, to wait for the grant signal. If the request is not granted 
after the assigned time slot, it will be changed to the pending 
state and others request will continue to be processed. Each the 
failed request is tried again to get grant signals in N times that 
is determined by the counter. Once a request is failed, the 
counter associated with it will be started. When counter count 
to N and the request still has not get the grant signal, this means 
the request is not granted after N tries, CFS will send the 
configuration controller a request to reconfigure the operation 
mode of the router. The count value of slot timer and counter 
can be re-configured by the configuration controller. 

IV. IMPLEMENTATION AND EVALUATION 

A. Simulation Enviroment 

The proposed router has been evaluated in terms of 
performance and implementation cost using the HDL-based 
simulator. To do that, a 2D-mesh 8×8 NoC evaluation platform 
(as shown in Fig. 1) have been built from the RTL model. 
Besides, we also developed a Network Interface (NI) [19] with 
built-in dummy IP cores. 

Based on the platform in Fig. 1, we defined a script to 
evaluate the performance and implementation cost of the 
proposed router. The packet size is set to ten 35-bit flits. The 
buffer size of each input port is equal to sixteen 35-bit flits; 
therefore, the depth of each virtual channel is 4 flits in normal 
operations. There are three scenarios have been defined in our 
scripts as follows: 

 Scenario 1: Only M1 transmits data to S1 at the 
maximum rate of 0.04 packets per cycle. 

 Scenario 2: In addition to the settings of Scenario 1, M2 
is also enabled to transmit data to S2 at the maximum rate 
of 0.04 packets per cycle. The number of packets P2 is set 
to a half of the number of packets P1. 

 Scenario 3: In addition to the settings of Scenario 1 and 
Scenario 2, M3 is also enabled to transmit data to S3 at 
the maximum rate of 0.04 packets per cycle. The number 
of packets P3 is set to a quarter of the number of packets 
P1. 

B. Experimental Results 

The proposed router have been synthesized by the Vivado 
Design Suite (Xilinx). The synthesis result of the proposed 
router using the Virtex-7 XC7VX485 FPGA chip is shown in 
TABLE I. It takes about 0.4%, 1.13%, and 0.26% of the 
XC7VX485 chip resource in terms of Flip-Flop, LUTs, and 
Memory LUT, respectively. Compared with the generic router, 
the resource utilization overhead of our proposed router 
increases about 12.35%, 15.15%, and 13.7% in terms of Flip-
Flop, LUTs, and Memory LUT, respectively. The maximum 
frequency of the proposed router is approximate to 108MHz. The 
average latency for transferring the header flit and body flit 
through one router is 12.5 and 5.5 cycles, respectively. The 
power consumption is estimated about 0.246W, increasing 6% 
compared with the generic router. 

TABLE I.  SYNTHESIS RESULT ON VIRTEX-7 FPGA TECHNOLOGY 

Resource Type 
Used Resource Area overhead 

(%) 
Used/Available 

Ratio (%) Generic Configurable 

Flip-Flop 2181 2450 +12.35   0.40 

LUTs 2976 3427 +15.15 1.13 

Memory LUT 295 335 +13.7 0.26 

Power (W) 0.232 0.246 +6.03 - 

 

The comparison in respect of throughput and latency 
between the generic wormhole router and the reconfigurable 
router is provided in TABLE II. In this table, the latency is 
defined as the time taken for one packet to travel from a source 
to a destination while the throughput is the network’s transfer 
rate and is evaluated as flits per cycle. These values of each 
communication pairs (M1-S1, M2-S2, and M3-S3) are measured 
at the target nodes S1, S2, and S3, respectively. From the 
definition of scenarios, it is obvious that Scenario 1 has no 
conflict, therefore, there is no difference between the generic 
router and the reconfigurable router. In Scenario 2, M1-S1 
communication must compete the link between Router[0][1] and 
Router[0][2] with the M2-S2 communication. Because the 
priority of M2-S2 communication is higher than M1-S1 
communication, the performance of M1-S1 communication is 
decreased. There is not a significant difference in terms of 
throughput and latency between the generic router and 
reconfigurable router. In Scenario 3, M2-S2 communication 
also must compete with M3-S3 communication. Theoretically, 
there is no conflict between the M3-S3 communication and M1-
S1 communication. However, the appearance of the M3-S3 
communication not only degrades throughput and latency of the 
M2-S2 communication but also affect these of M1-S1 
communication in the case of the generic router as shown in 
TABLE II. The reason for this situation was explained in Section 
II. This problem is overcome in the reconfigurable router by two 
operations as follows. Firstly, the buffer size of the VC assigned



TABLE II. EVALUATION IN TERMS OF THROUGHPUT AND LATENCY. 

Scenario 

Average throughput (flits/cycle) Average latency (cycles) 

Generic router Reconfigrable router Generic router Reconfigrable router 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

1 0,139 - - 0,139 - - 558 - - 558 - - 

2 0,081 0,096 - 0,081 0,096 - 610,0 930,1 - 610,0 930,1 - 

3 0,070 0,071 0,139 0,080 0,071 0,139 645,9 966,0 496,2 610,5 966,0 496,2 

to the M2-S2 communication is reconfigured to release the 
resources occupied by the M2-S2 communication. Secondly, the 
priority of the M1-S1 communication is promoted to equal to 
that of the M2-S2 communication. After these, the M1-S1 
communication is performed in parallel with the M3-S3 
communication. In consequence, the throughput and latency of 
the M1-S1 communication has been improved about 13.8% and 
5.5%, respectively, for the case where the number of packets P3 
is set to a quarter of the number of packets P1. The improvement 
in performance depends on the number of packets in a message 
of M3-S3 and M2-M2. The bigger the number of packets P3 is, 
the higher the improvement in performance is. 

V. CONCLUSION 

The paper presented our proposal, implementation and 
evaluation of a hybrid switching router with the priority-driven 
arbitration for the reconfigurable NoCs. In the proposed 
solution, router’s resource is effectively exploited by 
dynamically switching scheme in order to improve the network 
total performance. Experimental results show that our proposal 
is reliable and can enhance significantly the average 
performance of BE load compared with generic router when the 
congestion happening. In terms of implementation cost, our 
proposed router consumes an insignificant ratio of the 
XC7VX485 FPGA (Xilinx Virtex-7) chip’s resources. The 
router is feasible to apply for high-flexibility and high-
performance on-chip embedded systems.   
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