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Abstract 

This paper gives an overview of modern symbolic execution techniques and presents a tool VTSE (Verification 

Tool based on Symbolic Execution) which allows users to verify some properties of C/C++ program based on 

symbolic execution technique. As two inputs including program’s source code and user’s assertion, VTSE 

reports whether user’s assertion are always satisfied with the program. Results of experiments performed on two 

sets of benchmark which are Floats-cdfpl (SV-COMP) and Kratos (FBK-IRST) are relatively positive. As for the 

former, VTSE has a greater advantage in solving speed although not all the problems are solved. Moreover, 

VTSE is also able to verify problems in Kratos benchmark which have a large number lines of code with about 

500 – 2000 LOC. 
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1. Introduction
*
 

Recent years, in response to the constantly 

changing technological environment, software 

quality assurance has evolved significantly and 

has become increasingly important, especially 

with classified safety- or business-critical 

software. In contrast of software testing which 

subjects the program to a series of tests with the 

intent of detecting potential software bugs, 

software verification ensure the safety of the 

whole software system. With the increasing 

complexity of system applications, using 

traditional technique likes model checking may 

easily lead to state space explosion even with 

SAT and SMT solvers scaling over the years 

[1]. 

This paper introduces the novel approach 

using Symbolic Execution [2] to verify some 
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properties of C/C++ program. This method 

includes symbolizing programming source code 

into a first-order logic formula then 

incorporating with user’s assertion to enter a 

SMT solver. A tool using the earlier technique 

is also presented – VTSE (Verification Tool 

using Symbolic Execution). VTSE has some 

applications in verifying C/C++ programs such 

as checking the return value of a program, 

verifying the pre-condition is sastified with the 

post-condition, verifying assertions provided by 

users or finding unreachable code.  

Experiments are performed and compared 

to some well-known verifiers on two sets of 

benchmark which are Floats-cdfpl [3] and 

Kratos[4], which are used in SV-COMP 2017 

and  many other research publications. 

The rest of this paperis organized as 

follows. Section 2 provides the background 

knowledge of this study. The architecture of 

VTSE is illustrated in section 3. Section 4 
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describes the architecture and implemented 

technique of some related works. Experimental 

results are discussed in section 5. Finally, 

section 6 concludes this paper. 

2. Background 

2.1. Symbolic Execution 

Symbolic execution is a program analysis 

technique mostly used to automate software 

testing and software verification. The key idea 

of the technique is to use symbolic values as 

input instead of concrete data. It computes the 

result of program execution on symbolic states, 

which map variables to symbolic expressions. 

In concrete execution, a program is run on a 

specific input and a single control flow path is 

explored. Therefore, concrete execution in some 

cases can only under-approximate the analysis 

of the interested properties. On the contrary, 

symbolic execution simultaneously explore 

paths of the program under multiple inputs [5]. 

Symbolic execution can be divided into 

two approaches: dynamic symbolic execution 

(DSE) for testing and static symbolic execution 

(SSE) for verification.  Dynamic approaches 

work by generating formula for certain path to 

test specific execution paths, while static 

approaches generates formulas over entire 

programs to verifying overall safety. Unlike 

DSE, SSE does not suffer from path explosion. 

All paths are encoded in a single formula that is 

then passed to the solver. In the end, a SMT 

solver (Satisfiability Modulo Theories solver) is 

used to generate test inputs or check whether 

there are any violations of the property on the 

execution paths.  

2.2. Propositional logic 

Propositional logicis a branch of 

mathematical logic which studies the logical 

relationships between propositions. A 

proposition P is a collection of atoms or atomic 

formulas Pi. Each Pi has a truth value, which 

can be either True or False but never both.   

An important form of proposition is conjunctive 

normal form. A compound statement is in 

conjunctive normal form if it is obtained by 

operating AND among variables (negation of 

variables included) connected with ORs 

(� ∨ ¬�) ∧ (¬� ∨ �) ∧ (¬	 ∨ �) 
 

2.3. First-order logic 

While propositional logic deals with 

simple declarative propositions, first-order logic 

additionally covers predicates and 

quantification. A predicate can be either True or 

False. Relationships between predicates can be 

stated using logical connectives (∧ for 

conjunction, ∨ for disjunction, → for 

implication, ↔ for biconditional, ¬ for 

negation). Quantifiers (∀ for universal 

quantifier and ∃ for existential quantifier) can 

be applied to variables in a formula.  

(� ∨ ¬�) → (¬� ∨ �) 

2.4. Satisfiability Modulo Theories and SMT 

solver 

Satisfiability Modulo Theories (SMT) 

refers to the problem of determining whether a 

first-order formula is satisfiable with respect to 

some logical theory. There are now several 

powerful and sophisticated SMT solvers (e.g., 

Boolector [6], MathSAT5 [7] and Z3 [8]) which 

are being used in a rapidly expanding set of 

applications. Application areas currently 

include verification, equivalence checking, 

bounded and unbounded model checking, 

automated test case generation, … In the 

presented tool – VTSE, the SMT solvers are 

incorporated includes Z3 [8] and raSat [9]. 

3.VTSE Architecture 

VTSE takes two inputs which are the 

program’s source code and an assertion 

provided by user. Its output is a report on 

whether the user’s assertion is satisfied.  

After collecting the source code, VTSE 

symbolizes it using symbolic execution through 

a sequence of steps including generating 



 

abstract syntax tree, building control flow 

graph, unwinding loops in the graph, then 

indexing variables in code to create a metaSMT 

formula which later will be transformed into a 

first-order logic formula. Finally, VTSE 

combines the source code’s abstraction formula 

with user’s assertion and enter the final formula 

into a SMT solver. Two candidate SMT solvers 

are Z3 and raSat.  

 

Figure 1: VTSE Architecture

3.1. Abstract Syntax Tree 

Abstract syntax tree [10] in Computer 

Science is a tree representation of the abstract 

syntax structure of source code with each node 

of the tree is a construct occurring in the source. 

Abstract syntax tree usually is the result of 

parser after translation and compiling. 

VTSE, CDT (C/C++ Development Tool)

used to parse C/C++ source code to abstract 

syntax tree.  

 

3.2.Control Flow Graph 

Control Flow Graph in VTSE is a

way directed graph including a collect

nodes, each node represents a component in the 

source code. Node types in CFG are the 

following: 

abstract syntax tree, building control flow 

graph, unwinding loops in the graph, then 

indexing variables in code to create a metaSMT 

formula which later will be transformed into a 

c formula. Finally, VTSE 

combines the source code’s abstraction formula 

with user’s assertion and enter the final formula 

into a SMT solver. Two candidate SMT solvers 

 
: VTSE Architecture 

in Computer 

Science is a tree representation of the abstract 

syntax structure of source code with each node 

of the tree is a construct occurring in the source. 

is the result of 

parser after translation and compiling.  In 

CDT (C/C++ Development Tool) is 

used to parse C/C++ source code to abstract 

Control Flow Graph in VTSE is an one 

way directed graph including a collection of 

nodes, each node represents a component in the 

source code. Node types in CFG are the 

Plain node represents a simple statement in 

source code like assignment, initialization, 

return statement. 

Decision node contains condition in if

while-do, or do-while statement. 

Iteration node contains an iterative 

statement and marks the appearance of the loop 

statement. 

Mark node does not attach a statement but 

is used to set certain flags in the program such 

as if-else block beginning, if-else b

Building the Control Flow Graph

Control flow graph is derived from abstract 

syntax tree of a function by iterating through 

tree. 

For compound statement, algorithm creates 

a linked list of nodes corresponding with each 

statement in the compound.  

For branch (if-else, switch-case) statement

a begin node is created to mark the beginning of 

if-else block of graph, then points to a 

DecisionNode with 2 outer links: one points to 

then block, one points to else block.

For loop (for, while-do, do-

node is created to mark the beginning of block 

of graph representing loop statement. After that, 

the begin node points to a DecisionNode with 2 

outer links: one points to “then” block, one 

points to IterationNode - a node including the 

iteration statement. 

Figure 2: Branch and loop CFG

For function call, the algorithm creates a 

node including the parameters of the called 

function  

For go-to statement, a GotoNode is linked to 

a corresponding LabelNode.  

3 

represents a simple statement in 

source code like assignment, initialization, 

contains condition in if-else, 

 

contains an iterative 

statement and marks the appearance of the loop 

does not attach a statement but 

is used to set certain flags in the program such 

else block ending. 

raph 

Control flow graph is derived from abstract 

syntax tree of a function by iterating through 

, algorithm creates 

a linked list of nodes corresponding with each 

case) statement, 

a begin node is created to mark the beginning of 

else block of graph, then points to a 

uter links: one points to 

block. 

-while), a begin 

node is created to mark the beginning of block 

of graph representing loop statement. After that, 

the begin node points to a DecisionNode with 2 

outer links: one points to “then” block, one 

a node including the 

 
: Branch and loop CFG 

, the algorithm creates a 

node including the parameters of the called 

, a GotoNode is linked to 
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Figure 3: Function call and Goto CFG

3.3.Unwinding loops in Control Flow Graph

To remove loops in control flow graph, 

iterating from start to end of graph, if 

BeginForNode or BeginWhileNode is caught, 

loop is unwinded into a certain number of if

else statement. 

Figure 4: Unwind loops in CFG

If catching jump statement when iterating 

through graph, a new branch is replicated and 

linked to GotoNode. 

Figure 5: Handle jump statements in CFG

 
: Function call and Goto CFG 

loops in Control Flow Graph 

To remove loops in control flow graph, 

iterating from start to end of graph, if 

BeginForNode or BeginWhileNode is caught, 

loop is unwinded into a certain number of if-

 
: Unwind loops in CFG 

If catching jump statement when iterating 

through graph, a new branch is replicated and 

 
: Handle jump statements in CFG 

3.4. Indexing 

Because the input of SMT solver Z3 

consists of first-order logic formula, a variable 

in Z3 can only be constant, not symbolic value. 

Therefore, to represent the change of variable’s 

value, indexing is used to store all of variable 

states in program execution process.The initial 

index of a variable is -1. Each times variable’s 

value is updated, its index is incremented. 

Syncing indexes 

A problem emerges when indexing is the 

uneven of variable’s index in branching 

statement. To solve this, indexes in t

branches of condition statement are synced 

using the below algorithm. 

Syncing Indexes Algorithm in VTSE

Input: ConditionNode , Then - VarList, Else 

-VarList  

Output: The SyncVarList 

1for (with variable in the list)  

2     i1 := index of v when variable

in thenClause 

3    i2 := index of v when variable is indexing 

in elseClause 

4if (i1< i2)  

5 Initialize SyncNode v_ i2

6 push SyncNode on the then clause

7 Set the index value of the last 

variable in the ConditionNode is i

8else if (i2< i1)  

9 Initialize SyncNode v_ i1

10 push SyncNode on the else clause

11 Set the index value of the last 

variable in the ConditionNode is i

 

 

3.5. Generate first-order logic constraint 

formula 

Constraint formula is build following SMT 

solver’s input format, as for Z3, the format is 

SMT-libv2. Each statement in source code is 

transformed into a first-order logic formula 

sub-formula.  The constraint 

program is a conjunction of all sub

Because the input of SMT solver Z3 

order logic formula, a variable 

in Z3 can only be constant, not symbolic value. 

Therefore, to represent the change of variable’s 

value, indexing is used to store all of variable 

xecution process.The initial 

1. Each times variable’s 

value is updated, its index is incremented.  

A problem emerges when indexing is the 

uneven of variable’s index in branching 

statement. To solve this, indexes in two 

branches of condition statement are synced 

Syncing Indexes Algorithm in VTSE 

VarList, Else 

:= index of v when variable is indexing 

:= index of v when variable is indexing 

2 = v_ i1 

push SyncNode on the then clause 

Set the index value of the last 

variable in the ConditionNode is i2 

1 = v_ i2 

push SyncNode on the else clause 

Set the index value of the last 

variable in the ConditionNode is i1 

order logic constraint 

Constraint formula is build following SMT 

nput format, as for Z3, the format is 

libv2. Each statement in source code is 

order logic formula – a 

constraint of the whole 

program is a conjunction of all sub-formulas. 
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3.6. Incorporate with user’s assertion to 

compute result through SMT solver 

Let assume Fabstraction is the constraint 

formula created in the previous step, Fassertion is 

the assertion provided by the user.  

Ffinal = Fabsrtaction ^ ¬ -Fassertion 

Ffinal is the final input of SMT solver.  The 

result is either SAT or UNSAT.  

If the result is SAT (satisfaction): A set of 

values exists to satisfy Ffinal. In this case, the 

tool will inform users the result is unsafe, the 

assertion is violated and a counter example is 

provided. 

If the result is UNSAT (unsatisfaction):  

Not exists any values to satisfy Ffinal. In this 

case, the result is safe, which means user’s 

assertion is always true.  

4. Related work 

During the last decades, there are several 

tools designed to assure quality of programs by 

testing or verification such as KLEE [11], 

CBMC [12], 2LS [13]. Among them, KLEE is a 

symbolic execution tool which has been widely 

used in software testing in both academic and 

industry sides, while CBMC and 2LS are 

verification tools which are both holding high 

ranking in SV-COMP [14]. SV-COMP is an 

annual thorough comparative evaluation of 

fully-automatic software verifiers. Each 

verification task in the competition belongs in a 

certain category and consists of a C program 

and a property (reachability, memory safety, 

termination). SV-COMP 2017 had 32 

participating verification systems from 12 

countries.  

4.1. KLEE 

KLEE [11] is a symbolic execution tool 

that is capable of automatically generating tests 

that  achieve high coverage on a diverse set of 

complex and environmentally-intensive 

programs. When KLEE runs the program, it 

tries to explore every possible path. This is 

done by executing the program symbolically, 

i.e. tracking all constraints on inputs marked 

symbolic as each instruction is reached.  

The queries issued by KLEE are branch 

and counter example queries. The former are 

issued when a branch is reached to decide 

whether then, else or both sides of the branch 

are followed. Counterexample queries are used 

to request a solution for the current path, e.g. 

when KLEE needs to generate a test case at the 

end of a path. 

 

Figure 6: Solver passes in KLEE [11] 

Before the metaSMT formula is created and 

entered a SMT/SAT solver, KLEE performs a 

series of constraint solving optimizations 

structured as a sequence of solver passes. The 

first pass in KLEE is the elimination of 

redundant constraints, which is called constraint 

independence. The other solver passes are 

concerned with caching. The branch cache 

stores the result of branch queries. The 

counterexample cache remembers constraint 

sets and their counterexamples if the set is 

satisfiable or a sentinel if the set is 

unsatisfiable.  

Finally, when a path ends or an error is 

discovered, one can take all the constraints 

gathered along that path and ask the constraint 

solver for a concrete solution representing a test 

case that exercises the path. These test cases can 

be used to form high-coverage test suites, as 

well as to generate bug reports. 

4.2. CBMC 

CBMC (C Bounded Model Checking) [12] 

is a tool for the formal verification of ANSI-C 

programs using Bounded Model Checking. The 

tool supports almost all ANSI-C features 
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including pointer constructs, dynamic memory 

allocation, recursion, and float and double data 

types.  

Figure 7: Architecture of CBMC 

In CBMC, the source code is symbolized into 

bit vector equations. The process has five steps:

- The source code is preprocessed.  

- Loop constructs can be expressed using while 

statement, recursive function calls and goto 

statements. The while loops are un

duplicating the loop body n times. After that, 

a unwinding assertion is added that assures 

that the program never requires more 

iterations. 

- Loop in goto is un-winded using similar way

- Function calls are expanded. 

- The program is transform into static single 

assignment (SSA) form. The procedure 

produces two bit-vector equations: C (for the 

constraints) and P (for the property). In order 

to check the property, CBMC converts C 

into CNF. 

- The property checking requires back end 

solvers.  

In SV-COMP, CBMC took first place in 2015, 

third place in 2016 and 2017 in floats

category.  

4.3. 2LS 

2LS [13] is a static analysis and 

verification tool for C programs

perform verification and refutation of assertions 

using an algorithm called kIkI (k-invariants and 

k-induction) [15] which combines bounded 

model checking, k-induction and invariant 

generation.  

2LS performs the following main steps 

which are outlined in Figure 2. 

including pointer constructs, dynamic memory 

allocation, recursion, and float and double data 

 
 [12] 

In CBMC, the source code is symbolized into 

bit vector equations. The process has five steps: 

 

Loop constructs can be expressed using while 

ive function calls and goto 

statements. The while loops are un-winded by 

duplicating the loop body n times. After that, 

a unwinding assertion is added that assures 

that the program never requires more 

winded using similar way. 

The program is transform into static single 

assignment (SSA) form. The procedure 

vector equations: C (for the 

constraints) and P (for the property). In order 

to check the property, CBMC converts C ∧¬P 

The property checking requires back end 

COMP, CBMC took first place in 2015, 

third place in 2016 and 2017 in floats-cdfpl 

is a static analysis and 

verification tool for C programs that can 

perform verification and refutation of assertions 

invariants and 

which combines bounded 

induction and invariant 

wing main steps 

Figure 8: Architecture of 2LS

Front end. The command line front end 

provides user with possible options and 

parameters, such as the bit-width. The 

utilizes an C preprocessor (such as gcc) and 

parses a syntax tree from the source code. 2LS 

uses GOTO programs as an intermediate 

representation then as in CBMC, performs a 

light-weight static analysis resulting in a static 

call graph. 

Middle end. The result of the static analysis is a 

static single assignment (SSA) form. 

Subsequently, 2LS refines this over

approximation by computing invariants.

Backend. Similar to CBMC, the SSA equation 

is translated into a CNF formula then a SAT 

solver is used for property check. 

check is satisfiable, a human

counterexample is provided. Conversely, if the 

property check is unsatisfiable, the assertions 

have been proven. 

In SV-COMP, 2LS took first place in 2016 

and fourth place in 2017 in floats

category.  

5. Experimental results 

The experiments are performed on a 

machine with a 2.20 GHz 64 bit Quad Core 

CPU Intel i5-5200U 2.2 GHz processor and 

4GB of memory running Fedora 27. We set a 

1500s timeout for the analysis of each subject. 

Two sets of benchmark are Floats

Kratos [4]. Floats-cdfpl is a category of SV

COMP, including 40 verification tasks for 

checking programs with floating

arithmetics. Kratos is a benchmark set provided 

by FBK-IRST, each problem usually has ~500

2000 LOC, therefore making many tools run 

 

: Architecture of 2LS [13] 

. The command line front end 

provides user with possible options and 

width. The C parser 

utilizes an C preprocessor (such as gcc) and 

parses a syntax tree from the source code. 2LS 

uses GOTO programs as an intermediate 

CBMC, performs a 

weight static analysis resulting in a static 

The result of the static analysis is a 

static single assignment (SSA) form. 

Subsequently, 2LS refines this over-

approximation by computing invariants. 

Similar to CBMC, the SSA equation 

is translated into a CNF formula then a SAT 

r property check. If a property 

check is satisfiable, a human-readable 

Conversely, if the 

property check is unsatisfiable, the assertions 

COMP, 2LS took first place in 2016 

ats-cdfpl 

The experiments are performed on a 

machine with a 2.20 GHz 64 bit Quad Core 

5200U 2.2 GHz processor and 

4GB of memory running Fedora 27. We set a 

1500s timeout for the analysis of each subject. 

loats-cdfpl [3] and 

cdfpl is a category of SV-

COMP, including 40 verification tasks for 

checking programs with floating-point 

mark set provided 

IRST, each problem usually has ~500-

2000 LOC, therefore making many tools run 
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into path explosion problems. There are three 

possible answers for each problem [14]:  

Safe:The specification is satisfied (i.e., 

there is no path that violates the specification). 

Unsafe: The specification is violated (i.e., 

there exists a path that violates the 

specification) and a violation witness is 

produced. 

Timeout:The tool cannot decide the 

problem or terminates by a tool crash, time-out, 

or out-of-memory. 

We compared VTSE with two C verifiers 

competing in SV-COMP 2017: CBMC-5.8 and 

2LS-0.5, in terms of the accuracy and solving 

time.  

Table 1 compares the performance of 

VTSE, CBMC and 2LS on floats-cdfpl 

benchmark.  In term of the number of correct 

results, VTSE is the only tool that cannot solve 

all 40 problems with 9 problems from 

newton_3_1_*_unreach_call to 

newton_3_8_*_unreach_callare timeout. 

However, in comparison of solving time, VTSE 

has better performance in remaining 31 

problems than both CBMC and 2LS when the 

average time to solve those 31 problems of 

VTSE, CBMC and 2LS are 0.136s, 202.061 and 

61.289s respectively. The illustration of result 

on floats-cdfpl benchmark is showed in Graph 

1.  

 
Graph 1: Comparison on Floats-cdfpl benchmark 

Experiment on Kratos benchmark is 

illustrated on Table 2 and Graph 2. The 

comparison is set between VTSE and CBMC, 

both are running default options and are fixed 

on the number of unwind loops. When verifying 

program with large lines of code, VTSE has a 

general positive impact both on running times 

and on the number of problems solved. 

 
Graph 2: Comparison on Kratos benchmark 

6. Conclusion 

This paper describes a technique using 

symbolic execution to apply in software 

verification and presents a tool VTSE 

(Verification Tool using Symbolic Execution) 

which allows users to verify some properties of 

C/C++ program using the proposed method. 

VTSE has several applications such as checking 

the return value of a program, verifying the pre-

condition is sastified with the post-condition, 

verifying assertions provided by users or 

finding unreachable code. To compare VTSE 

with current C verifiers, experiments are 

performed on two sets of benchmark which are 

Floats-cdfpl (SV-COMP) and Kratos (FBK-

IRST). The results show VTSE can produce 

answers in relatively fast solving time and also 

handle programs with large number lines of 

code. 

In the future, the development of the study 

will focus on constraint optimization and loop 

invariant generation. We also aim to expand  

the handling of other C language’s features 

such as array, allocate memory, or pointer. 
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Table 1: Verication results of Floats-cdfpl benchmark 

ID Verification task LOC 
VTSE CBMC 2LS 

V Time V Time V Time 

1 newton_1_1_true_unreach_call 48 S 0.032 S 330.324 S 26.052 

2 newton_1_2_true_unreach_call 48 S 0.029 S 229.267 S 32.393 

3 newton_1_3_true_unreach_call 48 S 0.019 S 493.696 S 28.681 

4 newton_1_4_false_unreach_call 48 U 0.018 U 20.559 U 9.481 

5 newton_1_5_false_unreach_call 48 U 0.024 U 17.465 U 16.517 

6 newton_1_6_false_unreach_call 48 U 0.017 U 9.142 U 9.499 

7 newton_1_7_false_unreach_call 48 U 0.027 U 6.162 U 3.602 

8 newton_1_8_false_unreach_call 48 U 0.038 U 11.217 U 12.596 

9 newton_2_1_true_unreach_call 48 S 0.56 S 273.607 S 123.449 

10 newton_2_2_true_unreach_call 48 S 0.528 S 343.148 S 98.819 

11 newton_2_3_true_unreach_call 48 S 0.541 S 412.942 S 83.836 

12 newton_2_4_true_unreach_call 48 S 0.503 S 371.692 S 119.9 

13 newton_2_5_true_unreach_call 48 S 0.515 S 747.501 S 193.09 

14 newton_2_6_false_unreach_call 48 U 0.58 U 169.122 U 18.057 

15 newton_2_7_false_unreach_call 48 U 0.518 U 171.063 U 10.827 

16 newton_2_8_false_unreach_call 48 T 0.785 U 110.768 U 34.741 

17 newton_3_1_true_unreach_call 48 T 1500 S 644.915 S 232.768 

18 newton_3_2_true_unreach_call 48 T 1500 S 689.052 S 244.979 

19 newton_3_3_true_unreach_call 48 T 1500 S 646.655 S 319.251 

20 newton_3_4_true_unreach_call 48 T 1500 S 751.86 S 291.928 

21 newton_3_5_true_unreach_call 48 T 1500 S 702.424 S 310.889 

22 newton_3_6_false_unreach_call 48 T 1500 U 50.856 U 288.599 

23 newton_3_7_false_unreach_call 48 T 1500 U 617.201 U 157.526 

24 newton_3_8_false_unreach_call 48 T 1500 U 309.053 U 97.281 

25 sine_1_false_unreach_call 32 U 0.021 U 1.484 U 1.783 

26 sine_2_false_unreach_call 32 U 0.024 U 8.683 U 2.377 

27 sine_3_false_unreach_call 32 U 0.024 U 6.171 U 1.985 

28 sine_4_true_unreach_call 32 S 0.011 S 1249.95 S 70.837 

29 sine_5_true_unreach_call 32 S 0.02 S 74.886 S 7.463 

30 sine_6_true_unreach_call 32 S 0.02 S 31.956 S 6.343 

31 sine_7_true_unreach_call 32 S 0.01 S 3.807 S 6.343 

32 sine_8_true_unreach_call 32 S 0.02 S 214.917 S 4.808 

33 square_1_false_unreach_call 33 U 0.012 U 3.268 U 4.923 

34 square_2_false_unreach_call 33 U 0.012 U 3.162 U 2.749 

35 square_3_false_unreach_call 33 U 0.022 U 27.049 U 2.779 

36 square_4_true_unreach_call 33 S 0.02 S 275.889 S 714.668 

37 square_5_true_unreach_call 33 S 0.012 S 334.017 S 10.394 
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38 square_6_true_unreach_call 33 S 0.011 S 203.2 S 234.158 

39 square_7_true_unreach_call 33 S 0.01 S 216.98 S 38.928 

40 square_8_true_unreach_call 33 S 0.02 S 1.568 S 2.635 

 Total time (for 31 solved problems)    4.218  6263.894  1899.972 

 
Average solving time (for 31 solved 

problems) 

 
 0.136  202.061  61.289 

 

Table 2: Verication results of Kratos benchmark 

I

D 
Problems V LOC 

3 loops 5 loops 10 loops 

VTSE CBMC VTSE CBMC VTSE CBMC 

1 pc_sfifo_1 S 360 S 0,15 S 0,1 S 3,5 S 2,571 S 8,7 S 44,27 

2 pc_sfifo_2 S 465 S 0,04 S 0,1 S 1,9 S 5,298 S 3,5 S 84,18 

3 token_ring_1 S 459 S 0,11 S 1,85 S 3,092 S 5,371 S 8,7 S 28,85 

4 token_ring_2 S 582 S 0,11 S 1,16 S 5,321 S 4,934 S 80,5 S 212,9 

5 token_ring_3 S 705 S 0,46 S 1,11 S 9,152 S 9,422 T 1500 O - - 

6 token_ring_4 S 828 S 1,09 S 1,51 S 20,454 S 14,5 T 1500 O - - 

7 token_ring_5 S 951 S 1,05 S 2,26 S 97,326 S 22,94 T 1500 O - - 

8 token_ring_10 S 1566 S 6,78 S 9,24 S 1078,66 T 1500 O  - - O - - 

9 token_ring_12 S 1812 S 43,79 S 14,93 T 1500 O - - O  - - O - - 

10 transmitter_1  U 437 U 0,96 S* 0,19 U 1,14 S* 2,32 U 2,95 S* 19,43 

11 transmitter_2  U 557 U 1,8 S* 0,42 U 4,844 S* 2,771 U 17,42 S* 27,81 

12 transmitter_3  U 679 U 5,6 S* 0,77 U 5,716 S* 3,261 U 111,31 O - - 

13 transmitter_4  U 801 U 7,4 S* 1,31 U 9,917 S* 5,348 U 147,89 O - - 

14 transmitter_5 U 923 U 13,9 S* 2,05 U 54,237 S* 8,487 T 1500 O - - 

15 transmitter_11 U 1655 U 106,6 S* 12,5 T 1500 O - - T 1500 O - - 

16 transmitter_12  U 1777 U 1015 S* 16,79 T 1500 O - - T 1500 O - - 

Total time (for  

solved problems)  
    1205 

 
32,3 

 
1295,26 

 
87,22 

 
380,97 

 
417,4 

Number of solved 

problems 
    16 

 
9 

 
13 

 
7 

 
8 

 
4 

 

V: Verification result 

LOC: Lines of code 

S: safe, U: unsafe, O: overflow, T: timeout, S*: incorrect  results 
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