
Noname manuscript No.
(will be inserted by the editor)

An approach to modeling and estimating power consumption
of mobile applications

Hong Anh Le · Anh Tu Bui · Ninh-Thuan Truong

Received: date / Accepted: date

Abstract Recently, the number of mobile users grow

enormously. Even though hardware technologies have

been taken to many advantages, which aim at increas-

ing the battery capacity, people are still facing with

the problem of battery shortage. An application that

runs functionally correct and has a friendly graphic

user interfaces still causes users frustrated if it drains

the battery. In parallel with increasing the energy stor-

age capability of mobile device, optimizing the source

code to reduce power consumption is an emerging topic.

This paper presents a new approach to modeling and

evaluating power consumption of mobile applications.

First, we introduce new de�nitions of power states and

a power consumption automaton (PCA) for a hardware

component. In the next step, we propose algorithms to

optimize and merge these into an uni�ed automaton. In

order to estimate the power consumption amount, the

power automaton is re�ned with time aspect and power

coe�cients. Finally, we develop a support tool, which is

a plug-in for Android studio and IntelliJ for visualizing

the power machines and estimating the accumulated

power consumption of an application use-case.

Keywords Formal analysis, Power State, Power

Automaton, Power Consumption

Hong Anh Le
Hanoi University of Mining and Geology, Hanoi, Vietnam
E-mail: lehonganh@humg.edu.vn

Anh-Tu Bui
VNU, University of Engineering and Technology
E-mail: tuba.di14@vnu.edu.vn

Ninh-Thuan Truong
VNU, University of Engineering and Technology
E-mail: thuantn@vnu.edu.vn

1 Introduction

In recent years, the number of people using mobile de-

vices grow enormously. They are used for not only mak-

ing phone calls but also entertainment and work. Mo-

bile applications have became more and more complex

which handle multimedia �les with audio and video,

transfer data with cellular and Wi� networks, and nav-

igate using GPS coordinates. Even though hardware

technologies have been taken to many advantages which

aim at increasing the battery capacity, mobile users are

still facing with the problem of battery shortage. For

this reason, mobile application developers have to take

into account energy consumption level of their applica-

tions. An application that runs functionally correct and

has a friendly graphic user interfaces still causes users

frustrated if it reduces battery remaining quickly. These

problems have been identi�ed as energy bugs [15]. One

of major reasons that makes mobile software consume

much energy is that it contains source codes which

access hardware peripherals. Using API functions in-

correctly also results in consuming much energy than

usual. For instance, the applications still request GPS

data while the devices stay in the same position or the

screen isnot turned o� when the devices are playing au-

dio �les and users have no activity for a while. For a

speci�c mobile platform, an application is allowed to ac-

tively control power consumption by several methods.

For example, in Android operating system, ones can

use PowerManager class of Android frameworks where

wakelock can be employed. If wakelocks are misused,

the applications also might lead to energy leaks.

There are several approaches, which have been ded-

icated for detecting these bugs in both including design

and implementation phases with various techniques. Some

work concentrate on improving power consumption ef-



2 Hong Anh Le, Anh Tu Bui, Ninh-Thuan Truong

�ciency of a speci�c hardware of the mobile device.

Though, there is a need of new methods for evaluat-

ing power consumption.

This article proposes an approach to modeling and

estimating energy consumption of an Android applica-

tion by analyzing its source code. First, we introduce

new de�nitions of power states for hardware compo-

nents of a mobile device, i.e.., GPS, WIFI, Audio, Cel-

lular, CPU, and display scree. Based on these de�ni-

tions, we construct a PCA corresponding to each in-

volved hardware component. After that, we propose

algorithms to eliminate unnecessary states and merge

into an uni�ed PCA. In the �nal step, we re�ne the

automaton achieved in the modeling step in order to

calculate the accumulated power consumption of the

application.

In the view point of practice, we develop a plugin,

named PCE plugin, for Android Studio and IntelliJ to

assist Android developers. This tool is able to extract

source codes and formalize power states. It provides

users visual diagrams of states transitions and the ac-

cumulated power consumption. The tool is helpful for

developers to understand the energy e�ect and optimize

the source code.

The remainder of this paper is organized as follows.

Section 2 presents a formal approach to modeling power

consumption of Android applications. Followed by Sec-

tion 3, which shows the method to estimate the level

that an application consumed. The support tool PCE is

described in Section 4. Section 5 compared the achieved

results to other related work. Finally, Section 6 con-

cludes the paper and outlines some future work.

2 Modeling power consumption using power

state machines

In this section, we propose an approach to modeling

source code with respect to power consumption. We

only consider the case that the applications work under

Android operating system and use the following popu-

lar hardware components such as Audio, GPS, Screen,

Wi�, and Cellular. We do not take into account the

e�ect of the operating system and other running soft-

ware.

First, we model the source code to formalize the

power consumption on each individual hardware com-

ponent by a power state machine. Then, we construct

a composited automata for all components.

2.1 Modeling power states of a hardware component

Every hardware component has various working states,

consuming di�erent amount of power level, which have

corresponding power states, e.g., an Audio device has

2 states: On and O�, it has two corresponding power

states On and O�. We de�ne a power state for a hard-

ware component as follows.

De�nition 1 <Power state> A power state of p of a

hardware component C represents level of power con-

sumption at a speci�c working state of the device.

The application may contain source code lines that

control or change the states of the hardware device.

Hence, it leads to the change of the power states that

a�ects to power consumption of the application. For

example, if users want to play a music �le, the program

might use the command Start() of MediaPlayer class,

and power state of sound generator Audio will change

from o� into on. When carrying out command Stop of

MediaPlayer class, the power state of Audio device will

change from on into o� described in Figure 1.

Fig. 1: Power States of Audio device

De�nition 2 <Power transition> A power transition

t represent the transition from a power state p to an-

other power state p′.

De�nition 3 Power consumption of a hardware com-

ponent is represented by an power consumption au-

tomaton (PCA) A is a 4-tuple 〈P, Σ, δ, p0〉, where

� P is a �nite set of power states.

� Σ is a set of labels.

� δ = P × L → P is a set of power state transitions.

� q0 ⊆ P is a �nite set of initial power states of the

device.

In this paper, we apply these de�nitions to spe-

ci�c hardware, e.g., Audio, Wi�, Screen, GPS, Cellular

equipments, which are involved in a program to analyze

the power consumption. Each hardware component is

represented by a corresponding automaton as follows.



An approach to modeling and estimating power consumption of mobile applications 3

Audio PCA: The audio component has two power states

such as o� and on indicating that whether a program is

playing audio. A program can start or stop playing au-

dio using appropriate API statements, e.g. start()/stop()

method ofMediaPlayer class. We de�ne the audio power

automata as follows.

AAudio = (PAudio, ΣAudio, δAudio, q0Audio)

where:

PAudio = {off, on}
ΣAudio = {“Start”, “Stop”}
q0Audio = off

δAudio describes state transition of audio hardware,

illustrated in Figure 2.

Fig. 2: Audio PCA

GPS PCA: An application tracking location with GPS

has three power states including o� (the application

does not turn on GPS features),active (the applica-

tion is receiving GPS data), and sleep (GPS feature is

turned on but in idle state). In order to turn on/o� GPS

feature, developers may use PutExtra) and RequestLo-

cationUpdates API methods of LocationManager. We

state labels which correspond to statements of Android

framework as below

TurnOn = { intent.putExtra(String, true)}

TurnO� ={ intent.putExtra(String, false)}

GetLocation =

{locationManager.requestLocationUpdates()}

Stop = {locationManager.removeUpdates()}

The GPS power automata is de�ned as follows.

AGPS = (PGPS , ΣGPS , δGPS , q0GPS)

where:

PGPS = {off, idle, on}
ΣGPS ={TurnOn, TurnO�, GetLocation,Stop}

q0GPS = off

The state transtitions δGPS is illustrated in Fig-

ure 3.

Fig. 3: GPS PCA

Screen PCA: The screen power automata, constructed

similarly with Audio component, has two power states

such as o� and on. The state of the screen is changed if

application uses the wakelock provided by PowerMan-

ager class. The transition labels are Open and Lock re-

spectively de�ned by statements

wakeLock.acquire() and devicePolicyManager.lockNow().

The screen PCA is construct as follows.

ADisplay = (PDisplay, ΣDisplay, δDisplay, q0Display)

where:

PDisplay = {off, on}
ΣDisplay = {Lock,Open}
q0Display = off

Power state transitions δDisplay is described in Fig-

ure 4.

Fig. 4: Screen display PCA

Cellular PCA: An application might use cellular net-

work to send and receive data. If the application is

connected to a cellular network for transferring data,

the power state is de�ned as on state. In case that

the device is turned o�, the power state is o�. Other-

wise, it is idle state. The power state is changed when



4 Hong Anh Le, Anh Tu Bui, Ninh-Thuan Truong

the application invokes SetMobileDataEnabled and Ex-

ecute functions of ConnectivityManager class provided

by Android framework.

ACellular = (PCellular, ΣCellular, δCellular, qCellular)

where:

PCellular = {off, sleep, transmit}
Σ3GCellular = {TurnOn, TurnOff, Transfer, Stop}
q03GCellular = off

The state transitions δCellular is depicted in Fig-

ure 5.

Fig. 5: Cellular PCA

Wi� PCA: If the application executes statements con-

taining API functions such as SetWi�Enabled, it can

manage the WIFI connection. Hence, the power con-

sumption are a�ected. In case that the application trans-

fers data, the state is de�ned as high-power. If it is

turned on without transfering, the state is low-power.

We construct the Wi� PCA as follows.

AWifi = (PWifi, ΣWifi, δWifi, q0Wifi)

where:

PWifi = {off, low − power, high− power}
ΣWifi = {TurnOn, TurnOff, Stop, Transfer}
q0Wifi = off

The state transition δWifi is described in Figure 9.

2.2 Modeling power states in mobile applications

In section 2.1, we realize hardware components which

a�ects to power consumption and de�ne the respective

power automata for ones. In fact, one application can

utilize multiple hardware devices for various purposes

at the same time. Hence, we need to analyze the power

Fig. 6: WIFI PCA

consumption of the whole application. Power state of

an application is calculated by combining power states

of hardware components that it accesses. We de�ne a

power state of an application as follows.

De�nition 4 A set of power state of an application

(PApp) is an union of power states of all hardware com-

ponents.

PApp = PAudio ∪ PLCD ∪ PGPS ∪ PCell ∪ PWifi

In case that an application facilitates with hardware

components that we already analyzed, a set PApp =

{Audioon, Audiooff , Screenon, Screenoff , GPSon, GPSoff ,

GPSidle, Celltransmit, Celloff , Cellidle,Wifihigh−power,

Wifioff ,Wifilow−power}. Whenever a hardware com-

ponent changes its power state because of commands

from source code, the power state of the application

changes. For example, Figure 7 illustrates the case that

if the application just turns on the audio, the audio's

power states are change while other states still hold.

In order to formally describe the whole power states

of an application, we propose to combine all states of

�ve hardware components, and calculate all of the cases

that can a�ect to device. Based on the approach intro-

duced in section 2.1, where a power states of a hardware

component to a power automata, we introduce a com-

posite power automata Aapp for the application.

Aapp = (P, Σ, δ, q0)

We realize that in source codes of a speci�c applica-

tion might not contain all statements that change the

power states of a hardware component. For this reason,

before combining �ve individual automata, we need to



An approach to modeling and estimating power consumption of mobile applications 5

Fig. 7: Power states of mobile application when turning

Audio on

optimize the every automaton. The main idea of op-

timization is removing the power states that does not

appear because the corresponding statements were not

called. The proposed algorithm iterates all label key-

words extracted from source code and searches the path

from the initial state. It is detailed in Algorithm 1 for

a hardware component.

Algorithm 1 Optimize a PCA by removing omitted

states
Input:

PCA = (P, l0, Σ, δ)
Commands = {c | c is a statement in the program}

Output:
PCA′ = (P ′, l′0, Σ

′, δ′)

1: l′0 = l0
2: P ′ = ∅
3: Σ′ = ∅
4: for each c ∈ Commands do
5: a = MapToAction(c) where MapToAction is a function

mapped from a statement to an action.
6: Σ′ = Σ′ ⋃{a}
7: end for
8: newL =l0

⋃
{l|l0 → al, {l0 → al} ∈ δ, ∀a ∈ Σ′}

9: E′ = {l0 → al|{l0 → al} ∈ E, ∀a ∈ Σ′}
10: while (P ′ 6= newL) do
11: P ′ = newL

12: for each l1 ∈ P ′ do
13: for each a ∈ Σ′ do
14: if {l1 → al} ∈ δ then
15: newL = newL

⋃
{l}

16: δ′ = δ′
⋃
{l1 → al}

17: end if
18: end for
19: end for
20: end while

After eliminating unnecessary power states of each

PCA, we introduce an algorithm to merge these into

an uni�ed PCA for the application. It is detailed in

Algorithm 2. 2.

Algorithm 2 Merge �ve individual automaton

Input:
AAudio = (PAudio, q0Audio, ΣAudio, EAudio)
AGPS = (PGPS , q0GPS , ΣGPS , EGPS)
ADisplay = (PDisplay , q0Display , ΣDisplay , EDisplay)
ACell = (PCell, q0Cell, ΣCell, ECell)
AWifi = (PWifi, q0Wifi, ΣWifi, EWifi)

Output:
AApp = (P, q0, Σ,E)

1: P = {q|q = (qAudio, qGPS , qDisplay , q3G, qWifi)}
2: Σ = ΣAudio

⋃
ΣGPS

⋃
ΣDisplay

⋃
ΣCell

⋃
Σwifi

3: q0 = (q0Audio, q0GPS , q0Display , l0Cell, q0Wifi)
4: E is calculated by following algorithm:
5: for each ({lAudio → al1_Audio} ∈ EAudio) and (a ∈

Paudio) do
6: for each (lAudio, lGPS , lDisplay , l3G, lWifi) ∈ L do
7: for each (l1_Audio, lGPS , lDisplay , l3G, lWifi) ∈ L

do
8: E = E

⋃
{(lAudio, lGPS , lDisplay , lEG, lWifi) →

a(l1_Audio, lGPS , lDisplay , l3G, lWifi)}
9: end for
10: end for
11: end for
12: Repeat from step 5 to step 11 with GPS, Display, Cellular

and Wi� Automaton

3 Estimating power consumption of mobile

applications

In order to estimate power consumption of the applica-

tion state, we need to re�ne the automaton by adding

time and power consumed at a speci�c power state.

Speci�cally, the power automaton is stated as follows.

Aapp = (Q,Σ, δ, q0, T, C)
where,

� P, Σ, δ, q0 is de�ned in section 2.

� T = P ×N is the timing function of the state q and

T (q) = 0, q ∈ Q when the machine leaves the state

q.

� C is coe�cient of power consumption state, it de-

pends on speci�c mobile device. C = {Cq|q ∈ P}
where Cq is power consumption coe�cient of state

q.

To de�ne coe�cient at a speci�c of a hardware compo-

nent, we reuse the estimation of Zhang Lide et al. [16]

described in Table 1. The coe�cient at a speci�c state

l of the application then can de�ned as follows.

Cl = CAudio + CDisplay + CGPS + C3G + CWifi.

The accumulated power consumption of an applica-

tion at a speci�c time t can be calculated in Equation 1.

Pn =

k∑
i=1

Cl ∗ tl (1)



6 Hong Anh Le, Anh Tu Bui, Ninh-Thuan Truong

Table 1: Power coe�cients on each state (adapted from [16])

Category State Coe�cient(min-max) Category State Coe�cient(min-max)

CDisplay
o� 0

CGPS

o� 0
on 2.40 - 612 sleep 173.55

CWifi

o� 0 active 429.55
low-power 20

C3G

o� 0
high-power 710 - 758 idle 10

CAudio
o� 0 transmit 401 - 570
on 384.62

where Cl is coe�cient of state l, ti is the time on state

l and
∑k

i=1 ti = n

4 Support tool for Android studio and Eclipse

Android Studio and IntelliJ are two most popular inte-

grated development environments to develop Android

applications. These tools support programmers to ana-

lyze source code in term of syntax, it however does not

support programmers to analyze the e�ects to power

consumption of the source code that they are develop-

ing. Therefore, there is a demand of support tools which

are able to visualize the power states modeling and es-

timate the power consumption of the application. By

inspecting the states, programmers can �nd the energy

bugs and adjust source codes accordingly.

Implementing the approach proposed in section 2,

we develop a Plug-in, Power Consumption Estimator

(PCE), which is �t to Android Studio and IntelliJ. The

architecture of PCE is illustrated in Figure 8. PSE An-

alyzer component integrates JavaParser library [2] to

analyze the source code of an Android project. We de-

�ne power state model of each hardware component as

one input of our parser. PCE analyzes code statements

and constructs the power consumption automaton.

PCE has two core features:

� Analyzing the source code and visualize the power

consumption of each hardware component and the

whole application. This feature is described more in

Section 4.1

� Estimating the level of power consumption for cer-

tain use cases of the application. It is showed in

Section 4.2.

4.1 Power Consumption Analysis Tool

To assist the developers in observing the power states

of the application, PCE can analyze source code of a

program and visualize them in a state transition dia-

gram.

Figure 9 shows the visualization of the Wi� automa-

ton where the application turns on the WIFI to make

a request to a web server via http-get protocol.

Fig. 9: Visualization of the Wi� automata

Not only support to visualize individual PCA, the

PCE tool is able to make visualization of the general

automation. Figure 10 shows the PCA of an application

that plays audio and uses WIFI to transfer data.



An approach to modeling and estimating power consumption of mobile applications 7

Fig. 8: Architecture of Power Consumption Estimator plug-in

Fig. 10: Visualization of general PCA

Developers can observe the general power consump-

tion automaton generated by the current source code,

hence they are able to adjust the statements to optimize

the energy usage. Whenever source codes are changed,

the tool can reload and update the automaton corre-

spondingly.

4.2 Power Consumption Estimation Tool

The second feature of PCE is to estimate the power

consumption of certain use-cases of the application. To

to this, developers need to de�ne an use-case by de-

scribing a set of user actions. The PCE tool will ana-

lyze the de�ned use-case, then calculate the change of

device energy states and return the estimated power

consumption.

Syntax for de�ning the users actions is stated as

follows.

Component : Action.

where Component represent for hardware component

and Action is a power state transition. For example,

Audio : TurnOn de�nes an action to turn on the audio.

Moreover, we add additional information to show that

the application is executing some tasks in a unit of time.

Figure 11 show the estimated result after running a

input use-case of the application. This feature is helpful

for developers, if they want to know if the application

consumes much energy than expected for a certain use-

case.

5 Related Work

Nakajima [14] et al. proposed a model-based approach

to the representation and analysis of the asynchronous



8 Hong Anh Le, Anh Tu Bui, Ninh-Thuan Truong

Fig. 11: Result of Power Consumption Estimator

power consumption of Android applications. They in-

troduce a formal model, the power consumption au-

tomaton (PCA), show how the PCA is analyzed with

existing tools and present some discussions based on

their experience.

The paper [11] proposed an approach to estimat-

ing power consumption level by analyzing command

lines. The paper introduced Elens, a tool used to visu-

alize power consumption level on each command line.

This approach permitted calculating power consump-

tion level for command lines in a speci�c application

however it did not permit analyzing and checking the

power constrains in general cases.

Lide Zhang [16] proposed an approach that is both

lightweight in terms of its developer requirements and

provides �ne-grained estimates of energy consumption

at the code level. It achieves this using a novel combi-

nation of program analysis and per-instruction energy

modeling. The approach also provides useful and mean-

ingful feedback to developers that helps them to under-

stand application energy consumption behavior.

Aaron Carroll [5] presented a detailed analysis of the

power consumption of the Openmoko Neo Freerunner

mobile phone. They measure not only overall system

power, but the exact breakdown of power consumption

by the device's main hardware components. The paper

proposed this power breakdown for micro-benchmarks

as well as for a number of realistic usage scenarios.

These results are validated by overall power measure-

ments of two other devices: the HTC Dream and Google

Nexus One. They develop a power model of the Freerun-

ner device and analyse the energy usage and battery

lifetime under a number of usage patterns.

Abhinav Pathak et al. [15] presented Eprof whici

is a �ne-grained energy pro�ler for smartphone appli-

cations. The pro�ler compare the energy pro�le run-

ning in a conventional computer and a smartphone. It

can dectect wakelock bugs and show the location of the

bugs.

There are several work dedicated for improving bat-

tery e�ciency with individual hardware component. Zhenyun

Zhuang et al. [17] presented an adaptive location sens-

ing framework with design principles including substi-

tution, suppression, etc.. These design principles are

implemented as Android middleware and improved the

battery life up to 70 percentage. With WIFI connectiv-

ity, K. H. Kim et al. developed a system, calledWiFiSense,

employing user mobility information retrieved from low-

power sensors. Then the authors proposed some adap-

tive algorithms to conserve battery power while improv-

ing Wi-Fi usage.

Compared to above work, this paper introduces new

de�nitions power consumption automaton and presents

an approach to analyzing the power consumption at

implementation level. Our work also brings a helpful

tool for Android developers.



An approach to modeling and estimating power consumption of mobile applications 9

6 Conclusions

This paper presents an approach to modeling and es-

timating power consumption of Android applications.

We introduce new de�nitions of power consumption

automaton. Based upon these, power consumption au-

tomata of hardware components and the general au-

tomaton are constructed. Developers realize which parts

of source code might lead to energy leaks. In order to

estimate the power consumption in certain use-cases of

the application, we introduce time-related aspects and

power coe�cients for each state.

In practice, we develop a plug-in which is suitable

for Android studio and IntelliJ. This tool extracts source

codes in the project folders, visualizes power automata,

and estimates the power consumption for a prede�ned

use-case. The advantages of the proposed approach are

providing developers a visual modeling of power con-

sumed of each hardware component based on state ma-

chine and the support tool is a plug-in for two most pop-

ular development environments for Android communi-

ties. Our approach, however, currently works with static

source codes and the timer function handles with Nat-

ural number. In reality, we need to handle the case of

Real number because time aspect is continuous not dis-

crete. One limitation of this paper is that power states

extraction is directly based on some certain methods of

Android framework classes. In the future, we intend to

extend the parser to deal with the application which

has more complex structure and use-cases.

Acknowledgments This work is partly supported by

the project no. 102.03�2014.40 granted by Vietnam Na-

tional Foundation for Science and Technology Develop-

ment (Nafosted).

References

1. Android api. https://developer.android.com/
guide/index.html.

2. Javaparser. https://github.com/javaparser/
javaparser.

3. Mediaplayer class. https://developer.android.com/
reference/android/media/MediaPlayer.html.

4. Ali-Gombe, Aisha and Ahmed, Irfan and Richard III, Golden
G and Roussev, Vassil. AspectDroid: Android App Analysis
System. Proceedings of the Sixth ACM on Conference on
Data and Application Security and Privacy, pages 145�147,
2016.

5. Aaron Carroll, Gernot Heiser, et al. An analysis of power
consumption in a smartphone. In USENIX annual technical
conference, volume 14, pages 21�21. Boston, MA, 2010.

6. Marco Couto, Tiago Carcao, Jacome Cunha, Joao Paulo Fer-
nandes, and Joao Saraiva. Detecting anomalous energy con-
sumption in android applications. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Arti�-
cial Intelligence and Lecture Notes in Bioinformatics), 8771
LNCS, 2014.

7. Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein.
Android power management: Current and future trends.
In Enabling Technologies for Smartphone and Internet of
Things (ETSIoT), 2012 First IEEE Workshop on, pages 48�
53. IEEE, 2012.

8. TN Grzes and VV Solov'ev. Minimization of power consump-
tion of �nite state machines by splitting their internal states.
Journal of Computer and Systems Sciences International,
54(3):367�374, 2015.

9. John E. Hopcroft, Rajeev Motwani, and Je�rey D. Ullman.
Introduction to Automata Theory, Languages, and Compu-
tation (3rd Edition). Addison-Wesley, Boston, MA, USA,
2006.

10. K. H. Kim, A. W. Min, D. Gupta, P. Mohapatra, and J. Pal
Singh. Improving energy e�ciency of wi-� sensing on smart-
phones. In 2011 Proceedings IEEE INFOCOM, pages 2930�
2938, April 2011.

11. Li, Ding and Hao, Shuai and Halfond, William G. J. and
Govindan, Ramesh. Calculating source line level energy in-
formation for Android applications. Proceedings of the 2013
International Symposium on Software Testing and Analysis
- ISSTA 2013, page 78, 2013.

12. Júlio Mendonça, Ricardo Lima, Ermeson Andrade, and Gus-
tavo Callou. Assessing performance and energy consumption
in mobile applications. In Systems, Man, and Cybernetics
(SMC), 2015 IEEE International Conference on, pages 74�
79. IEEE, 2015.

13. Rahul Murmuria, Je�rey Medsger, Angelos Stavrou, and Jef-
frey M. Voas. Mobile application and device power usage
measurements. Proceedings of the 2012 IEEE 6th Inter-
national Conference on Software Security and Reliability,
SERE 2012, pages 147�156, 2012.

14. Shin Nakajima. Model-based Power Consumption Analysis
of Smartphone Applications. ACESMB@ MoDELS, 2013.

15. Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where
is the energy spent inside my app?: Fine grained energy ac-
counting on smartphones with eprof. In Proceedings of the
7th ACM European Conference on Computer Systems, Eu-
roSys '12, pages 29�42, New York, NY, USA, 2012. ACM.

16. Lide Zhang, Robert P Dick, Z Morley Mao, Zhaoguang
Wang, and Ann Arbor. Accurate Online Power Estimation
and Automatic Battery Behavior Based Power Model Gen-
eration for Smartphones.

17. Zhenyun Zhuang, Kyu-Han Kim, and Jatinder Pal Singh. Im-
proving energy e�ciency of location sensing on smartphones.
In Proceedings of the 8th International Conference on Mo-
bile Systems, Applications, and Services, MobiSys '10, pages
315�330, New York, NY, USA, 2010. ACM.

https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://developer.android.com/reference/android/media/MediaPlayer.html
https://developer.android.com/reference/android/media/MediaPlayer.html

	Introduction
	Modeling power consumption using power state machines
	Modeling power states of a hardware component
	Modeling power states in mobile applications

	Estimating power consumption of mobile applications
	Support tool for Android studio and Eclipse
	Power Consumption Analysis Tool
	Power Consumption Estimation Tool

	Related Work
	Conclusions

