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Abstract—Many practical networks can be mathemati-
cally modeled as graphs. Graph signal processing (GSP),
intersecting graph theory and computational harmonic
analysis, can be used to analyze graph signals. Just as
short-time Fourier transform (STFT) for time-frequency
analysis in classical signal processing, we have windowed
graph Fourier transform (WGFT) for vertex-frequency
analysis in GSP. In this paper, we introduced a new graph
modulation operator that satisfies the property of spectral
conservation, and a new graph translation operator with
interesting properties. Based on these operators, we pre-
sented a new method to obtain the WGFT with a tight
vertex-frequency frame. These GSP tools were developed
based on the graph adjacency matrix. Using time-series
graph, USA graph and random graph as examples, we
showed by simulation the advantages of our proposed GSP
tools over the state-of-the-arts.

Index Terms—Graph signal processing, vertex-frequency
analysis, vertex-frequency Fourier transform, graph mod-
ulation, graph translation.

I. INTRODUCTION

Practical networks, such as public transport, mobile-
user, social, sensor, and biological networks, can be
mathematically modeled as graphs. Hence, they provide
us with data on graphs, where data are represented as
to reside on graph vertices, and have been studied under
graph theory [1]. A new way to look at graph data is to
see them as “signals”. As a consequence, graph signal
processing (GSP) has emerged [2], [3], which can be
seen as intersection of graph theory and computational
harmonic analysis. It is of interest to generalize typical
signal processing tasks (representation, frequency anal-
ysis, filtering, detection, estimation, separation, etc.) for
graph signals.

Consider a graph G = {V, E}, where V denotes the set
of vertices of the graph with |V| = N , and E the set of
edges. A signal defined on G is a vector f ∈ RN whose
nth component represents the signal value at the nth

vertex of G. Associated with G are two special matrices
called the Laplacian matrix (L) and the adjacency matrix
(A).

Just as Fourier transform (FT) and short-time Fourier
transform (STFT) for frequency and time-frequency
analyses in classical signal processing (CSP) [4], we
also have graph Fourier transform (GFT) and windowed
graph Fourier transform (WGFT) for frequency and
vertex-frequency analyses in GSP. In this paper, we are
interested in the WGFT that provides a localized spectral
analysis of graph signals.

Recall that by focusing on a signal f(t) at a region
around time a and frequency k using a time-frequency
localized window ga,k(t), the STFT of f(t) is defined
as

Sf (a, k) , 〈f, ga,k〉. (1)

The localized window is obtained by translating the
original window g(t) in time by a and then modulating
the result by ejkt; that is, ga,k(t) = g(t − a)ejkt.
Therefore, it is natural to first define in GSP the graph
(or generalized) translation and modulation operators, in
order to define the WGFT.

By aiming to design a window that is localized in
the vertex-frequency domain, there have been so far two
methods proposed for the WGFT. First, Shuman, Ricaud,
and Vandergheynst defined the WGFT via introducing
the graph convolution, translation and modulation oper-
ators [5]. Inspired by the equivalence of convolution in
time is equivalent to multiplication in frequency in CSP,
their graph translation operator, translating the window
by a vertices in the vertex domain, was defined as the
inverse GFT of the multiplication of the GFT of the
window with the GFT of the delta function centred
at vertex a. The Laplacian matrix of the underlying
graph is used in the definition. Here, the window is
not defined first but generated from a frequency kernel;
hence the operator is called “kernelized” operator. An
interesting property of this translation operator is that the
magnitude of the translated window decays with vertex
distance away from the shifted location, thus helping
design well-localized windows. However, the operator is
neither shift-invariant nor isometric in general, causing a
significant change in the frequency content of the signal
after translation. Inspired by the fact that modulation is
equivalent to multiplication by a Laplacian eigenfunc-
tion in CSP, their graph modulation operator was defined
as multiplication of the window with an eigenvector of
the Laplacian matrix. However, the property in CSP
that modulation in time corresponds to translation in
frequency does not generally hold in GSP. In addition,
their graph modulation causes changes to the energy
content of the signals. Moreover, the frame related to
their WGFT is not tight.

Second, Tepper and Sapiro in [6] takes a different
approach for the graph localization and modulation op-
erators in defining the WGFT, inspired from the existing
notion of the personalized PageRank (PPR) vector [7]
in local spectral graph theory, useful in the problem
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of community detection.In particular, the PPR vector,
defined based on the normalized Laplacian matrix, pro-
vides a natural way to find a community localized
around a set of seed vertices by finding other vertices
that have stronger relationship to the seed vertices than
the rest of the graph. The PPR vector associated to a
given seed set of vertices behaves as a localization of
the graph signal around the seed vertices. By seeing
this interesting connection between the local spectral
graph theory and our underlying problem of localized
spectral analysis of graph signals, they directly defined
the window localized at vertex a by the PPR vector that
is constructed based on a seed set that contains only
the vertex a. This definition of a localization operator
is obtained directly rather than defining first an original
window and then a graph translation operator to translate
it. The localization operator can be recognized as a
smooth signal-dependent window kernel as in CSP. The
“signal-dependent” part is due to the inclusion of the
graph degree matrix in the normalized Laplacian matrix.
The “smooth” part is provided thanks to the way the
PPR optimally calculates the signal weights/values at
the vertices of the local community other than the
seed vertices. However, since their localization operator
depends on the signal, it is generally not isometric. In
addition, it is quite computationally demanding because
it has to solve an optimization problem to obtain the
PPR vector. Their graph modulation operator is defined
similar to that by Shuman et al., but with the use of the
normalized Laplacian matrix instead. It is not clear if the
frame stability condition is satisfied in order to recover
the graph signal from its spectrogram.

In general, both methods only focused on designing
the vertex-frequency localized window for the WGFT
rather the graph translation and modulation operators
for arbitrary graph signals. In addition, neither of them
can be applied to signals defined over directed graphs
because the Laplacian matrix is only defined for undi-
rected graphs. The drawbacks of the graph translation
operators defined in [5], [6] suggested the formulation of
alternative definitions. Sandryhaila et al. defined it based
on the adjacency matrix [8]. Girault et al. defined an
isometric graph translation operator [9]. Unfortunately,
both face some drawbacks when we compare to its
counterpart in CSP including the isometric property,
energy conservation or computational complexity.

The drawbacks and circumstances related to graph
translation and modulation operators as explained above
encourage us to propose in this paper new ways to define
them and hence the WGFT. We are inspired by a recent
definition by Gavili and Zhang in [10] of an optimal
graph shift operator that takes the advantages of [8],
[9]. The contribution of the paper is three-fold. First, we
introduce a new optimal graph modulation operator that
satisfies the property of spectral conservation. Second,
based on [10], we define a graph translation operator
with nice properties. Third, we present a new method
to obtain the windowed graph Fourier dictionary with a

tight vertex-frequency frame.
In addition, unlike the use of the Laplacian matrix

by [2], [11], we use the adjacency matrix on which
the GFT was defined [8], [12]. The exploitation of the
adjacency matrix is due to the fact that this matrix
is highly useful to present various types of graphs,
including undirected, directed, connected and weighted
graphs.

II. PROPOSED METHODS

A. New Graph Modulation Operator

A time series signal f(t) is to be modulated by a
modulation operator Mε to yield the modulated signal

Mεf(t) , f(t)ejεt, (2)

indicating that ejεt is an eigenfunction under Mε. By
taking the Fourier transform on both sides of (2), the
modulation operator can also be seen as translating the
signal in the spectral domain

M̂εf(ω) = f̂(ω − ε), (3)

where x̂ denotes the spectrum of x.
We now wish to define a generalized modulation

operator in GSP.
Denote by χl and λl, for l = 0, . . . , N −1, the eigen-

vectors and eigenvalues of A. The distinct eigenvalues
are called the graph frequencies and they form the graph
frequency spectrum: σ(A) = {λ0, λ1, . . . , λM−1},
where 0 < M ≤ N . In this paper, due to the restriction
of paper length, we assume that all the eigenvalues are
distinct, i.e., M = N . Formulation with respect to the
case when M < N can be done, based on the block
formulation of the GFT in [12]. Accordingly, given the
eigenvalue decomposition A = VΛV−1, then V−1 is
called the GFT matrix. Hence, for a graph signal f , its
GFT at graph frequency λa is given by

f̂(λa) ,
N∑
n=1

V−1(a, n)f(n), (4)

or over the whole spectrum by

f̂ , V−1f . (5)

Denote by Mk the graph modulation operator at
frequency k and apply it to the graph signal f to obtain
the modulated signal in the vertex domain

f̃k = Mkf . (6)

Similar to (3), the modulated signal in the frequency
domain is then expressed as

M̂kf(λa) = f̂(λ(a−k)N ). (7)

where (a − k)N , (a − k) mod N . In this way, the
frequency content of f at λi has been translated to a
new location at λ(i+k)N . Using (4), we obtain

̂̃
fk(λa) = f̂(λ(a−k)N ) =

N∑
n=1

V−1((a− k)N , n)f(n),
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or more compactly ̂̃
fk = PkV−1f , (8)

where P the N ×N cyclic permutation matrix

P =



0 0 · · · 0 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


Here, Pk cyclically permutes the GFT matrix, V−1,
upward k rows.

Going back to the vertex domain, this modulated
signal is then expressed by its inverse GFT as

f̃k , V
̂̃
fk

= VPkV−1f

= VVPΛk
PVP

−1V−1f ,

= VMΛk
MV−1

M f , (9)

where

P = VPΛPVP
−1 (Eigenvalue decomposition),

VM := VVP,

ΛM := ΛP = diag
(
1, e−j2π

1
N , ..., e−j2π

N−1
N

)
.

Denote
M := VMΛMVM

−1 (10)

Then, by comparing (6) with (9), we can define the graph
modulation operator as

Mk , Mk = VMΛk
MVM

−1, (11)

which is an optimal solution.
Interestingly, in the case of graph time-series, M is

exactly the circular frequency-shift operator in CSP, that
is, (

Mkf
)
(n) = e

j2πn
N kf(n). (12)

Proof. From (12), the modulation matrix Mk can be
formed by

Mtime-series = diag
(
1, ej2π

1
N , ..., ej2π

N−1
N

)
.

In addition, since P is also diagonalized by the discrete
Fourier transform (DFT) matrix, F−1

N , we have

P = FN diag
(
1, ej2π

1
N , ..., ej2π

N−1
N

)
F−1
N .

Therefore,

f̃k = VPkV−1f

= F−1
N FN Mk

times-series F−1
N FN f

= Mk
time-seriesf .

B. New Graph Translation Operator
On a time series signal f(t), the translation operator

in CSP, defined for a translation amount of a in time,
denoted by Ta, is done via the change of variable:
(Taf)(t) , f(t− a). On a graph signal f , a number of
methods have been proposed to define a graph transla-
tion operator, Ta. For example, as explained in Section I,
Shuman et al. introduced a graph translation operator
as a “kernelized” operator, based on the observation in
CSP that translation can be seen as convolution of the
underlying signal with a delta function centred at time
translated time: Taf(t) , (f ∗ δa)(t).

In defining our graph translation operator in this
paper, we are inspired by results derived from [10]. In
particular, the shift operator is considered as a linear
map Aφ obtained from the adjacency matrix

A = VΛhV
−1VΛφV

−1 = AhAφ,

where Λφ = ΛM. The shifted signal is given by f̃1(n) =
Aφx(n). Thus, a-step translated version of the original
signal x can be given by

fa(n) = Aa
φf(n) = VΛa

φV−1f(n). (13)

Therefore, we can define the graph translation operator
as

Ta , Aa
φ = VΛa

φV−1. (14)

In this way, the graph translation operator has several
important properties. In particular, for all f ∈ L2, we
obtain a list of properties of the generalized translation
operator shown as in Table I. Proofs of the properties
are omitted due to the limitation of the paper length.

TABLE I: Properties of Graph Translation

No Property Description

1 Isometry d
(
Tax,Tay

)
= d

(
x,y

)
2 Energy

Conservation ‖Taf‖2 = ‖f‖2

3 Invariance Ta(f ∗ g) = (Taf) ∗ g = f ∗ (Tag)
4 Commutativity Ta(Tbf) = Tb(Taf) = Ta+bf
5 Circular TN f = AN

φ f = f

In addition, we also get some other nice properties:
6) Fourier’s basis of Aφ and A are the same, thus frequency
contents of graph signals are safe.
7) In the case for graph time-series signals (ring graphs),
the graph translation operator is analogous to its counterpart
in CSP.

C. New Windowed Graph Fourier Transform
With the above newly defined graph modulation and

translation operators, we introduce in this section a new
definition of the WGFT, using a Fourier dictionary D =
{ga,k}, where

ga,k := MkTag = MkAa
φg, (15)

with g is a window. The resulting projection of a graph
signal f on each subdictionary atom ga,k is then given
by

Sf(a, k) = 〈f ,ga,k〉. (16)
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Now, we recall the necessary and sufficient frame
condition to recover a signal (vector) f from its inner
product with a dictionary Φ ∈ RN,M [13], that is: its
frame has to give an energy equivalence if there exist
constants β ≥ α > 0 such that

α‖f‖2 ≤
∑
n

|〈f , φn〉|2 ≤ β‖f‖2, ∀f ∈ RN . (17)

Denote A
(a,k)
tr := MkAa

φ, then

Atr = VMΛk
MV−1

M VΛa
φV

−1

= VPkV−1VΛa
φV

−1

= VPkΛa
φV

−1

= VΛa
φ(k)V

−1.

Hence, the magnitude of eigenvalues of A
(a,k)
tr is always

equal 1 for all a and k, thanks to the above nice prop-
erties of modulation (k) and translation (a): λi = ejφ

′
i .

As previously expressed, the vector direction does
not change when the transform is applied. That means
A

(a,k)
tr is an isometric linear map, so ‖A(a,k)

tr x‖2 =
‖x‖2, for any x. Therefore,

S =

N∑
a,k=1

|〈f ,ga,k〉|2

=

N∑
a,k=1

|〈f ,MkTag〉|2

=

N∑
a,k=1

|〈f ,A(a,k)
tr g〉|2

=

N∑
n=1

|f(n)|2
N∑

a,k=1

(A
(a,k)
tr g)(n)2

=

N∑
n=1

|f(n)|2
N∑

a,k=1

(A
(a,n)
tr g)(k)2

=

N∑
n=1

|f(n)|2
N∑
a=1

‖A(a,n)
tr g‖2

= N‖g‖2‖f‖2.

As a result, α = β = N‖g‖2 that leads to the
conclusion that the Fourier frame is tight. In other words,
the inverse WGFT can be implemented by the synthesis
operator using the dot (inner) product of the spectrogram
of the graph signal and its window. The same way to
express the above analysis operator, we also get the
synthesis

N∑
a,k=1

〈f ,ga,k〉ga,k(n) = N‖g‖2f(n),

and hence

f(n) =
1

N‖g‖2
N∑

a,k=1

Sf (a, k)ga,k(n). (18)
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Fig. 1: Time-series graph and its spectrum.

To sum up, in GSP, the windowed Graph Fourier dic-
tionary D = {ga,k} is generalized with stable analysis
and synthesis operators.

III. SIMULATIONS

In this section, we provide simulated experiments to
illustrate the ability of our proposed methods. Three
examples of graph signals are considered: (i) a time-
series graph (a.k.a. path graph), (ii) a USA graph, and
(iii) a random graph.

In particular, the time-series graph is composed of
three components localized in three different loca-
tions, constructed by f = [f1, f2, f3] in which f1 =
sin(ω0n), f2 = sin(2ω0n), and f3 = sin(3ω0n) with
ω = 2π/7, as shown in Figure 1. The USA graph
contains the temperature measurements for one year in
150 cities across the USA, which has been detrended
for our purpose, as shown in Figure 2. The random
graph is randomly generated with 100 nodes, as shown
in Figure 3.

A. Results for Graph Modulation Operator

It can be seen in the Figures 4 and 5 that our
graph modulation is much the same as its counterpart
in CSP. In particular, our proposed method yields new
signals with their spectrum that are kept unchanged,
as compared to their original form. Meanwhile, Shu-
man’s method [14] do not hold the core information,
the modulated signals are disintegrated into lots of
frequency components. The method may be suitable for
monocomponent signals only; we refer the reader to [14]
for further details.
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(a) Graph signal, f
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Fig. 2: USA graph and its spectrum.
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Fig. 3: Random graph and its spectrum.

B. Results for Graph Translation Operator

The results in Figures 6 and 7 illustrate that there are
no difference in spectral representation of the original
signals and the translated ones using our method. In
the case of the time-series graph, our graph transla-
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Fig. 4: Modulation of the time-series graph; k = 20.
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Fig. 5: Modulation of the USA graph; k = 50.
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Fig. 6: Translation of the time-series graph; a = 30.

tion shares the same properties with those of the shift
operator in CSP. The experiment with the USA graph
also demonstrates the effectiveness of our method in
which all properties of the graph translation operator
are held, such as energy, frequency content conservation,
invariance and so forth; this is not true in general with
Shuman’s method.
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Fig. 7: Translation of the USA graph; a = 30.
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Fig. 8: WGFT and STFT of the time-series graph.
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Fig. 9: WGFT of the USA graph and the random graph.

C. Results for Windowed Graph Fourier Transform

Consider a graph time-series signal having 100 nodes
and a window ĝ(λ) = Ce−αλ, where α and C are
constant. In the case α = 300 and C = 1, the
resulting spectrogram in Figure 8 shows that our new
WGFT generates three difference bands restricted to the
three segments of the signal, which is analogous to the
STFT in CSP. Experiments with the USA graph and the
random graph also illustrates the success of our method,
as shown in Figure 9.

IV. CONCLUSION

In this study, thanks to the properties of cyclic permu-
tation matrix P, we have introduced a new way to define

two fundamental concepts in GSP: graph translation and
graph modulation. Based on that, we have proposed a
new definition for the WGFT such that it successfully
possess similar behavior to the STFT– its counterpart
in CSP. We have showed that our methods overcome
the drawbacks of the existing methods and can also
be applied to specific applications in particular and to
analyzing any graph signals in general.
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