
Parity-based ECC and Mechanism for Detecting and
Correcting Soft Errors in On-Chip Communication

Khanh N. Dang and Xuan-Tu Tran,
SISLAB, University of Engineering and Technology

Vietnam National University Hanoi (VNU), Hanoi, 123106, Vietnam
Email: {khanh.n.dang,tutx}@vnu.edu.vn

Abstract—Soft errors are expecting to be accelerated with
the shrinking of feature sizes due to low operating voltages
and high circuit density. However, soft error rates per single-
bit is expectedly reduced with technology scaling. With tight
requirements for the area and energy consumption, using a low
complexity and high coding rate error correction code (ECC) to
handle soft errors in on-chip communication is necessary. In this
work, we use Parity Product Code (PPC) and propose several
supporting mechanisms to detect and correct soft errors. First,
PPC can work as a parity check to detect single event upset (SEU)
inside each flit. Then, to reduce the needed retransmission, a
Razor flip-flop with parity check (RFF-w-P) is proposed to work
with PPC. Since PPC can act like forward error correction (FEC),
we also present a selective transmission in bit-indexes by using
a transposable FIFO. Therefore, the proposed mechanism not
only guarantee single error detection/correction but also provide
2+ error correction as FEC. The proposed work also reduce the
area cost of FIFO in comparison to traditional coding methods
and adapt too multiple error rates.

I. INTRODUCTION

Electronics devices in critical applications such as medical,
military, aerospace may expose to several sources of soft error
(alpha particles, cosmic rays or neutrons). The most common
behavior is to change the logic value of a gate or a memory cell
leading to incorrect value/result. Unfortunately, those critical
applications demand high reliability and availability due to
the difficulty in maintenance. To ensure the overall reliability
and availability of the system, soft error resilience is widely
considered a must-have feature among those applications.

According to [1], the soft error rate per gates is predictively
reduced due to the shrinking of transistor size. The soft error
rates of single-bit are decreased by ∼2x per technology gener-
ation [2]. However, due to the reducing of operating voltages,
which create vulnerabilities to supply voltage noises, and the
increasing of integration density, the number soft errors per
chip is likely to be increased [2]. Moreover, the soft error rates
in normal gates are also rising which shifts the interests of soft
error tolerance from memory-based devices to memory-less
devices (wires, logic gates) [1]. As a consequence, tolerating
soft error need to be featured in both memory and memory-
less modules. Also, the detectability and correctability for a
single memory cell or gate need to be simpler than traditional
methods (i.e. redundancies, Hamming code, ...) to conserve
the cost. A good trade-off between the additional area cost,
the performance degradation and the protectability given by
the soft error resilient method need to be carefully considered.

To protect the wire/gate from soft errors, we summarize
the existing method into three main approaches as in Fig. 1:
(i) Information Redundancy; (ii) Temporal Redundancy and
(iii) Spatial Redundancy. Among these solutions, using error
correction code (ECC) with further forward and backward
corrections is a viable solution with lesser area cost and lower
performance degradation. By encoding the data to obtain a
codeword, corrupted data can be detected or corrected in the
receiving terminal. By combining a coding technique with
detection feature and retransmission which is call backward
error correction, the system can further detect and correct
more fault. On the other hand, forward error correction (FEC),
by temporally ignoring and correcting the faults at the final
receiver is another solution. Indeed, ECC plays a key role in
the two mentioned solutions.

Among several existing ECCs, parity check is one of
the very first methods to detect single flipped bit. Also,
Hamming code (HM) [3] and its extension (Single Error
Correction Double Error Detection: SECDED) [4] are two
common techniques. This is due to the fact the those two
ECCs only rely on basic boolean functions to encode and
decode. Thanks to their low complexities, they are suitable
for on-chip communication application and memories. On the
other hand, Cyclic Redundancy Check (CRC) code is also
another solution to detect faults. Since it does not support fault
correction, it may not optimal for on-chip communication.
Further coding methods such as BCH or Reed-Solomon is
exceptionally strong; however, their complexities are over-
whelming that prevent them from being widely applied in on-
chip communication.

Fig. 1. Soft error tolerance approaches.

As previously mentioned, soft error rates of wires/logic
gates are lower than memory. Also, soft error per bit rates of



both SRAM and DRAM are likely to be reduced [1]. There-
fore, we observe that using a low complexity error correction
code may be suitable for future technologies. Moreover, with a
low complexity coding method, it can be widely applied within
a high complexity system without being considerably degraded
in terms of area cost, power consumption, and performance.

In this paper, we present an architecture using Parity Product
Code (PPC) to detect and correct soft errors in on-chip
communication. In each transmission, the system can act
like parity check to obtain low complexity and high coding
rate. Furthermore, in cooperative with Razor flip-flop with
Parity (RFF-w-P), the system can help correct SEU without
using ARQ. If RFF-w-P cannot correct the faults, it will be
corrected later using the PPC’s correction or selective ARQs.
The contribution is as follows:
• Architecture of encoder and decoder using Parity Product

Code (PPC) that offers one fault detection in a flit and
one fault correction in a packet (or trunk of flits).

• A method to correct SEU without HARQ by using
dedicate Razor flip-flop with Parity (RFF-w-P).

• A Selective ARQs in row/column for PPC using a trans-
posable FIFO design.

• Adaptive mechanism for the PPC-based system with
various error rates.

The organization of this paper is as follows: Section II
reviews the existing literature on coding techniques and fault-
tolerances. Section III presents the proposed PPC and sec-
tion IV shows the proposed architecture. Section V provides
evaluation and Section VI concludes the paper.

II. RELATED WORKS

As we previously mentioned, the soft error tolerance is
classified into three branches: (i) Information Redundancy,
(ii) Temporal Redundancy, and (iii) Spatial Redundancy. In
this work, we focus on the on-chip communication reliability;
therefore, this section focuses on the method to tolerate soft
error in this type of medium.

For information redundancy, error correction code is the
most common method. Error correcting code has been de-
veloped and widely applied in the recent decades. Among
the existing coding technique, Hamming code [3], which is
able to detect and correct one fault, is one of the most
common ones. Its variation with one extra bit - Single Error
Correction Double Error Detection (SECDED) by Hisao [4]
is also common with the ability to correct and detect one
and two faults, respectively. Thanks to their simplicity, ECC
memories usually use Hamming-based coding technique [5].
Error detection only codes such as cyclic redundancy check
(CRC) [6] is also widely used in digital network and storage
applications. More complicated coding techniques such as
Reed-Solomon [7], BCH [8] or Product-Code [9] could be
alternative ECCs. Further correction of ECC could be forward
(correct at the final terminal) or backward (demand repair from
the transmitter) error correction. Despites its efficiency, ECC
is limited by its maximum number of fault could be detected
and corrected.

When ECC cannot correct but can detect the occurrence of
faults, temporal redundancy can be useful. Here, we present
four basic methods: (i) retransmission, (ii) re-execution, (iii)
shadow sampling, and (iii) recovery and roll-back. Both re-
transmission [10] and re-execution [11] share the same idea
of repeat the faulty action (transmission or execution). Due to
the randomness of soft errors, this type of error likely to absent
after a short period. With the similar idea, shadow sampling
(i.e. Razor Flip-Flop [12]) use a delay (shadow) clock to
sample data into an additional register. Then, by comparing the
original data and the shadow data, the system can detect the
possible fault. Although temporal redundancy can be efficient
with its simple mechanism, it can create congestion due to
multiple times of execution/transmission.

Since temporal redundancy may cause bottle-necks inside
the system. Using spatial redundancy can be a solution. One of
the most basic approaches is multiple modular redundancies.
By having two replicas, the system can detect soft errors.
Moreover, using an odd number of replicas and a voting
circuit, the system can correct soft errors. Since spatial re-
dundancy is costly in terms of area; the most efficient method
is to create spares and use them as replacements for faulty
elements.

III. PARITY PRODUCT CODE

This section presents Parity Product Code (PPC) which
is based on parity check and product code to inherit the
benefits of both techniques [13], [9]. We first present the
fault assumption. Then, the encoding and decoding process
is presented.

A. Fault assumption

In this work, we mainly target to low error rates where there
is one flipped bit in a packet (or group of flits). In addition,
the selective ARQ can guarantee two flipped bits per packet.
For higher error rates, using different ECCs with the help of
ARQ could be a proper solution. Also, using multiple sets of
code and interleaving could help handle more faults.

B. Encoding of PPC

Let’s assume a packet has M-flits and one parity flit as
follows:

P =


F0

F1

. . .
FM−1
FP

 =


b00,0 b01 b02 . . . p0

b10 b11 b12 . . . p1

b20 b21 b22 . . . p2

. . . . . . . . . . . . . . . . . . . . . . . . .
pb0 pb1 pb2 . . . ppi


Where a flit F has N data bits and one single parity bit:

F =
[
b0 b1 b2 . . . bN−1 p

]
Followings are the calculation for parity data:

p = b0 ⊕ b1 ⊕ · · · ⊕ bN−1 (1)

and



FP = F0 ⊕ F1 ⊕ . . . FM−1

Note that we can use a trunk of flits instead of a whole
packet. Because the decoding process requires caching the
whole M flits, using a small value of M could reduce the
decoding latency.

C. Decoding of PPC

The decoding for PPC could be handled in two phases: (i)
Phase 1: Parity check for flits with backward error correction;
and (ii) Phase 2: forward error correction for packets. For each
receiving flit, parity check is used to decider whether a SEU
occurs:

SEUF = Parity(F ) = b0 ⊕ b1 ⊕ · · · ⊕ bN−1 ⊕ p (2)

If there is a SEU, SEUF will be ‘1’. To quickly correct
the flit, Hybrid Automatic Retransmission Request (HARQ)
could be used for demanding retransmission. Because HARQ
may cause congestions in the transmission, we use these two
method: (i) Razor FF with Parity (see Section IV-A) and
(ii) Correcting using the PPC correction method at the RX
(act as FEC). The algorithm of decoding process is shown in
Algorithm 1.

If the fault cannot be corrected, the system correct it at
the receiving terminals. Parity check of the whole packet is
defined as:

SEUP = Parity(P ) = F0 ⊕ F1 ⊕ · · · ⊕ FM−1 ⊕ FP (3)

Base on the value of SEUF and SEUP , the decoder can find
out the index of the fault as in Fig. 2. The flit and the index
that the flipped bit belonging to have the SEU=‘1’. Therefore,
the decoder can correct by flipping this bit during the reading
process. Note that the FIFO has to be deep enough for M flits
(M ≤ FIFO’s depth). Apparently, PPC can only detect and
correct a single flipped bit in M flits.

D. Transposable Selective ARQ

If there are two flipped bits inside a flit, the parity check
fails to detect. On the other hand, detected faulty flits may
not be corrected by using ARQ or RFF-w-P due to the fact
that the flit is already corrupted at the sender’s FIFO. In both
cases, the system relies on the correctability of PPC at the
receiving terminal (RX).

As a FEC, PPC can calculate parity check of each bit-index
as in SEUP . Therefore, we can further detect it by Eq. 3. If a
flit has an one (or an odd number) of flipped bits, a selective
flit-index ARQ can help fix the data. On the other hand, if
a flit has an even number of flipped bits, the SEUF stays at
zeros. Therefore, the decoder cannot determine the corrupted
flits. However, SEUP could indicate the failed indexes. Note
that PPC is unable to detect the square positional faults (i.e.:
faults with indexes (a,b), (c,b), (a,d) and (c,d)). However, this
cases is out of scope of this paper.

Fig. 2. Single flipped bit and its detection pattern.

Algorithm 1: Decoding Algorithm.
// Input code word flits
Input: Fi = {bi0, . . . b

i
N−1, p}

// Input code word flits from the shadow FIFO
Input: F ′i = {b′i0 , . . . b′iN−1, p

′}
// Output code word flits
Output: oFi

// Output packet/group of flits
Output: oFi

// Output ARQ
Output: ARQ

// Calculate the parity check of both flits
1 SEUF = bi0 ⊕ · · · ⊕ biN−1 ⊕ p

2 SEU ′F = b′i0 ⊕ · · · ⊕ b′iN−1 ⊕ p′

// Correct SEUs by using RFF-w-P
3 if (SEUF == 0) then

// The original code word is correct
4 oFi = Fi

5 else if (SEU ′F == 0) then
// The shadow code word is correct

6 oFi = F ′i
7 else

// both data is incorrect
8 if (ARQ == True) then
9 ARQ = False; /* Already do ARQ */

10 oFi = Fi;
11 oSEUF = 1;
12 else
13 ARQ = True;
14 oSEUF = 0;

15 if (RX = True) then
// Forward Error Correction Code using PPC

16 call FEC();
17 else
18 return oFi;



To correct the even number of fault case, the system has
two options: (i) Full ARQ, and (ii) Selective ARQ. A full
ARQ demands a replica of the whole trunk of flit (or packet)
while the selective one only request the corrupted one. Based
on two cases, there are two options: (i) column (or flit-index)
ARQ and (ii) row (bit-index) ARQ. The column ARQ is a
conventional method where the failed flit index is sent to TX.
For the row ARQ, the bit index is sent instead. For instance if
b21 and b22 is flipped leading to undetected SEU in F2. At the
SEUP , the receiver find out that index 1 and 2 having flipped
bit; therefore, we can use the ARQs to demand those flits:

FARQ1
=


b01
b11
. . .
pb1


and

FARQ2
=


b02
b12
. . .
pb2


In this work, we assume that the maximum flipped bit in a

flit is two. There, the decoder aim to mainly use row ARQs
because it cannot find out which flit has two flipped bit. The
FEC and selective ARQ algorithm is illustrated in Algorithm 2.

Algorithm 2: Forward Error Correction and Selective
ARQ Algorithm.
// Input code word flits
Input: Fi = {bi0, . . . b

i
N−1, p}

// Output code word flits
Output: oFi

// Output ARQ
Output: ARQ

1 if i == 0 then
2 SEUP = Fi;
3 regSEUF = SEUF

4 else if i < M − 1 then
5 SEUP = SEUP ⊕ Fi;
6 regSEUF = {regSEUF , SEUF };
7 else
8 if no or single SEU then
9 P = Mask (Fi, SEUP , regSEUF );

10 return P;
11 else
12 ARQ = SEUP ;

// receive new flits (i ≥ N) and write in row
indexes

13 Fi=0,...,N−1 = write row (SEUP , F(i≥N))

IV. PROPOSED ARCHITECTURE

This section presents the architecture to perform the PPC
scheme. We first present the Razor Flip-flop with parity bit
which could help reduce the ARQ stage. Then, the architec-
ture of encoding and decoding scheme is presented. Further
enhancements are presented in last two sub-sections.

A. Razor flip-flop with Parity

To help reduce ARQ, we use Razor FF [12] for minoring
the register with a parity bit as in Figure 3. Furthermore, we

Fig. 3. RFF-w-P: Razor Flip-flop with Parity Check.

add circuit for detecting and correcting SEU. The shadow
flip-flop samples data using a delay clock s clk which is a
generated clock from the system one (clk) with a small delay.
The output of these flip-flops is checked using a parity check
module (PAR). If only one of them fails the parity check,
the other is used. If both original data and shadow data are
failed (SEUF = 1), a ARQ signal or FEC will be used. In
the next retransmission of ARQ, if both registers repeat the
same failure meaning that the sender’s data may be corrupted,
the FEC process is used. In this fashion, instead of keeping
ARQ, it forward to the RX. The silent or uncorrectable faults
are corrected later using the transposable selective ARQ (see
Section III-D).

A single transient fault could be easily corrected using this
method. Therefore, the HARQ process is removed which help
reduce one clock cycle in the transmission process.

B. Encoding and Decoding Scheme

Figure 4 shows the architecture for the PPC encoding and
decoding scheme. In the encoder’s side, the FIFO receives data
until being full. Then, the encoder transmits data through the
channel with a parity bit (p) which is obtained from the ‘FLIT
PAR’ module. On the other hand, each flit is also brought into
a packet parity encoder (PACK. PAR) to obtain the parity flit
(FP ). This parity check flit is transmitted at the end of the
packet.

At each hop of the communication, parity check of each flit
is performed by the RFF-w-P module. If there is a flipped bit,
this module can correct using a shadow clock or ARQ.

When a flit arrives the decoder, it is checked and corrected
by RFF-w-P first. Once this flit is done, it is pushed into the
FIFO and the ‘PACK. PAR’ module. After completing the
parity value of a packet, it was sent to the controller to handle
the masking process. The masking process can correct a single
flipped bit; therefor, selective ARQ is used once there are two
faults are detected. As we previously assume, when there are
two faults in a flit, the SEUP value can indicate the bit-indexes
of the faults. This value will be sent back to the encoder in
order to retransmit the data belonging those indexes.

Note that we can implement PPC with or without RFF-w-P.
In this case, retransmissions are required if the decoder detects
data corruptions.



Fig. 4. PPC scheme: Parity Product Code for soft error correction.

C. Transposable FIFO

To support reading and writing in both column and row (as
bit-index and flit-index ARQ), we use a transposable FIFO (T-
FIFO) architecture. Besides the normal jobs of a FIFO, it also
allows reading and writing by a column or row addresses. For a
bigger size, RAM-based FIFO may be utilized. A transposable
SRAM could be use [14] with 8 transistors instead of 6 as in
the traditional ones. In this work, we use a DFF-based T-FIFO.

D. Additional modes of PPC

Depend on the fault rate situation, the system can adapt the
coding scheme to reduced the latency and redundant bits. This
part present additional modes of PPC.

1) Adaptive FP issue: If the error rate are low enough,
PPC can perform optional parity flit (FP ). In this case, each
intermediate node (i.e. router in a network-on-chip) will check
the parity of each flit as usual using Parity check or RFF-w-P.
If the parity check fails, it first try to correct using RFF-w-
P or HARQ. If both techniques cannot correct the fault, the
node will send to TX (sending terminal) a signal to request
the parity flit FP . The parity flit is issued for each M flits
as usual. If there is no fail in the parity check process, the
parity flit could be removed from the transmission. This mode
is only efficient for low error rates which have one flipped bit
per packet.

2) go-back M flits: Moreover, we can extend further with
a go-back retransmission instead of transposable ARQ. As-
suming the maximum number of cache-able flits is K. Since
FP can be responsible M > K flits, the correction by
PPC is impractical and the system need a go-back M flits
retransmission. By adjusting the M value, the system can
switch between go-back M -flits and PPC correction. This
could be applied for low error rate cases to omit the correction
process.

V. EVALUATION

A. Methodology

The architecture is designed in Verilog HDL and synthe-
sized using NANGATE 45 nm library using EDA tools by
Synopsys. Because of the fault assumption (one/two faults
per a group of flits), we compare the architecture to HM,
SECDED, and PAR+ARQ (parity check with ARQ) which
are common soft error correction methods.

B. Coding performance

Figure 5 shows the coding rate of PPC and others without
ARQ. Coding rate is to present the ratio of useful bit in
total transmitting bit. The coding rate of PPC is obtained as
[NM ]/[(N +1)(M +1)] (N: flit’s width, M: packet’s length).
As we can observe in this figure, PPCs with M > 10 have
better coding rates than both HM and SECDED with less than
30 data bitwidth. For larger numbers of data bit-width (60+),
HM and SECDED gain their coding rates due to the fact that
the parity check flit FP heavily impact the overall rate. Also,
smaller M values also degrade the coding rate significantly.
On the other hand, Parity code outperforms the others due to
the fact it only needs one extra bit. The major drawback of
Parity is it only detect without correct faults.

P0,n = (1− ε)n (4)
P1,n = n ∗ ε ∗ (1− ε)n (5)

Moreover, Figure 6 shows the evaluation with two different
bit error rates (10−3 and 10−4). This evaluation is based
on Eq. 4 where epsilon is the bit error rate, Pi,n is the
probability of having i fault in n bits. Here, we assume bit
error probability in independent. Note that we only calculate
for zero and one fault to investigate the efficiency of adaptive
parity flit FP . For PAR, HM, and SECED, n is data’s bit-
width while for PPC, we use n as data’s bit-width multiply
by number of flits per packet (M ). In this evaluation, PPC
with adaptive FP can reach the coding rate of Parity in small



0 20 40 60 80 100 120
Data's Width (N bit)

0.5

0.6

0.7

0.8

0.9

1.0

C
od

in
g 
R
at
e

PPC(M=4)
PPC(M=8)
PPC(M=12)
PPC(M=16)

PPC(M=20)
Parity
Hamming
SECDED

Fig. 5. Coding rates of PPC.

data widths or error rates. Once the probability of fault is
increased, the PPC’s coding rate is reduced rapidly to lower
both Hamming and SECDED. On the other hand, PAR+ARQ
has lower coding rate than ARQ (no-fault) and ARQ+RFF-w-
P. Also, at lower error rate, PPC with adaptive FP has coding
rates closing to PAR+ARQ and outperforms both SECDED
and HM.

C. Fault detection for packet

This section investigate the fault detection ability of PPC for
a packet. This could help the system understand the channel’s
quality and go-back-M flits protocol. In order to study the
detection ability for a packet, we perform a 10,000 cases
Monte-Carlo simulation represented in Fig. 7. Monte-Carlo
simulation is performed by randomizing the fault position in
the channel and calculating the averaged value of the results.
Here, we define a packet is faulty by having 2+ faults on either
column or row check.

With PPC (N=2, M=2), the results show that the average
number of detected faults is 3.6370. However, the in-depth
analysis using Monte-Carlo simulation also points out that
only 56.69% and 36.05% of 3-faults and 5-faults cases,
respectively, were detected. In fact, the results show that more
than 99% of 4+ fault patterns have been detected. The three
faults pattern detection rates of 4× 4, 8× 8 and 16× 16 are
82.39%, 93.91% and 98.14%, respectively.

With ability to detect multiple faults, the decoder can
either choose to perform the selective or the whole packet
retransmission.

D. Implementation results

In order to understand the hardware complexity of the pro-
posed model and the other coding techniques, we implemented
them with 32 data bit-width. Table I presents in details the
hardware cost of PPC’s parity modules and the sub-modules.
We use NANGATE 45 nm library and set the frequency as
500MHz for the power estimation. Maximum frequencies are
investigated separately.

As we can observe, the area cost of the PPC’s encoder and
decoder are less than 18% of the TX and RX in both area and

power consumption. Most of the cost consumption belong to
the memory-based module. For instance, FIFO occupies 60.2%
and 45.2% of TX’s and RX’s area cost and RFF-w-P occupies
20.5% and 25.5% of RX’s area cost and power. Although its
complexity of encoder and decoder seem higher than other,
the area cost of the FIFO in the intermediate nodes can be
reduced thanks to the smaller bitwidth.

In comparison to three common coding techniques (Parity,
Hamming and SECDED). The encoder and decoder of PPC
both cost more area and power. This is because the codec
requires register for calculating the SEUP .

Design of T-FIFO also has smaller area overhead in com-
parison to the normal FIFO. With 33 data bitwidth, T-FIFO
increases the area and power by 2.7% and 6.8%, respectively.
This area is total reasonable as it provides the ability to
read/write in both column/row.

E. Comparison

1) Razor register with parity: Table II presents the hard-
ware cost of the RFF-w-P in comparison to a normal register.
As can be seen, the area costs are nearly 3.4× the normal
register’s because it needs to double the register and use
two parity check module. Moreover, thank to its resilience
to transient faults, it can help reduce one clock cycle for the
retransmission. In comparison, RFF-w-P demands less area
cost (1.41×) than SECDED’s decoder with normal registers
(2.05×) while providing one-bit correction. Also, power con-
sumption of RFF-w-P is higher because it use double registers.
However, SECDED uses extra bit (i.e. 40 instead of 33),
therefore the area and power overhead of the its system could
be higher.

2) Hardware complexity: Figure 8 and 9 show the hardware
complexity for the transmitter (TX), receiver (RX) and FIFO
area. Beside Hamming, SECDED, Parity (PAR) and PPC,
we also consider the RFF-w-P as an option to study the
complexity of these configurations.

The area cost of PPC’s TX and RX are both higher than
Parity, Hamming and SECDED. This is due to the encoding
and decoding process of PPC both need registers. The design
of T-FIFO is also slightly complicated than normal FIFO with
less than 7% overheads in terms of area and power.

Considering the FIFO’s area of the intermediate node in on-
chip communications, the FIFO of PPC and PAR (no RFF-w-
P) cost less area cost than SECDED and Hamming. The 16-bit
version of on-chip communication parts using PPC and PAR
without using RFF-w-P costs 14.04% and 17.65% less than
Hamming and SECDED, respectively. This is due to more
bitwidth in Hamming and SECDED (20 and 21 bit instead of
17 bit).

To provide more protection, RFF-w-P could be implemented
with extra hardware cost. With 16, 32 and 64 data width-bit,
FIFO with RFF-w-P (in PPC+RFF-w-P and PAR+RFF-w-P)
are 50.15%, 53.28%, and 55.20% larger than normal FIFO,
respectively. The area cost of PPC’s TX is increased by less
than 30% to be able to has RFF-w-P. Note that RFF-w-P works



0 20 40 60 80 100 120
Data's Width (N bit)

0.5

0.6

0.7

0.8

0.9

1.0

C
od

in
g 
R
at
e

(a) Bit error rate: 10−3.

PPC(M=4)
PPC(M=4) adaptive FP

PAR+ARQ

PAR+RFF-w-P
Hamming
SECDED

0 20 40 60 80 100 120
Data's Width (N bit)

0.5

0.6

0.7

0.8

0.9

1.0

C
od

in
g 
R
at
e

(b) Bit error rate: 10−4.

PPC(M=4)
PPC(M=4) adaptive FP

PAR+ARQ

PAR+RFF-w-P
Hamming
SECDED

Fig. 6. Coding rates evaluation with different bit error rates.

TABLE I
HARDWARE COMPLEXITY RESULTS OF PPC AND OTHER METHODS WITH 32-BITWIDTH.

Design Module Sub-module Area (µm2) (%) Power (µW ) (%) Max Freq. (MHz)
Parity-based 33-bit, 4-slots 1111.8800 562.4571 -

Intermediate node’s FIFO Hamming-based 39-bit, 4-slots 1300.2080 664.5005 -
SECDED-based 40-bit, 4-slots 1331.3300 683.0590 -

Hamming Encoder 94.1640 68.8886 2,570.69
Decoder 234.8780 206.0509 1,369.86

SECDED Encoder 111.7200 82.3979 2,564.10
Decoder 253.7640 206.3793 1,250.00

PARITY
Encoder 49.4760 49.3382 2,666.67
Decoder 51.0720 52.4233 2,380.95

PPC

TX

Total 1827.9520 (100) 823.2660 (100) 1,273.88
Controller 322.9240 (17.7) 167.7900 (20.4) -
Encoder 359.1000 (19.6) 123.1230 (15) -
T-FIFO (32-bit) 1100.7080 (60.2) 529.6990 (64.3) -

RX

Total 2528.3301 (100) 1.220 ×103 (100) 1,270.64
Controller 467.6280 (18.5) 194.7110 (16) -
Mask 78.2040 (3.1) 4.0350 (0.3) -
Decoder 280.8960 (11.1) 167.4860 (13.7)
T-FIFO (33-bit) 1142.2040 (45.2) 600.7490 (42.3) -
RFF-w-P 517.1040 (20.5) 310.3160 (25.5) -

M=2, N=2 M=4, N=4 M=8, N=8 M=16, N=16
Data's Width (bit)

0

20

40

60

80

100

D
et
ec
tio
n 
R
at
e 
(%

)

2 faults
3 faults

4 faults 5 faults 6 faults

0

50

100

150

200

250

D
et
ec
te
d 
Fa

ul
ts

Number detected faults (average) 

Fig. 7. Fault detection ability for packet of PPC.

TABLE II
HARDWARE COMPLEXITY OF RFF-W-P IN COMPARISON TO NORMAL

REGISTERS.

Normal register RFF-w-P (vs normal register)
N Power (µW ) Area (µm2) Power (µW ) Area (µm2)
17 64.425 90.4400 154.0858 (2.39) 304.5700 (3.37)
33 123.8534 175.5600 298.318 (2.41) 592.3820 (3.37)
65 245.2194 345.8000 587.9642 (2.40) 1169.0700 (3.38)

as a pre-stage of FIFO therefore the area cost could be reduced
by integrating RFF-w-P to the FIFO.

VI. CONCLUSION

In this paper, we adopt PPC as an error correction code and
its hardware extensions for detecting and correcting soft errors
in on-chip communications. We further Razor flip-flop with
Parity to help detect and correct soft errors. A transposable
FIFO is also presented to help the system retransmission by



16 32 64
Data's Width (bit)

0

1000

2000

3000

4000

Ar
ea

 C
os

t (
ga

te
 c

ou
nt

)

(a) Area of Transmitter.

Hamming
SECDED

PAR
PAR+RFF_w_P

PPC
PPC+RFF_w_P

16 32 64
Data's Width (bit)

0

1000

2000

3000

4000

5000

6000

Ar
ea

 C
os

t (
ga

te
 c

ou
nt

)

(a) Area of Receiver.

Fig. 8. Hardware complexity result in equivalent NAND2x1 gate counts.

16 32 64
Data's Width (bit)

0

500

1000

1500

2000

2500

3000

3500

4000

Ar
ea

 C
os

t (
ga

te
 c

ou
nt

)

Hamming
SECDED

PAR/PPC
PAR/PPC+RFF-w-P

Fig. 9. FIFO complexity result in equivalent NAND2x1 gate counts.

both row and column indexes. Adaptive mechanism for low
error rate can help increase the coding rate of the system.
Although they significantly increase the area cost, they provide
one bit detect and protection with only need to check the parity
of the data. The coding rate is also promising with better than
Hamming and SECDED with large packet sizes or in low error
rates. Also, PPC can detect more faults to be about to inform
the system.

In the future, the design of PPC and Razor flip-flop with
Parity could be implemented in a specific Network-on-Chip
to investigate the impacts on the performance. Because this
method is based on Parity check, RFF-w-P could be combined
with Hamming or SECDED to obtain a stronger protection.

ACKNOWLEDGMENT

The work is supported by University of Engineering and
Technology, Vietnam National University, Hanoi under the

project CN18.10.

REFERENCES

[1] R. C. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” IEEE Transactions on Device and materials reliability,
vol. 5, no. 3, pp. 305–316, 2005.

[2] N. Seifert, B. Gill, K. Foley, and P. Relangi, “Multi-cell upset prob-
abilities of 45nm high-k + metal gate sram devices in terrestrial and
space environments,” in 2008 IEEE International Reliability Physics
Symposium, April 2008, pp. 181–186.

[3] R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs
Tech. J., vol. 29, no. 2, pp. 147–160, 1950.

[4] M.-Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-
DED codes,” IBM J. Res. Dev., vol. 14, no. 4, pp. 395–401, 1970.

[5] L.-J. Saiz-Adalid et al., “MCU tolerance in SRAMs through low-
redundancy triple adjacent error correction,” IEEE Trans. VLSI Syst.,
vol. 23, no. 10, pp. 2332–2336, 2015.

[6] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,”
Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[7] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their
applications. John Wiley & Sons, 1999.

[8] I. S. Reed and X. Chen, Error-control coding for data networks.
Springer Science & Business Media, 2012, vol. 508.

[9] F. Chiaraluce and R. Garello, “Extended Hamming product codes
analytical performance evaluation for low error rate applications,” IEEE
Trans. Wireless Commun., vol. 3, no. 6, pp. 2353–2361, 2004.

[10] L. L. Peterson and B. S. Davie, Computer networks: a systems approach.
Elsevier, 2007.

[11] K. N. Dang et al., “Soft-error resilient 3d network-on-chip router,” in
2015 IEEE 7th International Conference on Awareness Science and
Technology (iCAST), Sept 2015, pp. 84–90.

[12] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level
timing speculation,” in Proceedings of the 36th annual IEEE/ACM In-
ternational Symposium on Microarchitecture. IEEE Computer Society,
2003, p. 7.

[13] R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, 1998.

[14] J.-s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye,
B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha et al., “A 45nm cmos
neuromorphic chip with a scalable architecture for learning in networks
of spiking neurons,” in Custom Integrated Circuits Conference (CICC),
2011 IEEE. IEEE, 2011, pp. 1–4.


