
1

VTSE – Verification Tool based on Symbolic Execution

Nguyen Thi Van Anh*, Nguyen Thi Thuy, To Van Khanh*

Faculty of Information Technology,

University of Engineering and Technology,

Vietnam National University, Hanoi, Vietnam

Abstract

This paper gives an overview of modern symbolic execution techniques and presents a tool VTSE (Verification

Tool based on Symbolic Execution) which allows users to verify some properties of C/C++ program based on

symbolic execution technique. As two inputs including program’s source code and user’s assertion, VTSE

reports whether user’s assertion are always satisfied with the program. Results of experiments performed on two

sets of benchmark which are Floats-cdfpl (SV-COMP) and Kratos (FBK-IRST) are relatively positive. As for the

former, VTSE has a greater advantage in solving speed although not all the problems are solved. Moreover,

VTSE is also able to verify problems in Kratos benchmark which have a large number lines of code with about

500 – 2000 LOC.

Keywords: Software verification, symbolic execution.

1. Introduction
*

Recent years, in response to the constantly

changing technological environment, software

quality assurance has evolved significantly and

has become increasingly important, especially

with classified safety- or business-critical

software. In contrast of software testing which

subjects the program to a series of tests with the

intent of detecting potential software bugs,

software verification ensure the safety of the

whole software system. With the increasing

complexity of system applications, using

traditional technique likes model checking may

easily lead to state space explosion even with

SAT and SMT solvers scaling over the years

[1].

This paper introduces the novel approach

using Symbolic Execution [2] to verify some

*
Corresponding authors. E-mail: vananhnt97@gmail.com,

khanhtv@vnu.edu.vn

properties of C/C++ program. This method

includes symbolizing programming source code

into a first-order logic formula then

incorporating with user’s assertion to enter a

SMT solver. A tool using the earlier technique

is also presented – VTSE (Verification Tool

using Symbolic Execution). VTSE has some

applications in verifying C/C++ programs such

as checking the return value of a program,

verifying the pre-condition is sastified with the

post-condition, verifying assertions provided by

users or finding unreachable code.

Experiments are performed and compared

to some well-known verifiers on two sets of

benchmark which are Floats-cdfpl [3] and

Kratos[4], which are used in SV-COMP 2017

and many other research publications.

The rest of this paperis organized as

follows. Section 2 provides the background

knowledge of this study. The architecture of

VTSE is illustrated in section 3. Section 4

2

describes the architecture and implemented

technique of some related works. Experimental

results are discussed in section 5. Finally,

section 6 concludes this paper.

2. Background

2.1. Symbolic Execution

Symbolic execution is a program analysis

technique mostly used to automate software

testing and software verification. The key idea

of the technique is to use symbolic values as

input instead of concrete data. It computes the

result of program execution on symbolic states,

which map variables to symbolic expressions.

In concrete execution, a program is run on a

specific input and a single control flow path is

explored. Therefore, concrete execution in some

cases can only under-approximate the analysis

of the interested properties. On the contrary,

symbolic execution simultaneously explore

paths of the program under multiple inputs [5].

Symbolic execution can be divided into

two approaches: dynamic symbolic execution

(DSE) for testing and static symbolic execution

(SSE) for verification. Dynamic approaches

work by generating formula for certain path to

test specific execution paths, while static

approaches generates formulas over entire

programs to verifying overall safety. Unlike

DSE, SSE does not suffer from path explosion.

All paths are encoded in a single formula that is

then passed to the solver. In the end, a SMT

solver (Satisfiability Modulo Theories solver) is

used to generate test inputs or check whether

there are any violations of the property on the

execution paths.

2.2. Propositional logic

Propositional logicis a branch of

mathematical logic which studies the logical

relationships between propositions. A

proposition P is a collection of atoms or atomic

formulas Pi. Each Pi has a truth value, which

can be either True or False but never both.

An important form of proposition is conjunctive

normal form. A compound statement is in

conjunctive normal form if it is obtained by

operating AND among variables (negation of

variables included) connected with ORs

(� ∨ ¬�) ∧ (¬� ∨ �) ∧ (¬	 ∨ �)

2.3. First-order logic

While propositional logic deals with

simple declarative propositions, first-order logic

additionally covers predicates and

quantification. A predicate can be either True or

False. Relationships between predicates can be

stated using logical connectives (∧ for

conjunction, ∨ for disjunction, → for

implication, ↔ for biconditional, ¬ for

negation). Quantifiers (∀ for universal

quantifier and ∃ for existential quantifier) can

be applied to variables in a formula.

(� ∨ ¬�) → (¬� ∨ �)

2.4. Satisfiability Modulo Theories and SMT

solver

Satisfiability Modulo Theories (SMT)

refers to the problem of determining whether a

first-order formula is satisfiable with respect to

some logical theory. There are now several

powerful and sophisticated SMT solvers (e.g.,

Boolector [6], MathSAT5 [7] and Z3 [8]) which

are being used in a rapidly expanding set of

applications. Application areas currently

include verification, equivalence checking,

bounded and unbounded model checking,

automated test case generation, … In the

presented tool – VTSE, the SMT solvers are

incorporated includes Z3 [8] and raSat [9].

3.VTSE Architecture

VTSE takes two inputs which are the

program’s source code and an assertion

provided by user. Its output is a report on

whether the user’s assertion is satisfied.

After collecting the source code, VTSE

symbolizes it using symbolic execution through

a sequence of steps including generating

abstract syntax tree, building control flow

graph, unwinding loops in the graph, then

indexing variables in code to create a metaSMT

formula which later will be transformed into a

first-order logic formula. Finally, VTSE

combines the source code’s abstraction formula

with user’s assertion and enter the final formula

into a SMT solver. Two candidate SMT solvers

are Z3 and raSat.

Figure 1: VTSE Architecture

3.1. Abstract Syntax Tree

Abstract syntax tree [10] in Computer

Science is a tree representation of the abstract

syntax structure of source code with each node

of the tree is a construct occurring in the source.

Abstract syntax tree usually is the result of

parser after translation and compiling.

VTSE, CDT (C/C++ Development Tool)

used to parse C/C++ source code to abstract

syntax tree.

3.2.Control Flow Graph

Control Flow Graph in VTSE is a

way directed graph including a collect

nodes, each node represents a component in the

source code. Node types in CFG are the

following:

abstract syntax tree, building control flow

graph, unwinding loops in the graph, then

indexing variables in code to create a metaSMT

formula which later will be transformed into a

c formula. Finally, VTSE

combines the source code’s abstraction formula

with user’s assertion and enter the final formula

into a SMT solver. Two candidate SMT solvers

: VTSE Architecture

in Computer

Science is a tree representation of the abstract

syntax structure of source code with each node

of the tree is a construct occurring in the source.

is the result of

parser after translation and compiling. In

CDT (C/C++ Development Tool) is

used to parse C/C++ source code to abstract

Control Flow Graph in VTSE is an one

way directed graph including a collection of

nodes, each node represents a component in the

source code. Node types in CFG are the

Plain node represents a simple statement in

source code like assignment, initialization,

return statement.

Decision node contains condition in if

while-do, or do-while statement.

Iteration node contains an iterative

statement and marks the appearance of the loop

statement.

Mark node does not attach a statement but

is used to set certain flags in the program such

as if-else block beginning, if-else b

Building the Control Flow Graph

Control flow graph is derived from abstract

syntax tree of a function by iterating through

tree.

For compound statement, algorithm creates

a linked list of nodes corresponding with each

statement in the compound.

For branch (if-else, switch-case) statement

a begin node is created to mark the beginning of

if-else block of graph, then points to a

DecisionNode with 2 outer links: one points to

then block, one points to else block.

For loop (for, while-do, do-

node is created to mark the beginning of block

of graph representing loop statement. After that,

the begin node points to a DecisionNode with 2

outer links: one points to “then” block, one

points to IterationNode - a node including the

iteration statement.

Figure 2: Branch and loop CFG

For function call, the algorithm creates a

node including the parameters of the called

function

For go-to statement, a GotoNode is linked to

a corresponding LabelNode.

3

represents a simple statement in

source code like assignment, initialization,

contains condition in if-else,

contains an iterative

statement and marks the appearance of the loop

does not attach a statement but

is used to set certain flags in the program such

else block ending.

raph

Control flow graph is derived from abstract

syntax tree of a function by iterating through

, algorithm creates

a linked list of nodes corresponding with each

case) statement,

a begin node is created to mark the beginning of

else block of graph, then points to a

uter links: one points to

block.

-while), a begin

node is created to mark the beginning of block

of graph representing loop statement. After that,

the begin node points to a DecisionNode with 2

outer links: one points to “then” block, one

a node including the

: Branch and loop CFG

, the algorithm creates a

node including the parameters of the called

, a GotoNode is linked to

4

Figure 3: Function call and Goto CFG

3.3.Unwinding loops in Control Flow Graph

To remove loops in control flow graph,

iterating from start to end of graph, if

BeginForNode or BeginWhileNode is caught,

loop is unwinded into a certain number of if

else statement.

Figure 4: Unwind loops in CFG

If catching jump statement when iterating

through graph, a new branch is replicated and

linked to GotoNode.

Figure 5: Handle jump statements in CFG

: Function call and Goto CFG

loops in Control Flow Graph

To remove loops in control flow graph,

iterating from start to end of graph, if

BeginForNode or BeginWhileNode is caught,

loop is unwinded into a certain number of if-

: Unwind loops in CFG

If catching jump statement when iterating

through graph, a new branch is replicated and

: Handle jump statements in CFG

3.4. Indexing

Because the input of SMT solver Z3

consists of first-order logic formula, a variable

in Z3 can only be constant, not symbolic value.

Therefore, to represent the change of variable’s

value, indexing is used to store all of variable

states in program execution process.The initial

index of a variable is -1. Each times variable’s

value is updated, its index is incremented.

Syncing indexes

A problem emerges when indexing is the

uneven of variable’s index in branching

statement. To solve this, indexes in t

branches of condition statement are synced

using the below algorithm.

Syncing Indexes Algorithm in VTSE

Input: ConditionNode , Then - VarList, Else

-VarList

Output: The SyncVarList

1for (with variable in the list)

2 i1 := index of v when variable

in thenClause

3 i2 := index of v when variable is indexing

in elseClause

4if (i1< i2)

5 Initialize SyncNode v_ i2

6 push SyncNode on the then clause

7 Set the index value of the last

variable in the ConditionNode is i

8else if (i2< i1)

9 Initialize SyncNode v_ i1

10 push SyncNode on the else clause

11 Set the index value of the last

variable in the ConditionNode is i

3.5. Generate first-order logic constraint

formula

Constraint formula is build following SMT

solver’s input format, as for Z3, the format is

SMT-libv2. Each statement in source code is

transformed into a first-order logic formula

sub-formula. The constraint

program is a conjunction of all sub

Because the input of SMT solver Z3

order logic formula, a variable

in Z3 can only be constant, not symbolic value.

Therefore, to represent the change of variable’s

value, indexing is used to store all of variable

xecution process.The initial

1. Each times variable’s

value is updated, its index is incremented.

A problem emerges when indexing is the

uneven of variable’s index in branching

statement. To solve this, indexes in two

branches of condition statement are synced

Syncing Indexes Algorithm in VTSE

VarList, Else

:= index of v when variable is indexing

:= index of v when variable is indexing

2 = v_ i1

push SyncNode on the then clause

Set the index value of the last

variable in the ConditionNode is i2

1 = v_ i2

push SyncNode on the else clause

Set the index value of the last

variable in the ConditionNode is i1

order logic constraint

Constraint formula is build following SMT

nput format, as for Z3, the format is

libv2. Each statement in source code is

order logic formula – a

constraint of the whole

program is a conjunction of all sub-formulas.

5

3.6. Incorporate with user’s assertion to

compute result through SMT solver

Let assume Fabstraction is the constraint

formula created in the previous step, Fassertion is

the assertion provided by the user.

Ffinal = Fabsrtaction ^ ¬ -Fassertion

Ffinal is the final input of SMT solver. The

result is either SAT or UNSAT.

If the result is SAT (satisfaction): A set of

values exists to satisfy Ffinal. In this case, the

tool will inform users the result is unsafe, the

assertion is violated and a counter example is

provided.

If the result is UNSAT (unsatisfaction):

Not exists any values to satisfy Ffinal. In this

case, the result is safe, which means user’s

assertion is always true.

4. Related work

During the last decades, there are several

tools designed to assure quality of programs by

testing or verification such as KLEE [11],

CBMC [12], 2LS [13]. Among them, KLEE is a

symbolic execution tool which has been widely

used in software testing in both academic and

industry sides, while CBMC and 2LS are

verification tools which are both holding high

ranking in SV-COMP [14]. SV-COMP is an

annual thorough comparative evaluation of

fully-automatic software verifiers. Each

verification task in the competition belongs in a

certain category and consists of a C program

and a property (reachability, memory safety,

termination). SV-COMP 2017 had 32

participating verification systems from 12

countries.

4.1. KLEE

KLEE [11] is a symbolic execution tool

that is capable of automatically generating tests

that achieve high coverage on a diverse set of

complex and environmentally-intensive

programs. When KLEE runs the program, it

tries to explore every possible path. This is

done by executing the program symbolically,

i.e. tracking all constraints on inputs marked

symbolic as each instruction is reached.

The queries issued by KLEE are branch

and counter example queries. The former are

issued when a branch is reached to decide

whether then, else or both sides of the branch

are followed. Counterexample queries are used

to request a solution for the current path, e.g.

when KLEE needs to generate a test case at the

end of a path.

Figure 6: Solver passes in KLEE [11]

Before the metaSMT formula is created and

entered a SMT/SAT solver, KLEE performs a

series of constraint solving optimizations

structured as a sequence of solver passes. The

first pass in KLEE is the elimination of

redundant constraints, which is called constraint

independence. The other solver passes are

concerned with caching. The branch cache

stores the result of branch queries. The

counterexample cache remembers constraint

sets and their counterexamples if the set is

satisfiable or a sentinel if the set is

unsatisfiable.

Finally, when a path ends or an error is

discovered, one can take all the constraints

gathered along that path and ask the constraint

solver for a concrete solution representing a test

case that exercises the path. These test cases can

be used to form high-coverage test suites, as

well as to generate bug reports.

4.2. CBMC

CBMC (C Bounded Model Checking) [12]

is a tool for the formal verification of ANSI-C

programs using Bounded Model Checking. The

tool supports almost all ANSI-C features

6

including pointer constructs, dynamic memory

allocation, recursion, and float and double data

types.

Figure 7: Architecture of CBMC

In CBMC, the source code is symbolized into

bit vector equations. The process has five steps:

- The source code is preprocessed.

- Loop constructs can be expressed using while

statement, recursive function calls and goto

statements. The while loops are un

duplicating the loop body n times. After that,

a unwinding assertion is added that assures

that the program never requires more

iterations.

- Loop in goto is un-winded using similar way

- Function calls are expanded.

- The program is transform into static single

assignment (SSA) form. The procedure

produces two bit-vector equations: C (for the

constraints) and P (for the property). In order

to check the property, CBMC converts C

into CNF.

- The property checking requires back end

solvers.

In SV-COMP, CBMC took first place in 2015,

third place in 2016 and 2017 in floats

category.

4.3. 2LS

2LS [13] is a static analysis and

verification tool for C programs

perform verification and refutation of assertions

using an algorithm called kIkI (k-invariants and

k-induction) [15] which combines bounded

model checking, k-induction and invariant

generation.

2LS performs the following main steps

which are outlined in Figure 2.

including pointer constructs, dynamic memory

allocation, recursion, and float and double data

 [12]

In CBMC, the source code is symbolized into

bit vector equations. The process has five steps:

Loop constructs can be expressed using while

ive function calls and goto

statements. The while loops are un-winded by

duplicating the loop body n times. After that,

a unwinding assertion is added that assures

that the program never requires more

winded using similar way.

The program is transform into static single

assignment (SSA) form. The procedure

vector equations: C (for the

constraints) and P (for the property). In order

to check the property, CBMC converts C ∧¬P

The property checking requires back end

COMP, CBMC took first place in 2015,

third place in 2016 and 2017 in floats-cdfpl

is a static analysis and

verification tool for C programs that can

perform verification and refutation of assertions

invariants and

which combines bounded

induction and invariant

wing main steps

Figure 8: Architecture of 2LS

Front end. The command line front end

provides user with possible options and

parameters, such as the bit-width. The

utilizes an C preprocessor (such as gcc) and

parses a syntax tree from the source code. 2LS

uses GOTO programs as an intermediate

representation then as in CBMC, performs a

light-weight static analysis resulting in a static

call graph.

Middle end. The result of the static analysis is a

static single assignment (SSA) form.

Subsequently, 2LS refines this over

approximation by computing invariants.

Backend. Similar to CBMC, the SSA equation

is translated into a CNF formula then a SAT

solver is used for property check.

check is satisfiable, a human

counterexample is provided. Conversely, if the

property check is unsatisfiable, the assertions

have been proven.

In SV-COMP, 2LS took first place in 2016

and fourth place in 2017 in floats

category.

5. Experimental results

The experiments are performed on a

machine with a 2.20 GHz 64 bit Quad Core

CPU Intel i5-5200U 2.2 GHz processor and

4GB of memory running Fedora 27. We set a

1500s timeout for the analysis of each subject.

Two sets of benchmark are Floats

Kratos [4]. Floats-cdfpl is a category of SV

COMP, including 40 verification tasks for

checking programs with floating

arithmetics. Kratos is a benchmark set provided

by FBK-IRST, each problem usually has ~500

2000 LOC, therefore making many tools run

: Architecture of 2LS [13]

. The command line front end

provides user with possible options and

width. The C parser

utilizes an C preprocessor (such as gcc) and

parses a syntax tree from the source code. 2LS

uses GOTO programs as an intermediate

CBMC, performs a

weight static analysis resulting in a static

The result of the static analysis is a

static single assignment (SSA) form.

Subsequently, 2LS refines this over-

approximation by computing invariants.

Similar to CBMC, the SSA equation

is translated into a CNF formula then a SAT

r property check. If a property

check is satisfiable, a human-readable

Conversely, if the

property check is unsatisfiable, the assertions

COMP, 2LS took first place in 2016

ats-cdfpl

The experiments are performed on a

machine with a 2.20 GHz 64 bit Quad Core

5200U 2.2 GHz processor and

4GB of memory running Fedora 27. We set a

1500s timeout for the analysis of each subject.

loats-cdfpl [3] and

cdfpl is a category of SV-

COMP, including 40 verification tasks for

checking programs with floating-point

mark set provided

IRST, each problem usually has ~500-

2000 LOC, therefore making many tools run

7

into path explosion problems. There are three

possible answers for each problem [14]:

Safe:The specification is satisfied (i.e.,

there is no path that violates the specification).

Unsafe: The specification is violated (i.e.,

there exists a path that violates the

specification) and a violation witness is

produced.

Timeout:The tool cannot decide the

problem or terminates by a tool crash, time-out,

or out-of-memory.

We compared VTSE with two C verifiers

competing in SV-COMP 2017: CBMC-5.8 and

2LS-0.5, in terms of the accuracy and solving

time.

Table 1 compares the performance of

VTSE, CBMC and 2LS on floats-cdfpl

benchmark. In term of the number of correct

results, VTSE is the only tool that cannot solve

all 40 problems with 9 problems from

newton_3_1_*_unreach_call to

newton_3_8_*_unreach_callare timeout.

However, in comparison of solving time, VTSE

has better performance in remaining 31

problems than both CBMC and 2LS when the

average time to solve those 31 problems of

VTSE, CBMC and 2LS are 0.136s, 202.061 and

61.289s respectively. The illustration of result

on floats-cdfpl benchmark is showed in Graph

1.

Graph 1: Comparison on Floats-cdfpl benchmark

Experiment on Kratos benchmark is

illustrated on Table 2 and Graph 2. The

comparison is set between VTSE and CBMC,

both are running default options and are fixed

on the number of unwind loops. When verifying

program with large lines of code, VTSE has a

general positive impact both on running times

and on the number of problems solved.

Graph 2: Comparison on Kratos benchmark

6. Conclusion

This paper describes a technique using

symbolic execution to apply in software

verification and presents a tool VTSE

(Verification Tool using Symbolic Execution)

which allows users to verify some properties of

C/C++ program using the proposed method.

VTSE has several applications such as checking

the return value of a program, verifying the pre-

condition is sastified with the post-condition,

verifying assertions provided by users or

finding unreachable code. To compare VTSE

with current C verifiers, experiments are

performed on two sets of benchmark which are

Floats-cdfpl (SV-COMP) and Kratos (FBK-

IRST). The results show VTSE can produce

answers in relatively fast solving time and also

handle programs with large number lines of

code.

In the future, the development of the study

will focus on constraint optimization and loop

invariant generation. We also aim to expand

the handling of other C language’s features

such as array, allocate memory, or pointer.

Acknowledgement

This work was supported by the research

project QG.16.32. We thank to Assoc. Dr.

Pham Ngoc Hung, University of Engineering

and Technologies, VNU Hanoi, for his value

comments.

8

Table 1: Verication results of Floats-cdfpl benchmark

ID Verification task LOC
VTSE CBMC 2LS

V Time V Time V Time

1 newton_1_1_true_unreach_call 48 S 0.032 S 330.324 S 26.052

2 newton_1_2_true_unreach_call 48 S 0.029 S 229.267 S 32.393

3 newton_1_3_true_unreach_call 48 S 0.019 S 493.696 S 28.681

4 newton_1_4_false_unreach_call 48 U 0.018 U 20.559 U 9.481

5 newton_1_5_false_unreach_call 48 U 0.024 U 17.465 U 16.517

6 newton_1_6_false_unreach_call 48 U 0.017 U 9.142 U 9.499

7 newton_1_7_false_unreach_call 48 U 0.027 U 6.162 U 3.602

8 newton_1_8_false_unreach_call 48 U 0.038 U 11.217 U 12.596

9 newton_2_1_true_unreach_call 48 S 0.56 S 273.607 S 123.449

10 newton_2_2_true_unreach_call 48 S 0.528 S 343.148 S 98.819

11 newton_2_3_true_unreach_call 48 S 0.541 S 412.942 S 83.836

12 newton_2_4_true_unreach_call 48 S 0.503 S 371.692 S 119.9

13 newton_2_5_true_unreach_call 48 S 0.515 S 747.501 S 193.09

14 newton_2_6_false_unreach_call 48 U 0.58 U 169.122 U 18.057

15 newton_2_7_false_unreach_call 48 U 0.518 U 171.063 U 10.827

16 newton_2_8_false_unreach_call 48 T 0.785 U 110.768 U 34.741

17 newton_3_1_true_unreach_call 48 T 1500 S 644.915 S 232.768

18 newton_3_2_true_unreach_call 48 T 1500 S 689.052 S 244.979

19 newton_3_3_true_unreach_call 48 T 1500 S 646.655 S 319.251

20 newton_3_4_true_unreach_call 48 T 1500 S 751.86 S 291.928

21 newton_3_5_true_unreach_call 48 T 1500 S 702.424 S 310.889

22 newton_3_6_false_unreach_call 48 T 1500 U 50.856 U 288.599

23 newton_3_7_false_unreach_call 48 T 1500 U 617.201 U 157.526

24 newton_3_8_false_unreach_call 48 T 1500 U 309.053 U 97.281

25 sine_1_false_unreach_call 32 U 0.021 U 1.484 U 1.783

26 sine_2_false_unreach_call 32 U 0.024 U 8.683 U 2.377

27 sine_3_false_unreach_call 32 U 0.024 U 6.171 U 1.985

28 sine_4_true_unreach_call 32 S 0.011 S 1249.95 S 70.837

29 sine_5_true_unreach_call 32 S 0.02 S 74.886 S 7.463

30 sine_6_true_unreach_call 32 S 0.02 S 31.956 S 6.343

31 sine_7_true_unreach_call 32 S 0.01 S 3.807 S 6.343

32 sine_8_true_unreach_call 32 S 0.02 S 214.917 S 4.808

33 square_1_false_unreach_call 33 U 0.012 U 3.268 U 4.923

34 square_2_false_unreach_call 33 U 0.012 U 3.162 U 2.749

35 square_3_false_unreach_call 33 U 0.022 U 27.049 U 2.779

36 square_4_true_unreach_call 33 S 0.02 S 275.889 S 714.668

37 square_5_true_unreach_call 33 S 0.012 S 334.017 S 10.394

9

38 square_6_true_unreach_call 33 S 0.011 S 203.2 S 234.158

39 square_7_true_unreach_call 33 S 0.01 S 216.98 S 38.928

40 square_8_true_unreach_call 33 S 0.02 S 1.568 S 2.635

 Total time (for 31 solved problems) 4.218 6263.894 1899.972

Average solving time (for 31 solved

problems)

 0.136 202.061 61.289

Table 2: Verication results of Kratos benchmark

I

D
Problems V LOC

3 loops 5 loops 10 loops

VTSE CBMC VTSE CBMC VTSE CBMC

1 pc_sfifo_1 S 360 S 0,15 S 0,1 S 3,5 S 2,571 S 8,7 S 44,27

2 pc_sfifo_2 S 465 S 0,04 S 0,1 S 1,9 S 5,298 S 3,5 S 84,18

3 token_ring_1 S 459 S 0,11 S 1,85 S 3,092 S 5,371 S 8,7 S 28,85

4 token_ring_2 S 582 S 0,11 S 1,16 S 5,321 S 4,934 S 80,5 S 212,9

5 token_ring_3 S 705 S 0,46 S 1,11 S 9,152 S 9,422 T 1500 O - -

6 token_ring_4 S 828 S 1,09 S 1,51 S 20,454 S 14,5 T 1500 O - -

7 token_ring_5 S 951 S 1,05 S 2,26 S 97,326 S 22,94 T 1500 O - -

8 token_ring_10 S 1566 S 6,78 S 9,24 S 1078,66 T 1500 O - - O - -

9 token_ring_12 S 1812 S 43,79 S 14,93 T 1500 O - - O - - O - -

10 transmitter_1 U 437 U 0,96 S* 0,19 U 1,14 S* 2,32 U 2,95 S* 19,43

11 transmitter_2 U 557 U 1,8 S* 0,42 U 4,844 S* 2,771 U 17,42 S* 27,81

12 transmitter_3 U 679 U 5,6 S* 0,77 U 5,716 S* 3,261 U 111,31 O - -

13 transmitter_4 U 801 U 7,4 S* 1,31 U 9,917 S* 5,348 U 147,89 O - -

14 transmitter_5 U 923 U 13,9 S* 2,05 U 54,237 S* 8,487 T 1500 O - -

15 transmitter_11 U 1655 U 106,6 S* 12,5 T 1500 O - - T 1500 O - -

16 transmitter_12 U 1777 U 1015 S* 16,79 T 1500 O - - T 1500 O - -

Total time (for

solved problems)
 1205

32,3

1295,26

87,22

380,97

417,4

Number of solved

problems
 16

9

13

7

8

4

V: Verification result

LOC: Lines of code

S: safe, U: unsafe, O: overflow, T: timeout, S*: incorrect results

10

References

[1] W. K. M. N. a. P. Z. Edmund M. Clarke,

"Model Checking and the State Explosion

Problem," Springer-Verlag, Berlin, 2012.

[2] E. C. D. C. D. D. a. I. F. Roberto Baldoni,

"A Survey of Symbolic Execution

Techniques," ACM Comput. Surv.51, vol.

0, no. https://doi.org/0000001. 0000001, p.

37, 2018.

[3] SV-COMP, "Collection of Verification

Tasks," Microsoft, 2013. [Online].

Available: https://github.com/sosy-lab/sv-

benchmarks. [Accessed 25th May 2017].

[4] A. G. A. M. I. N. a. M. R. A. Cimatti,

"Kratos - A software model checker for

SystemC," Fondazione Bruno Kessler —

Irst, 2008.

[5] P. G. K. S. N. T. S. K. C. S. P. W. V.

Cristian Cadar, "Symbolic Execution for

Software Testing in Practice – Preliminary

Assessment," ICSE, Waikiki, Honolulu,

HI, USA, 2011.

[6] M. P. a. A. B. Aina Niemetz, "Boolector at

the SMT Competition," Johannes Kepler

Univesity, Linz, Austria, 2017.

[7] N. E. Niklas Sorensson, "MiniSat v1.13 –

A SAT Solver with Conflict-Clause,"

Chalmers University of Technology,

Sweden, 2005.

[8] L. d. M. a. N. Bjørner, "Z3: An Efficient

SMT Solver," Microsoft Research,

Redmond, WA, USA, 2008.

[9] T. V. K. a. M. O. Vu Xuan Tung, "raSAT :

an SMT Solver for Polynomial

Constraints," in International Joint

Conference on Automated Reasoning,

Ishikawa, Japan, 2016.

[10] O. T. Thomas Kuhn, "Abstract Syntax

Tree," Sun Microsystems, Inc, USA, 2006.

[11] D. D. D. E. ∗. Cristian Cadar, "KLEE:

Unassisted and Automatic Generation of

High-Coverage Tests for Complex

Systems Programs," Stanford University,

San Diego, California, 2008.

[12] D. K. a. F. L. Edmund Clarke, "A Tool for

Checking ANSI-C Programs," Carnegie

Mellon University, TACAS, Berlin

Heidelberg, 2004.

[13] P. S. a. D. Kroening, "2LS for Program

Analysis (Competition Contribution),"

TACAS. Springer, University of Oxford,

2017.

[14] D. Beyer, "Software Verification with

Validation of Results (Report on SV-

COMP 2017)," TACAS, Springer, LMU

Munich, Germany, 2017.

[15] S. J. D. K. a. P. S. Martin Brain, "Safety

Verification and Refutation by k-Invariants

and k-Induction," Springer-Verlag, Berlin

Heidelberg, 2015.

