
July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

PRESERVATION OF CLASS INVARIANTS IN REFACTORING

UML MODELS

THI-HUONG DAO

VNU, University of Engineering and Technology
144 Xuan Thuy, Cau Giay, Ha Noi, Vietnam

huongdt.di12@vnu.edu.vn

XUAN-TRUONG NGUYEN

Hanoi Pedagogical University No 2

Vinh Phuc, Vietnam

nguyenxuantruong@hpu2.edu.vn

NINH-THUAN TRUONG

VNU, University of Engineering and Technology

144 Xuan Thuy, Cau Giay, Ha Noi, Vietnam

thuantn@vnu.edu.vn

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

In the field of software engineering, class invariants is known as a valuable term

employed to delineate the semantic of UML class diagram elements (attributes and
relationships) and must be held throughout the life-time of instances of the class. Refac-

toring, the activities of re-distributing classes, attributes and methods across the class

hierarchy, is a powerful technique that use to improve the quality of software systems.
Performing refactoring on UML class diagrams obviously requires a special investigation

of invariant-preserving on the refactored models. In this paper, we propose an approach

to preserve class invariants in refactoring UML models. In order to achieve this aim, we
first formalize the class diagram along with class invariants by mathematical notations.

We then constitute the rules for five refactoring operations (deal with class hierarchies)

in such a way to guarantee class invariants as well as proving correctness of the refactor-
ing rules. Finally, the paper also makes provision of the proposed approach for practical
applications in software re-engineering development process.

Keywords: Class invariants; refactoring UML models; invariant-preserving.

1. Introduction

During the manipulation, the software system has not only to maintain, but also

to evolve as its obvious intrinsic properties. This evolution is performed for the

sake of improving the quality of software models such as extensibility, modularity,

1

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

2 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

re-usability, etc. One of the most common techniques which is widely adopted in

this process is re-engineering and/or refactoring software codes or models.

Refactoring, first introduced by Opdyke in his thesis, “is the process of changing

a software system in such a way that it does not alter the external behavior, yet

improves its internal structure” [16]. The nature of this process is to re-distribute

classes, attributes and methods around the inheritance relationship in order to

facilitate future adaptations and extensions.

Class invariants are defined as an assertion that represents the conditions (con-

straints) of the attributes, which must be true at every stable point in time during

the life of an object [17]. The characteristics of class invariants are as follows:

• executing as an additional constraint for pre and post-conditions that ap-

propriate to all public methods for every instance of the class;

• respecting the initial value of a constructor;

• being kept by the public operations of the class.

Consequently, class invariants plays an essential role in describing the precisely

semantics of a UML class diagram in a specific context. Therefore, any activity that

makes a difference to the software model must take into account the transforming

of these invariants.

The process of refactoring on UML models will obviously alter their static struc-

ture (e.g., class diagram, object diagram, etc.) as well as dynamic behavior (e.g.,

state chart diagram, sequence diagram, etc.). In this paper, we specially concen-

trate on the changing of the static aspect of the UML models, especially on class

diagrams and their invariants as well. These transformations may make the model

quality become worse, such as class invariants of the initial model is violated. This,

for software developers, is one of the big challenges that has to face out.

Basing on classification criteria of complexity, Opdyke [16] showed a list of

refactorings that are categorized into two groups, namely primitive refactorings

and composite refactorings. The first kind of refactorings usually refers to quite

simple activities such as MoveAttribute, MoveAssociationEnd, PushDownAttribute,

RenameAttribute, ExtractClass, ExtractSuperclass, PullUpMethod, etc.. These ac-

tivities are considered elementary behavior-preserving transformations in refactor-

ing. The remaining group relates to complex transformations as a composition of

primitive refactorings [4], namely chaining and set iteration. In other words, a com-

posite refactoring is usually built from a set of primitive refactorings for the sake of

exposing more complex behavior-preserving transformations that are more mean-

ingful to the user.

A catalog of refactorings is also represented by in Fowler et al. [7] and is or-

ganized as follows: composing methods, moving features between objects, organiz-

ing data, simplifying conditional expressions, and dealing with generalizations. Our

aims in this paper are to tackle the problem of how to maintain class invariants

in refactoring UML class diagram. Therefore, these activities make some composite

refactorings, mostly dealing with moving methods and attributes around a hierarchy

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 3

of inheritance or creating new classes [16]. Concerning this problem, we concentrate

on constructing the transformation rules that relate to generalizing refactoring op-

erations, namely Folding, Abstraction, Composition, Factoring and Unfolding.

Several approaches have been proposed to refactor UML models which using

OCL contracts [18], graphical formal modeling notation as named UML-B [14], and

model-to-model (M2M) transformations [22]. Their research results, however, are

only taken refactoring class diagrams into account in a informal or semi-formal way

without having an extensive view of preservation of class invariants. Therefore, we

propose in this paper an approach to preserving class invariants in refactoring UML

models. The main contributions of this paper are (1) formalizing the UML class dia-

gram along with their class invariants by using mathematical notations, (2) defining

the template that makes use for describing refactoring operation, (3) constructing

the rules for refactoring operations in such a way that preserve the class invariants

and proving correctness of them as well, and (4) presenting the provision of the

proposed approach for practical applications in software re-engineering development

process.

The rest of the paper is organized as follows. Section 2 gives an overview of

the object oriented models as well as some refactoring operations. We formalize

the UML class diagrams along with their invariants by mathematical notations as

the foundation theory for transformation rules in Section 3. Section 4 presents some

works related to our research. Finally, Section 5 concludes the paper and gives some

directions for future works.

2. Refactoring with object-oriented model

In this section, we first present some background knowledge of the object oriented

model. Then, some refactoring operations that deal with inheritance in refactoring

UML class diagrams are depicted in the overview.

2.1. The Object-Oriented Model

An object oriented model is a logic organization of the real world objects (enti-

ties) along with constraints on them as well as the relationships among objects [3].

An object-oriented model is casually represented by an UML class diagram (static

structure of the object oriented model) and is composed of the following essential

concepts:

(1) Class: is a means of grouping all the objects which share the same set of

attributes and methods. An object must belong to only one class as an instance

of that class. A class is similar to an abstract data type or may also be a

primitive type (no attributes), e.g., integer, string, boolean.

• Attributes: represent useful information of a instance of a class (the set of

values for the attributes of the object are defined as state).

• Methods: define class behavior (the set of methods which operate on the

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

4 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

state of the object).

(2) The relationship among classes: In the object oriented model, classes are

interacted with each other in particular ways that include various types of

logical connections. In this paper, we are interested in some followed relation

types:

• Association: is a broad term that encompasses just about any logical con-

nection or relationship between classes.

• Aggregation: refers to the formation of a particular class as a result of one

class being aggregated or built as a collection.

• Composition: is the composition relationship which is very similar to the

aggregation relationship, with the only difference being its key purpose of

emphasizing the dependence of the contained class to the life cycle of the

container class. It means that the contained class will be obliterated when

the container class is destroyed.

• Realization: denotes the implementation of the functionality defined in one

class by another class.

• Inheritance: derives a new class (subclass) from an existing class (super-

class). The subclass inherits all the attributes and methods of the existing

class and may have additional attributes and methods. Inheritance enables

you to create new classes that reuse, extend, and modify the behavior that

is defined in other classes.

• Class Hierarchy: the class hierarchy defines the inheritance relationship

between the classes.

(3) Constraint of a class: represents for some conditions, restrictions or asser-

tions which relate to elements of a class (attributes, methods) [9]. Constraint is

usually specified by a Boolean expression which must evaluate to a true or false

and must be satisfied (i.e., evaluated to true) by a correct design of the system.

Constraints that related to class diagram are classified into three categories as

follows:

• Class invariants: is a condition which defines on class attributes and every

instance of the class must satisfy;

• Pre-conditions of a method: is a condition that method has to satisfy when

it begins to execute;

• Post-conditions of a method: is a condition that method has to satisfy

after executing.

Roughly speaking, an object oriented model includes multiple classes along with

their relationships as well as constraints on them.

2.2. Refactoring Class Hierarchies

Class diagram commonly serves as an effective graphical means to represent an

object-oriented model due to the compatibility of characteristics between them. In

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 5

C

D

E

a) Folding

C

E

C'

b) Abstraction

D

C

E

c) Composition

D

C

D

E

c) Factoring

C' D'

C

e) Unfolding

E

C' D'

Fig. 1: Refactoring class hierarchies

this subsection, in order to demonstrate the refactoring process related to gener-

alization in object-oriented model, we will describe a set of operations that deal

with inheritance in refactoring UML class diagrams, namely Folding, Abstraction,

Composition, Factoring and Unfolding [18] as shown in Fig. 1. In general, these

operations are described as follows:

(1) Folding operation: In the case of two classes which have a direct inheritance

relationship, nevertheless, there is no particular interest in the behavior of a base

class, either because it is an abstract class or because the amount of operations

of the class does not justify having another level in the hierarchy. When that

Folding operation joins these classes into one for the sake of reducing the level

of a class hierarchy.

(2) Abstraction operation: If a class with a long list of attributes and methods that

make it difficult to reuse as well as maintain the software model. Abstraction

operation then creates a new base class that can abstract the more general

behavior than before one and construct a direct inheritance relationship between

them.

(3) Composition operation: The multiple inheritances in object oriented model

is currently avoided because of the issue with clashes resolving which parent

method is being called, etc. Composition operation addresses this problem by

gathering two classes without inheritance relationship to each other in a new

one which groups their behaviors.

(4) Factoring operation: One of the purposes of object oriented model is to elim-

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

6 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

Fig. 2: Refactoring class associations

inate duplicated methods and attributes. Therefore, the Factoring operation

accomplishes this goal by factoring equivalent methods and attributes in a new

base class starting from two classes without inheritance relationship to each

other.

(5) Unfolding operation: When methods of a class do not refer simultaneously to all

the attributes, but only make reference to some of them. The Unfolding opera-

tion divides the behavior of this class, generating two classes which maintain a

direct inheritance relationship. Such classes arise from carrying out a partition

of the attributes in two disjoint subsets

2.3. Refactoring Class Associations

Along with the change of attributes and methods of the classes during refactoring

is the altering of associations. In this subsection, we describe a summary the results

of previous research that relate to the change of associations in refactoring process

and are depicted in Fig. 2.

(1) Adding a transitive association: Let two given associations, between classes A

and B, between classes B and C, respectively. At that, an association may be

derived between A and C, determining the appropriate association type, the

multiplicities and the navigability of each association end [23].

(2) Deleting a transitive association: Given an association between classes A and

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 7

B, an association between classes B and C, and an association between A and

C, the transitive association between A and C may be deleted [23].

(3) Substitution of an association: Given an association R, it may be substituted

with a less constrained association of the same name, i.e., in any association

R, an association end E with multiplicity MULT1 may be substituted with an

association end E with multiplicity MULT2, where MULT1 ⊆ MULT2 [5].

(4) Promotion of an association: Given an association R with multiplicity MULT1

(connected to a class A) and multiplicity MULT2 (connected to a class B), if

B is a subclass, then R may be promoted to the superclass of B with the

condition that its multiplicity with A after the transformation is optional, i.e.

0 ∈ MULT1 [5].

(5) Demotion of an association: Given an association R with multiplicity MULT1

(connected to a class A) and multiplicity MULT2 (connected to a class C), if

B is a subclass, then R may be demoted to the subclass of B [5].

(6) Joint of unidirectional associations: Two unidirectional associations with nav-

igability in opposite direction may be joined in a plain bidirectional one [8].

3. An approach to invariant-preserving in refactoring UML class

diagram

An object-oriented model is usually represented by a class diagram in the UML that

contains information about the static structure of a system. From the structural per-

spective, a class diagram consists of two main components, classes and relationships

among them (also known as associations) [2]. From the semantic perspective, a class

diagram also includes the constraints that attach to both components. Solving the

problem of refactoring class diagram in UML models will naturally affect classes

and their associations as well. Therefore, tackling the issue of semantic preserving

must comprehensively consider the impact on both these components. Note that,

we have only addressed the altering related to structure of classes in this research

and suppose that the associations will auto change to fit the evolution model. It

means that associations are always validated during the refactoring process.

In this Section, we first introduce the formal representation (mathematically) of

model elements along with their semantic constraint definitions. We then describe

the structure of a refactoring operation as well as the rules that employing for

the refactoring process. We continue to prove the correctness of the refactoring

rules. Finally, a small experiment is depicted as an initial guide for developers in

performing practical application.

3.1. Formal representation of a UML class diagram

Definition 1 (UML class diagram - Model). A UML class diagram, also called

a model M, is a 2-tuple 〈ΣC ,ΣA〉, where ΣC is a set of classes and ΣA is a set of

associations.

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

8 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

Definition 2 (Class). A class C ∈ ΣC is represented by a 3-tuple

C = 〈NC ,MC , AC〉, where NC is the name of the class, MC is a set of methods and

AC is a set of attributes.

Definition 3 (Method). A method mi
C ∈ MC is represented by a 3-tuple

mi
C =

〈
N i

MC
, P i

MC
, Ri

MC

〉
, where N i

MC
is the name of the method, P i

MC
is a set

of parameters and Ri
MC

is the return type.

Definition 4 (Attribute). An attribute aiC ∈ AC is represented by a 3-tuple

aiC =
〈
N i

AC
, T i

AC
, P i

AC

〉
, where N i

AC
is the name of the attribute, T i

Ai
is the attribute

type and P i
AC

is a predicate that represents for attribute constraint.

Definition 5 (Class invariants). An invariant INVC of the class C is described

by the conjunction of the predicates of all the related attributes in the set AC .

Let P i
AC

is the predicate that represents for the constraint of the attribute

aiC ∈ AC (in the case the attribute aiC that has no constraint, the predicate P i
AC

will be assigned by true value) and |AC | = n (the number of elements of the set

AC), the invariants of the class C is depicted by the formula INVC =
∧n

i=1 P
i
AC

.

Definition 6 (Model invariants). An invariant F of the modelM is defined by

the conjunction of all the class invariants that are comprised in this model.

For simplicity, let a model M which has two classes C and D, the invariants

of the model M is depicted by the formula F = INVC

∧
INVD, where INVC and

INVD are the invariants of classes C and D, respectively.

Definition 7 (Association). An association as ∈ ΣA is represented by a 4-tuple

as = 〈Nas, Eas1 , Eas2 , NAV 〉, where Nas, Eas1 , Eas2 , NAV are the names of associa-

tion, the association end 1, association end 2 and the navigability of this association,

respectively.

Definition 8 (Association End). An Association End EASi is represented by a

2-tuple EASi
= 〈NCL,MULTi〉, where i ∈ [1, 2] and NCL,MULTi are the name of

class and the multiplicity of this association end, respectively.

Definition 9 (Semantic Equivalent Methods). Two given methods mi
C ∈MC

of the class C and mj
D ∈ MD of the class D. mi

C and mj
D are called semantic

equivalence that is denoted by M i
C
∼= M j

D if only if:


N i

MC
≡ N j

MD
//duplicate names

P i
MC
≡ P j

MD
//duplicate parameters

Ri
MC
≡ Rj

MD
//duplicate types

Then MC∪MD are divided into equivalence classes denoted byMC,D = {mij
C,D},

where:

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 9

mi
C ,m

j
D ∈ mij

C,D ⇐⇒


mi

C ∈MC

mj
D ∈MD

M i
C
∼= M j

D

We denote a set of mi
C which is in MC and not in arbitrary mij

C,D by the notation

MC \MC,D.

Definition 10 (Composable Attributes). Two given attributes aiC ∈ AC of

the class C and ajD ∈ AD of the class D. aiC and ajD are called composation that

denoted by Ai
C
∼= Aj

D if only if:

{
N i

AD
≡ N j

AD
//duplicate names

T i
AD
≡ T j

AD
//duplicate types

and P i
AC

and P j
AD

cannot be a coincidence.

Then AC ∪AD are divided into composation classes denoted by AC,D = {aijC,D},
where:

aiC , a
j
D ∈ aijC,D ⇐⇒


aiC ∈ AC

ajD ∈ AD

Ai
C
∼= Aj

D

We denote a set of aiC which is in AC and not in arbitrary Aij
C,D by the notation

AC \ AC,D.

As such, the refactoring process is defined through operational refactoring as

follows:

Definition 11 (Refactor). A refactor R is denoted by:

R :M OPname7−−−−−→M′

where M and M′ are the original model and its evolution, respectively, OPname is

the applied operational refactoring name.

Definition 12 (Preservation of Class Invariants in Refactoring). A refactor

is said to be preservation of class invariants if with any refactoring operation ex-

ecution, the refactored model invariants are satisfied the original model invariants

and the restriction of refactored model invariants to original model is equal to the

initial model invariants.

Formally, let R : M OPname7−−−−−→ M′ be a refactor, R is called the preservation of

class invariants if: {
F =⇒ F ′

F ′|M= F

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

10 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

Where F and F ′ are the predicate formulas that describe invariants of the orig-

inal and refactored models, respectively. In this case, if F =⇒ F ′, then the values

of attribute after refactoring are still in expected range and F ′|M= F guarantees

that the refactored model preserves the invariants of the initial model.

3.2. The structure of a refactoring operation

Before going to clarify the transformation steps in refactoring UML models. We

describe the structure of each refactoring operation which is composed of five ele-

ments, specially (1) Operation name, (2) Applied situation, (3) Original model, (4)

Evolution model, and (5) UML representation, as shown in Table 1.

Table 1: The structure of a Refactoring operation.

Identifier Explanation

Operation Name Describing the name of a refactoring operation

Applied situation Describing the typical situation where applying a refactoring operation

Original model Describing the initial model
Evolution model Describing the result model after applying a refactoring operation

UML representation Giving a UML graphical notations

3.3. The refactoring rules

In this paper, we only focus on preserving of class invariants (the constraints on

attributes) during the refactoring process. Therefore, we assume that all refac-

tored methods meet the requirements for the behavioral preservation (the pre/post-

conditions of the methods are preserved).

As stated above, a composite refactoring is built from some primitive refactor-

ings. Furthermore, these primitive refactorings have been proved the preservation of

semantic in [10]. If we make use of these primitive refactorings, we will assume that

all of them are validated. In addition, we also make some following assumptions

when applying refactoring operations to the original model:

• The names of the methods in the different classes but the same function must

be the same (if the methods have the same function but different names, we

will proceed to rename these methods in order to make them the same);

• The names of the attributes in the different classes but the same semantics must

be the same (if the attributes have the same semantic but different names, we

will proceed to rename these attributes in order to make them the same).

Refactoring is referred to as complex work that involves a lot of different activi-

ties. The refactorings activities perform on class diagram can be classified into five

basic operations that comprising addition/removal/move the features (attributes,

methods or associations), generalization and specialization [21]. In this paper, we

restrict the process of refactorings on the two last actions use the generalization

relationship to transfer elements up and down a class hierarchy, namely Folding,

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 11

Fig. 3: Folding operation

Abstraction, Composition, Factoring and Unfolding. Note that, our purpose is to

make refactoring rules, the formulas that determine class invariants of the refactored

model, for each refactoring operation in order to construct the evolution model in

such a way that preserve the invariants of initial model. These refactoring operations

are clarified sequentially according to the template described in Subsection 3.2.

(1) The Folding operation

• Operation name: Folding

• Applied situation:

– components: let two classes C and D which have a direct inheritance

relationship;

– rational: the behavior of the base class C has no received interest or

the amount of methods of the class does not justify having another

level in the hierarchy. So the developers want to reduce the level of a

class hierarchy in those above cases;

– performance: joint two classes C and D into new class E that gathering

the behavior of both.

• Original model M:

– base class C = 〈NC ,MC , AC〉;
∗ MC =

{
m1

C ,m
2
C , ...,m

n
C

}
∗ AC =

{
a1C , a

2
C , ..., a

m
C

}
∗ INVC =

∧m
i=1P

i
AC

, where P i
AC

is the constraint of aiC .

– derived class D = 〈ND,MD, AD〉;
∗ MD =

{
m1

D,m2
D, ...,mp

D

}
∗ AD =

{
a1D, a2D, ..., aqD

}
∗ INVD =

∧q
i=1P

i
AD

, where P i
AD

is the constraint of aiD.

– MC,D = {mij
C,D} and |MC,D| = k (0 ≤ k ≤ min (n, p))

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

12 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

– AC,D = {aijC,D} and |AC,D| = h (0 ≤ h ≤ min (m, q))

– MC,D = ∅ and AC,D = ∅.
• Evolution model M′:

– class E = 〈NE ,ME , AE〉, is defined as follows:

∗ ME = MC ∪MD

∗ AE = AC ∪AD

∗ INVE =
∧m+q

i=1 P i
AE

, where P i
AE

is the constraint of aiE and deter-

mined by the rule:

P i
AE

=

{
P i
AC

if aiAE
∈ AC

P i
AD

if aiAE
∈ AD

• UML representation: the original/evolution models for the Folding op-

eration as illustrated in Fig. 3. Suppose that class C that contains two

attributes a1, a2 and two methods m1,m2; class D that contains two at-

tributes a3, a4 and two methods m3,m4 and class D is the descendant of

class C. However, class C does not show its role in the inheritance rela-

tionship (i.e., C is an abstract class but has only one subclass D). The

Folding operation unites these classes into new class E that gathers the

elements of both.

(2) The Abstraction operation

• Operation name: Abstraction

• Applied situation:

– components: let class C which has a long methods and attributes;

– rational: difficult to reuse and maintain the software models as well;

– performance: create a new base class E that abstract the more general

behavior identified inside another class and create the class C ′ is the

remain part of the class C after extracting the class E, constructed a

inheritance relationship between the class E and the class C ′.

• Original model M:

– class C = 〈NC ,MC , AC〉;
∗ MC = {m1

C ,m
2
C , ...,m

p
C , ...,m

n
C} (1 ≤ p ≤ n). Assume that

M1
C = {m1

C ,m
2
C , ...,m

p
C} and M2

C = {mp+1
C ,mp+2

C , ...,mn
C}

∗ AC = {a1C , a2C , ..., a
q
C , ..., a

m
C } (1 ≤ q ≤ m).

Assume that A1
C = {a1C , a2C , ..., a

q
C} and

A2
C = {aq+1

C , aq+2
C , ..., amC }.

∗ INVC =
∧m

i=1P
i
AC

, where P i
AC

is the constraint of aiC .

• Evolution modelM′: we assume without loss of generality that all methods

and attributes are pulled up to the new base class E, which are ordered

from 1 to p, and 1 to k, respectively.

A new base class E is the superclass of class C ′ and is defined as follows:

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 13

Fig. 4: Abstraction operation

– class E = 〈NE ,ME , AE〉, where:

∗ ME = M1
C = {m1

C ,m
2
C , ...,m

p
C}

∗ AE = A1
C = {a1C , a2C , ..., a

q
C}

∗ INVE =
∧q

i=1P
i
AE

, where P i
AE

is the constraint of aiE and deter-

mined by the rule: P i
AE
≡ P i

A1
C

.

– Class C ′ = 〈NC′ ,MC′ , AC′〉, where:

∗ MC′ = M2
C = {mp+1

C , ...,mn
C}

∗ AC′ = A2
C = {aq+1

C , ..., amC }
∗ INVC′ =

∧m−q
i=1 P i

AC′ , where P i
AC′ is the constraint of aiC′ and

determined by the rule: P i
AC′ = P i+q

A2
C

.

• UML representation: the original/evolution models for the Abstraction

operation as illustrated in Fig. 4. Suppose that class C contains four at-

tributes a1, a2, a3, a4 and four methods m1,m2,m3,m4, the Abstraction

operation extracts attributes a1, a2 and methods m1,m2 from class C into

a new base class E. Class C ′ is the remain part of class C which has

two attributes a3, a4 and two methods m3,m4. Finally, the inheritance

relationship between class E and class C ′ is created.

(3) The Composition operation

• Operation name: Composition

• Applied situation:

– components: let two classes C and D have no inheritance relationship

with each other;

– rational: avoiding multiple inheritances;

– performance: create the class E that is composed by group as well as

gather behavior of both classes C and D.

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

14 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

Fig. 5: Composition operation

• Original model M:

– class C = 〈NC ,MC , AC〉;

∗ MC =
{
m1

C ,m
2
C , ...,m

n
C

}
∗ AC =

{
a1C , a

2
C , ..., a

m
C

}
∗ INVC =

∧m
i=1P

i
AC

, where P i
AC

is the constraint of aiC .

– class D = 〈ND,MD, AD〉;

∗ MD =
{
m1

D,m2
D, ...,mp

D

}
∗ AD =

{
a1D, a2D, ..., aqD

}
∗ INVD =

∧q
i=1P

i
AD

, where P i
AD

is the constraint of aiD.

– MC,D = {mij
C,D} and |MC,D| = k(0 ≤ k ≤ min (n, p))

– AC,D = {aijC,D} and |AC,D| = h (0 ≤ h ≤ min (m, q))

– MC,D 6= ∅
– AC,D 6= ∅

• Evolution model M′:

– class E = 〈NE ,ME , AE〉 is defined as follows:

∗ ME = {mi
E : mi

E ∈MC,D} ∪ (MC \MC,D) ∪ (MD \MC,D)

∗ AE = {aiE : aiE ∈ AC,D} ∪ (AC \ AC,D) ∪ (AD \ AC,D)

∗ INVE =
∧m+q−h

i=1 P i
AE

, where P i
AE

is the constraint of aiE and

determined by the rule:

P i
AE

=


P i
AC
∨ P i

AD
if aiAE

∈ AC,D

P i
AC

if aiAE
∈ (AC \ AC,D)

P i
AD

if aiAE
∈ (AD \ AC,D)

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 15

Fig. 6: Factoring operation

• UML representation: the original/evolution models for the Composition

operation as illustrated in Fig. 5. Suppose that class C that contains three

attributes a1, a2, a3 and three methods m1,m2,m3; class D that contains

three attributes a1, a2, a4 and three methods m1,m2,m4; note that, a1, a2
are Composable Attributes (Def. 10) and m1,m2 are Semantic Equivalent

Methods (Def. 9); C and D have without inheritance relationship. The

Composition operation creates class E that is composed by grouping as

well as gathering elements of both classes C and D without duplication of

Semantic Equivalent Methods and Composable Attributes.

(4) The Factoring operation

• Operation name: Factoring

• Applied situation:

– components: let two classes C and D which have without inheritance

relationship to each other but have some semantic equivalent methods

and composable attributes as well;

– rational: eliminate duplicated methods and attributes;

– performance: create a new base class E that is composed by seman-

tic equivalent methods and composable attributes from the class C

and the class D, the classes C ′ and D′ are the remain part of the

class C and the class D, respectively. Classes C ′ and D′ have a direct

inheritance relationship from class E.

• Original model M:

– class C = 〈NC ,MC , AC〉;
∗ MC =

{
m1

C ,m
2
C , ...,m

n
C

}
.

∗ AC =
{
a1C , a

2
C , ..., a

m
C

}
.

∗ INVC =
∧m

i=1P
i
AC

, where P i
AC

is the constraint of aiC .

– class D = 〈ND,MD, AD〉;
∗ MD =

{
m1

D,m2
D, ...,mp

D

}

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

16 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

∗ AD =
{
a1D, a2D, ..., aqD

}
∗ INVD =

∧q
i=1P

i
AD

, where P i
AD

is the constraint of aiD.

– MC,D = {mij
C,D} and |MC,D| = k(0 ≤ k ≤ min (n, p))

– AC,D = {aijC,D} and |AC,D| = h (0 ≤ h ≤ min (m, q))

– MC,D 6= ∅ and AC,D 6= ∅.
• Evolution model M′:

– class C ′ = 〈N ′C ,MC′ , AC′〉 is defined as follows:

∗ MC′ = {mi
C′ : mi

C′ ∈ (MC \MC,D)}.
∗ AC′ = {aiC′ : aiC′ ∈ (AC \ AC,D)} =

{
ah+1
C , ah+2

C , ..., amC
}

.

∗ INVC′ =
∧(m−h)

i=1 P i
AC′ =

∧m
i=h+1P

i
AC

, where P i
AC′ is the con-

straint of aiC′ and determined by the rule: P i
AC′ = P

(i+h)
AC

,

i ∈ {1, 2, ..., (m− h)}.
– Class D′ = 〈ND′ ,MD′ , AD′〉 is defined as follows:

∗ MD′ = {mi
D′ : mi

D′ ∈ (MD \MC,D)}
∗ AD′ = {aiD′ : aiD′ ∈ (AD \ AC,D)} =

{
ah+1
D , ah+2

D , ..., aqD
}

∗ INVD′ =
∧(q−h)

i=1 P i
AD′ =

∧q
i=h+1P

i
AD

, where P i
AD′ is the constraint

of aiD′ and determined by the rule: P i
AD′ = P

(i+h)
AD

,

i ∈ {1, 2, ..., (q − h)}.
– class E = 〈NE ,ME , AE〉 is defined as follows:

∗ ME = {mi
E : mi

E ∈MC,D}
∗ AE = {aiE : aiE ∈ AC,D}
∗ INVE =

∧h
i=1P

i
AE

, where P i
AE

is the constraint of aiE and deter-

mined by the rule: P i
AE

= P i
AC
∨ P i

AD
if aiAE

∈ AC,D

• UML representation: the original/evolution models for the Factoring op-

eration as illustrated in Fig. 6. Suppose that class C that contains three

attributes a1, a2, a3 and three methods m1,m2,m3; class D that contains

three attributes a1, a2, a4 and three methods m1,m2,m4; note that, a1, a2
are Composable Attributes and m1,m2 are Semantic Equivalent Methods;

C and D have without inheritance relationship. The Factoring operation

creates class E that is composed by gather Semantic Equivalent Methods

(m1,m2) and Composable Attributes (a1, a2). Classes C ′ and D′ are the

remain parts of class C and class D, respectively and both of them are

descendants of class E.

(5) The Unfolding operation

• Operation name: Unfolding

• Applied situation:

– components: let class C with a long methods which does not reference

simultaneously to all attributes, but only make reference to some of

them;

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 17

Fig. 7: Unfolding operation

– rational: optimizing performance of source code;

– performance: divide the method of a class C, generating multi classes

which maintain a direct relationship. Such the classes arise from car-

rying out a partition of the attributes in many disjoint subsets.

• Original model M:

– class C = 〈NC ,MC , AC〉;
∗ MC = {m1

C ,m
2
C , ...,m

n
C}

∗ AC = {a1C , a2C , ..., a
p
C , a

p+1
C , ..., ap+q

C , ap+q+1
C , ..., a(p + q + m)C}.

Assume that A1
C = {a1C , a2C , ..., a

p
C}, A2

C = {ap+1
C , ap+2

C , ..., ap+q
C }

and A3
C = {ap+q+1

C , ap+q+2
C , ..., ap+q+m

C }.
∗ INVC =

∧p+q+m
i=1 P i

AC
, where P i

AC
is the constraint of aiC .

– Without loss of generality we may assume that:

∗ the code segments S1, S2 belonging to the method m1
C refer to the

variables a1C , ..., a
p
C and ap+1

C , ..., ap+q
C , respectively;

∗ the method m1
C is composed of by just two code segments S1 and

S2;

∗ we take into account only method m1
C , other methods are done in

the similar manner.

• Evolution model M′:
– class C ′ = 〈NC′ ,MC′ , AC′〉 is defined as follows:

∗ MC′ = {mi
C′ : mi

C′ that is composed by code segment S1}
∗ AC′ = A1

C = {aiC : 0 ≤ i ≤ p}
∗ INVC′ =

∧p
i=1P

i
AC′ , where P i

AC′ = P i
AC

, is the constraint of aiC′ .

– class D′ = 〈ND′ ,MD′ , AD′〉 is defined as follows:

∗ MD′ = {mi
D′ : mi

D′ that is composed by code segment S2}
∗ AD′ = A2

C = {aiC : (p + 1) ≤ i ≤ q}

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

18 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

∗ INVD′ =
∧p+q

i=p+1P
i
AD′ , where P i

AD′ = P i
AC

, is the constraint of

aiD′ .

– class E = 〈NE ,ME , AE〉 is defined as follows:

∗ ME = {mi
C : mi

C ∈ (MC \m1
C)}

∗ AE = A3
C = {aiC : aiC ∈ (AC \ (AC′ ∪AD′))}

∗ INVE =
∧p+q+m

i=p+q+1P
i
AE

, where P i
AE

= P i
AC

, is the constraint of

aiE , and:

– classes C ′ and D′ have a direct inheritance relationship from class E

and AC′ ∩AD′ = ∅.
• UML representation: the original/evolution models for the Unfolding op-

eration as illustrated in Fig. 7. Suppose that class C with a long method

m1 which includes code segments S1 and S2; S1 refers to a1 and S2 refers

to a2. Unfolding operation divides m1 into m1′ and m2′ methods; creat-

ing class C ′ that contains m1′ and a1, class D′ that contains m2′ and a2
and class E is the remain part of class C after extracting method m1 and

attributes a1, a2. Classes C ′ and D′ are subclasses of class E.

3.4. Validation of the proposed refactoring rules

Subsection 3.1 has sequentially presented the formalized concepts of UML class

diagram elements in which we are particularly interested in some key concepts,

namely Class invariants and Model invariants. Furthermore, Def. 12 also defines

the concept of preservation of class invariants in refactoring process. For the sake

of correctness of the proposed approach, we are going to introduce a proposition

concerning the preservation of class invariants in refactoring process.

In order to facilitate the next presentation, we denote the set of refactoring

operations that are introduced in Subsection 3.3 by the set OPERATIONS:

OPERATIONS = {Folding,Abstraction,Composition, Factoring, Unfolding}.

Proposition 1. For all refactors R :M OPname7−−−−−→M′, OPname ∈ OPERATIONS,

R is satisfied all conditions of preservation of class invariants.

Proof.

Let R be a refactor: M OPname7−−−−−→ M′ and OPname be an arbitrarily chosen

element of OPERATIONS. We must prove that R is satisfied all conditions of

preservation of class invariants. According to Def. 12, we must prove that:{
F =⇒ F ′

F ′|M= F

Where F and F ′ are the predicate formulas that describe invariants ofM andM′,
respectively.

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 19

As previously explained, the key idea of refactoring process is to re-distribute

model elements (classes, attributes and methods) around the class hierarchy rela-

tionship. Especially, the operations that involve attributes are fallen into two cases

as follows:

(1) The first case comprises activities that just simple perform a re-distribution of

discrete attributes (non-existing of composable attributes in the initial model),

such as Folding, Abstraction, Unfolding operations.

(2) The other case is composed of activities that not only re-distribute discrete

attributes but also consider uniting composable attributes in the initial model,

such as Composition, Factoring operations.

For the first case, it is clear that the two conditions of the Def. 12 are easily

satisfied because a re-distribution of discrete attributes does not lead to a change

their constraints. In other words, the invariants of the refactoring model always

preserves the invariants of the original one.

In the second case that involves both a re-distribution of discrete attributes

and uniting composable attributes. From the first case, the preservation of class

invariants is now tackled only for attributes that satisfy composable conditions.

Refactoring rule of uniting the constraints of composable attributes are shown

in Subsection 3.3 as follows:

P i
AE

= P i
AC
∨ P i

AD
if aiAE

∈ AC,D. (1)

Now, we will prove that the two conditions of Def. 12 will be satisfied by applying

the formula (1) in the refactoring process1.

Let AC , AD, INVC , INVD be the set of attributes, invariants of classes C and

D, respectively and denote by:

AC =
{
a1C , a

2
C , ..., a

m
C

}
and INVC =

∧m
i=1P

i
AC

AD =
{
a1D, a2D, ..., aqD

}
and INVD =

∧q
i=1P

i
AD

where P i
AC

, P i
AD

are the predicates that represent for the constraint of the attributes

aiC , a
i
D, respectively.

Assume that AC,D = {aijC,D} be the set of Composable Attributes (Def. 10) of

the classes C,D; |AC,D| = h (h is the cardinality of AC,D), where h ≤ min(m, q)

and AC,D 6= ∅. We call E is the class that contains all of Composable Attributes of

both C and D, then AE =
{
a1E , a

2
E , ..., a

h
E

}
= AC,D.

Without loss of generality, we reorder the elements of the sets AC , AD and AE

1Due to the combination of conjunction and disjunction operations, we just prove for the case of
the initial model that contains two classes, the other cases that initial model has multiple classes
will turn into two classes by combination of these classes.

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

20 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

as follows:

AC =
{
a1C , a

2
C , ..., a

h
C , a

h+1
C , ..., amC

}
; INVC = (∧hi=1P

i
AC

) ∧ (∧mi=h+1P
i
AC

)

AD =
{
a1D, a2D, ..., ahD, ah+1

D , ..., aqD
}

; INVD = (∧hi=1P
i
AD

) ∧ (∧qi=h+1P
i
AD

)

AE =
{
a1E , a

2
E , ..., a

h
E

}
; INVE = ∧hi=1P

i
AE

,

where P i
AE

is defined according to the formula as depicted by (1).

Suppose that the remaining attributes of classes C and D after extracting the

composable attributes are held by classes C ′ and D′, respectively. The set of at-

tributes and invariants of classes C ′, D′ are denoted by:

AC′ =
{
ah+1
C , ah+2

C , ..., amC
}

and INVC′ =
∧m

i=h+1P
i
AC

AD′ =
{
ah+1
D , ah+2

D , ..., aqD
}

and INV ′D =
∧q

i=h+1P
i
AD

According to Def. 6, we have the invariants of the original model M as:

F = INVC ∧ INVD

= (∧hi=1P
i
AC

) ∧ (∧mi=h+1P
i
AC

) ∧ (∧hi=1P
i
AD

) ∧ (∧qi=h+1P
i
AD

)

= ∧hi=1(P i
AC
∧ P i

AD
) ∧ (∧mi=h+1P

i
AC

) ∧ (∧qi=h+1P
i
AD

)

(2)

After refactoring process, we get the invariants of the refactored model M′ as:

F ′ = INVE ∧ INV ′C ∧ INV ′D

= (∧hi=1P
i
AE

) ∧ (∧mi=h+1P
i
AC

) ∧ (∧qi=h+1P
i
AD

)

= ∧hi=1(P i
AC
∨ P i

AD
) ∧ (∧mi=h+1P

i
AC

) ∧ (∧qi=h+1P
i
AD

)

(3)

From the representation of F by (2) and F ′ by (3), the first condition of Def. 12

F =⇒ F ′ is easily satisfied. Now, we proceed to show that the second condition

is also satisfied (notice that, C and D that has no relationship). Indeed, from the

Def. 6 we get:

F ′|M = (INVE ∧ INV ′C ∧ INV ′D)|M
= ((∧hi=1P

i
AE

) ∧ (∧mi=h+1P
i
AC

) ∧ (∧qi=h+1P
i
AD

))|M
= (∧hi=1(P i

AC
∨ P i

AD
) ∧ (∧mi=h+1P

i
AC

) ∧ (∧qi=h+1P
i
AD

))|M
= (∧hi=1(P i

AC
∨ P i

AD
) ∧ (∧mi=h+1P

i
AC

) ∧ (∧qi=h+1P
i
AD

))|C∧
∧ (∧hi=1(P i

AC
∨ P i

AD
) ∧ (∧mi=h+1P

i
AC

) ∧ (∧qi=h+1P
i
AD

))|D
= (∧hi=1P

i
AC

) ∧ (∧mi=h+1P
i
AC

) ∧ (∧hi=1P
i
AD

) ∧ (∧qi=h+1P
i
AD

)

= INVC ∧ INVD

= F

(4)

As such, the invariant constraints of the refactored model have been fulfilled. In

other words, the refactored model preserves the class invariants of the initial model.

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 21

3.5. Checking Invariant-Preserving in Refactoring UML Class

Diagram

As mentioned before, our objective in this paper is to preserve the class invariants

in refactoring process. We have also proved the validation of the refactoring rules by

the mathematical method in Subsection 3.4. In practice, the developers may carry

out some other activities on the refactored model along with the refactoring process

(e.g., adding new attributes, modifying existing attributes, etc.). Therefore, we also

provide an algorithm that uses to check the invariant-preserving of the refactored

model in this case, as shown in Algorithm 1. As such, the refactoring process can

be put together with other maintenance activities in a flexible manner for sake of

improving model quality in the best way possible.

The checking algorithm takes both models (initial and refactored model) and

both formulas F (initial model invariants) and F ′ (refactored model invariants) as

inputs and then returns the result of checking invariant-preserving process.

The result of checking algorithm will return true or false, in which case the two

conditions of Def. 12 are fulfilled (it means that, both formulas F =⇒ F ′ and

F ′|M= F are satisfied), the checking result will return true. In the other cases, the

checking result will returns false.

Algorithm 1 : Checking Invariant-Preserving in Refactoring UML Class Diagram

Input :M(F : Predicate): Model
Input :M′(F ′ : Predicate): Model
Output: invPreserve: Boolean

Function invPreserve ← Checking (F , F ′)
begin

if
(
F =⇒ F ′

)
and

(
F ′|M= F

)
then

return true
end
return false

end

From the experiment perspective, we also make provision of the proposed ap-

proach for practical applications as follows.

(1) Building initial model : Building an initial model software using UML class dia-

gram as well as considering the semantic constraints of model elements; then es-

tablishing the formulas of class invariants (Def. 5) and model invariants (Def. 6).

(2) Refactoring model : Using refactoring rules to restructure the model (Subsec-

tion 3.3) and re-establishing class and model invariants of refactored model.

(3) Checking invariant preservation: Checking the preservation of invariants be-

tween the original and the refactored model in order to ensure that the refac-

toring process have been correctly performed (Algorithm 1).

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

22 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

4. Related Work

We present in this section the state-of-the-art of refactoring UML diagrams,

especially in refactoring UML class diagrams.

Wimmer et al. [22] provided a catalogue of refactoring for the model to model

transformation that is based on a set of rules. Their work is meaningful not only

quality attributes related to maintainability such as readability, re-usability, and

extensibility of the transformations, but also the performance of transformations

and illustrates throughout metamodel annotated with OCL constraints. However,

the refactoring catalogue was depicted by the natural language which may be lead

to difficulty in automating the refactoring process.

Sunyé et al. [21] performed refactoring in UML models, specially class diagrams

and state machines. Concerning the class diagram, they just introduced refactoring

operations, namely (1) Add feature/association, (2) Remove feature/association

and (3) Move element. Concerning the state machines, for each state machine, they

are interested in both describing the operations as well as defining OCL constraints

that includes pre and post-condions. These constraints were used in refactoring in

order to guarantee the preservation of the machine’s behavior. However, their work

did not mention invariant-preserving in refactoring UML class diagrams.

Other researcher in the trend of model transformation, Ivan Porres [20] presented

an action language which resembles OCL that is capable of model transformation.

He focused on how to implement refactoring as a collection of transformation rules.

He also provided a few refactorings for class models and state machine models

and implements them in an experimental tool. How ever, he did not discuss if a

refactoring is an actual improvement of a design or if it preserves a given behavioral

property of the model.

Thomas and Marković et al. [1] developed a few refactorings for class models

using QVT. They focused on OCL annotated models so that any changes made by

refactoring a model are automatically reflected in OCL constraints. However, they

just illustrated the proposed approach along with a simple operation in refactoring

(MoveAttribute) and did not generalize the semantic preservation in refactoring

software models.

Alessandro Folli and Tom Mens [6] developed the Attributed Graph Grammar

System (AGG) using graph transformations to execute refactorings in UML mod-

els. They paid attention to class models and state machine models and defined a

metamodel which is similar to the UML metamodel as a type graph. Their proposed

approach has no novelty because of the same way to represent class diagram by the

type graph and the UML metamodel.

In [10], Markovic et al. formalized and proved the preservation of seman-

tic of some primitive refactorings, namely MoveAttribute, MoveAssociationEnd,

PushDownAttibute, RenameAttribute, ExtractClass, ExtractSuperclass and PullUp-

Method. They implemented on class diagram annotated with OCL constraints. The

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 23

refactoring process might naturally affect on the syntax of OCL expressions. How-

ever, they have shown that even thought the syntactic of the OCL expressions was

change, its semantic were preserved in the new refactored models.

Tiago Massoni et al. proposed an approach that employ the invariants to make

the program syntactically amenable to the desired refactoring, before applying the

refactoring itself by using somes primitive program transformations. However, their

research was performed at the implementation stage and was considered the basis

for the future refactoring process [11].

One of the works that is closest to our research is presented by Claudia Pereira et

al. [18]. Their work based on the model to model transformations that pay attention

at behavior-preserving. Class diagram can be modeled by set theory and refactoring

is referred to transforming rules. The advantage of this research’s result displays

in the initial promotion in modeling a class diagram along with its constraints.

However, their research has not been conducted in a thorough way (still using

natural language to represent the refactoring operations).

In comparison to prior works, our approach focuses on preservation of class

invariants in refactoring UML models. This work different from other in the purpose

as well as the way to represent class diagrams (mathematical approach) along with

their invariants. Meanwhile other previous works usually based on natural languages

and have no an extensive view of preserving class invariants.

5. Conclusion and Future Work

It has been many works to refactor UML model, however, they usually represented

class diagram in a semi-formal or an informal ways as well as depicted the trans-

formation rules by the natural language. They haven’t yet considered the problem

of preserving class invariants during refactoring process. Therefore, our research

focuses on finding new approach to face out this problem.

We have proposed in this paper an approach to take into account of class in-

variants in refactoring UML models. We first formalize the elements of UML class

diagram, together with their invariants by making use of mathematical notations.

We then introduce five operations that involve the hierarchy relationship. Further-

more, we also propose the refactoring rules in refactoring process and proving that

these rules satisfy the conditions of preservation of class invariants.

In addition, we also present a checking invariant-preserving algorithm in case

of the developers desire to make features update on the evolution model. This

demonstrates the flexibility of the proposed approach when combining with other

maintain activities to improve the quality of the software model. This algorithm is

the fundamental principle to build a tool that supports for automated verification

of class invariant-preserving in refactoring UML model process.

In the future, we will study to utilize the proposed approach for other UML

models, e.g., use case, state diagrams, etc. with other constraints of the model, e.g.,

pre/post-conditions, etc. and illustrate this approach through a practical case study.

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

24 Thi-Huong Dao, Xuan-Truong Nguyen, Ninh-Thuan Truong

We will also consider the combination of these refactoring operations for the sake

of making more meaningful jobs for the users.

Acknowledgments

This work is partly supported by the project no. 102.03–2014.40 granted by Vietnam

National Foundation for Science and Technology Development (Nafosted).

References

[1] Baar, Thomas, and Slavisa Markovic: A graphical approach to prove the semantic
preservation of UML/OCL refactoring rules. Lecture Notes in Computer Science,
Vol. 4, 2007, pp. 70-83.

[2] Berardi, Daniela and Calvanese, Diego and De Giacomo, Giuseppe: Reasoning on
UML class diagrams. Journal of Artificial intelligence, Vol. 168, pp. 70–118, 2005,
Elsevier.

[3] Bruegge, Bernd and Dutoit, Allen H: Object-Oriented Software Engineering Using
UML, Patterns, and Java. 817 pages, Prentice Hall Press publisher, 2009.

[4] Cinnéide, Mel O and Nixon, Paddy: Composite refactorings for Java programs. In:
Workshop on Formal Techniques for Java Programs, ECOOP, 2000.

[5] Evans, Andy S: Reasoning with UML Class Diagrams. Workshop on Industrial
Strength Formal Method, IEEE Press, 1998, pp. 102–113.

[6] Folli, Alessandro, and Tom Mens: Refactoring of UML models using AGG. Electronic
Communications of the EASST, Vol. 8, 2008.

[7] Fowler, Martin and Beck, Kent: Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[8] Gogolla, Martin and Richters, Mark: Transformation rules for UML class diagrams.
Proc UML 98 Workshop, Springer-Verlag, Berlin, 1998, pp. 92-106.

[9] Hamilton, Kim and Miles, Russell: Learning UML 2.0. Vol. 286, 286 pages, O’Reilly
publisher, 2006.

[10] Markovic, Slavisa: Model refactoring using transformations, PhD Thesis, 159 pages,
EPFL publisher, 2008.

[11] Massoni, Tiago: An approach to invariant-based program refactoring. Electronic Com-
munications of the EASST, Vol. 3, 2007.

[12] Mens, Tom and Demeyer, Serge and Janssens, Dirk: Formalising behaviour preserving
program transformations. International Conference on Graph Transformation, 2002,
pp. 286-301, Springer.

[13] Mens, Tom and Taentzer, Gabriele and Runge, Olga: Analysing refactoring depen-
dencies using graph transformation. Journal of Software & Systems Modeling, Vol. 6,
No. 3, 2007, pp. 269–285, Springer.

[14] Najafi, Mehrnaz and Haghighi, Hassan and Zohdi Nasab, Tahereh: A Set of Refac-
toring Rules for UML-B Specifications. Computing and Informatics, Vol. 35, 2016,
No. 2, pp. 411-440.

July 31, 2018 13:42 WSPC/INSTRUCTION FILE ws-ijseke

Preservation of Class Invariants in Refactoring UML Models 25

[15] Nikulchev, Evgeny and Deryugina, Olga: Model and Criteria for the Automated
Refactoring of the UML Class Diagrams. International Journal of Advanced Com-
puter Science and Applications, Vol. 7, No. 12, 2016, pp. 76–79.

[16] Opdyke, William F.: Refactoring object-oriented frameworks, University of Illinois at
Urbana-Champaign, PhD thesis, 1992.

[17] Parkinson, Matthew: Class Invariants: The end of the road? Aliasing, Confinement
and Ownership in Object-oriented Programming (IWACO), 2007.

[18] Pereira, Claudia and Favre, Liliana and Martinez, Liliana: Refactoring UML Class
Diagram. In: Proceedings of 2004 Information Resources Management Association
International Conference (IRMA 2004).

[19] Poo, Danny and Kiong, Derek and Ashok, Ms Swarnalatha: Object, Class, Message
and Method. In: Object-Oriented Programming and Java, 2008, pp. 7–15, Springer.

[20] Porres, Ivan: Model refactorings as rule-based update transformations. In: Interna-
tional Conference on the Unified Modeling Language. Springer Berlin Heidelberg,
2003, pp. 159-174.

[21] Sunyé, Gerson and Pollet, Damien and Le Traon, Yves and Jézéquel, Jean-Marc:
Refactoring UML models. International Conference on the Unified Modeling Lan-
guage, 2001, pp. 134–148, Springer.

[22] Wimmer, Manuel and Perez, Salvador Mart́ınez and Jouault, Frédéric and Cabot,
Jordi: A Catalogue of Refactorings for Model-to-Model Transformations. Journal of
Object Technology, Vol. 11, No. 2, 2012.

[23] Whittle, Jon. Transformations and software modeling languages: Automating trans-
formations in UML. Proc. of UML 2002 - The Unified Modeling Language. Lecture
Notes in Computer Science, Springer, 2002, pp. 57–63.

[24] Van Gorp, Pieter and Stenten, Hans and Mens, Tom and Demeyer, Serge: Formal
UML Support for the semi-automatic Application of object-oriented Refactorings. Uni-
versity of Antwerp, Technical Report, 2003.

	Introduction
	Refactoring with object-oriented model
	The Object-Oriented Model
	Refactoring Class Hierarchies
	Refactoring Class Associations

	An approach to invariant-preserving in refactoring UML class diagram
	Formal representation of a UML class diagram
	The structure of a refactoring operation
	The refactoring rules
	Validation of the proposed refactoring rules
	Checking Invariant-Preserving in Refactoring UML Class Diagram

	Related Work
	Conclusion and Future Work

