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Abstract: Recently, in three-dimensional (3D) television, the temporal correlation between consecutive frames of the
intermediate view is used together with the inter-view correlation to improve the quality of the synthesised view. However, most
temporal methods are based on the motion vector fields (MVFs) calculated by the optical flow or block-based motion estimation
which has very high computational complexity. To alleviate this issue, the authors propose a temporal-disparity-based view
synthesis (TDVS) method, which uses the MVFs extracted from the bitstreams of side views and motion warping technique to
create the temporal correlation between views in the intermediate position. Then a motion compensation technique is used to
create a temporal-based view. Finally, the temporal-based view is fused with a disparity-based view which is generated by a
traditional depth image-based rendering technique to create the final synthesised view. The fusion of these views is performed
based on the side information which is determined and encoded at the sender-side of the 3D video system using a dynamic
programming algorithm and rate-distortion optimisation scheme. Experimental results show that the proposed method can
achieve the synthesised view with appreciable improvements in comparison with the view synthesis reference software 1D fast
(VSRS-1D Fast) for several test sequences.

1 Introduction
Three-dimensional television (3DTV) and free viewpoint video
(FVV) are known as two main 3D video applications which have
been extensively studied in many fields from video acquisition to
display technologies [1]. While the 3DTV provides perceptional
depth using tailored displays with or without special glasses, the
FVV allows users to interactively navigate their viewpoints.
However, 3DTV and FVV generally require a huge number of
views to roam around a scene, and due to the limitation in
hardware and bandwidth resources, the acquisition and
transmission of such a huge number of views are not possible. To
solve these problems, the multiple-view video plus depth (MVD)
method has been introduced for effective multi-view data
representation [2]. In the MVD method, only a few views are
captured, coded and transmitted; and then, at the receiver,
intermediate views between the existing viewpoints are synthesised
so that the burdens for encoding and transmitting colour videos of
full viewpoints can be significantly reduced.

Generally, synthesised views are generated from real views by
depth image-based rendering (DIBR) techniques [3]. A typical
DIBR scenario consists of three main steps: disparity-based
warping, view merging, and hole filling. However, due to the lack
of original information, the DIBR-based view synthesis is still an
ill-posed problem which may create noise or unreliable synthesised
data. More specifically, areas that have the same depth and uniform
textures are usually represented without distortions, while
foreground object edges and more complex textures have a high
distortion. Besides, in the case of view merging in DIBR, the
boundaries tend to be blurred because of blending colour between
background and foreground. Additionally, after view merging,
there are remaining holes present in the virtual view. The small
holes can be handled based on interpolation or extrapolation
techniques. However, simple texture interpolation or extrapolation
is insufficient for larger holes, especially holes at the highly
textured background. To improve the quality of the synthesised
view, several techniques have been integrated into the DIBR
mechanism. In [4], Yang et al. introduced a reliability reasoning
scheme for disparity-based warping which assesses the reliability
of each pixel value in the synthesised view. Then the quality of the

synthesised view is improved by withdrawing the unreliable pixels
from the view. Lee et al. [5] proposed a background contour region
replacement method to clean background noises in the warped
views to improve the quality of the synthesised view. In [6], Muller
et al. proposed a prioritised multi-layer projection scheme to
reduce boundary artefacts. In [7], Criminisi et al. proposed a hole
filling algorithm based on inpainting techniques [8, 9]. Both the
texture and structure from neighboured regions are simultaneously
propagated to fill the holes. Ismael et al. [10] proposed an
extension to the Criminisis algorithm by including the depth
information to guide the propagation process. Although giving the
better performance than interpolation and extrapolation techniques,
the inpainting process results in much higher complexity.

As presented, most of the mentioned view synthesis methods
utilise only the inter-view correlations between views to create the
synthesised view.

In fact, there is also the temporal correlation between frames
inside the synthesised view which can significantly improve the
quality of the synthesised view. For instance, in [11–14], the
authors compute the motion vector fields (MVFs) of the reference
views and warp vectors into the synthesised view. The warped
motion vectors are then used to exploit the temporal correlation
between frames. More specifically, Purica et al. [11] and Chen et
al. [12] use warped MVFs to retrieve information about dis-
occluded regions from other frames. In [13], the motion
compensation (MC) is performed with sub-pixel precision using
warped MVFs to obtain temporal predictions which are blended
together with the DIBR. The view synthesis method proposed in
[14] also use warped MVFs to create temporal predictions for the
intermediate view, but an additional frame per group of pictures
(GOP) in the intermediate view is required to compress and send as
the reference frame for the MC. In [15], Minh et al. directly
estimate forward MVF between frames of intermediate view and
use bi-directional motion estimation scheme to convert and refine
MVF between the previous and past frame to MVFs from previous
and past to current frame. Then, the bi-directional motion
compensate is performed to create the temporal prediction frame.
However, because of high precise MVFs requirement, these
methods need to use the optical flow or block-based motion
estimation to deliver MVFs which may not be appropriate for
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many emerging applications constrained by the computation
resources. For example, in [11, 13, 14], the optical flow algorithm
in [16] is used to deliver MVFs.

To address these problems, we propose in this study, a novel
view synthesis method which exploits not only the inter-view and
temporal correlation but also existing MVFs in bitstreams which
are calculated at the encoder side to improve the quality of the
synthesised view. Note that, in video compression [17], the motion
vector is key to reduce redundancy in video data. At the encoder,
the MVFs are estimated and fed to an MC process to prediction the
next frame. Then, the differences between the prediction frame and
real frame along with the MVFs are coded and added to the
bitstreams. At the decoder, the received MVFs are used to
reconstruct the frame. In the proposed method, two intermediate
views, called temporal-based and disparity-based views, are
generated and then fused to create the final synthesised view. The
temporal-based view is generated using motion warping and MC
techniques where MVFs are immediately extracted from the
bitstreams of reference views received from the encoder side while
the disparity-based view is generated using a traditional DIBR
technique. The fusion of these views to create the final synthesised
view is performed based on the side information (SI) which is
determined and encoded at the sender side of the 3D video system
using a dynamic programming algorithm and rate-distortion
optimisation (RDO) scheme. Experimental results show that the
proposed method provides better quality compared with another
conventional disparity-based view synthesis.

The remainder of this paper is organised as follows. Section 2
describes the proposed view synthesis method. Then, Section 3
presents the test conditions and discusses the experimental results.
Finally, Section 4 gives the conclusions.

2 Proposed view synthesis method
Fig. 1 illustrates a block diagram of our proposed view synthesis
method. The notations in this figure are explained throughout this
section while the novel techniques associated with the proposed
temporal and inter-view correlation-based view synthesis are
described in the next subsections. The proposed view synthesis
framework operates as follows: 

At the transmitter: A pair of two views (CL, DL) and (CR, DR)
denoted for the colour, depth video of left and right views,
respectively, are encoded using the MVD encoder and then
transmitted to the receiver. Next, the encoded colours (CL′ , CR′ ) and
depths (DL′ , DR′ ) along with their MVFs (ML, MR), respectively, are
extracted by the MVD extractor. Then, the extracted colours and
depths are used to generate the disparity-based view, SD′ , using the
traditional DIBR algorithm. The temporal-based view, ST′ , is
created by using the MC algorithm described in the next
subsection. Finally, in order to fuse the temporal-based view and
the disparity-based view appropriately, side information is
generated based on the support of SO, which can be the original

view or the synthesised view rendered from uncoded colour and
depth at the virtual position.

At the receiver: The decoded colours, depths and motion
information, (Cr′, Dr′, Mr), with r in {L, R}, respectively, are
exploited to create the disparity-based view SD′ , using the
traditional DIBR method and the temporal-based view, ST′ , using
MC technique. Then, the SI received from the encoder is utilised to
fuse these two intermediate views to achieve the final synthesised
view, SF′, in the virtual view fusion module. More details on the
view synthesis fusion are presented in the following subsections.

2.1 Inter view correlation-based virtual view creation

The disparity synthesised views are generated from the colour and
depth of the left view (CL′ , DL′ ) and those of the right view (CR′ , DR′ ),
respectively, by using the traditional DIBR technique. A typical
DIBR scenario consists of three steps: 3D warping, view merging,
and hole filling. In this scenario, 3D warping is used to project the
pixels of the decoded views CL′  and CR′  to the target synthesised
virtual view, SD′ , using depth images DL′  and DR′ , respectively. Due
to the occluded region between decoded views, 3D warping can
expose areas called holes. View merging combines all the warped
views into one image, resulting in the reduction of holes. The
remaining holes in the synthesised view are then handled by the
hole filling algorithms, which are generally based on interpolation
techniques.

2.2 Temporal correlation-based virtual view creation

The block-based MVFs [18] of the left and right views are
extracted from the bitstreams and converted to pixel-based MVFs
by assigning the motion vector of blocks to their pixels. Then,
these pixel-based MVFs denoted by ML and MR are projected to
the virtual view. Fig. 2 shows the relation between the positions of
a real point projection in different views and at two different time
instants t − 1 and t. 

Let Cr
t − 1, Cr

t, St − 1, and St denote the colour frame of the
reference views (r = L, R) and synthesised view at time t − 1 and t,
respectively. Let kt = (x, y) be a point in Cr

t associated with the
motion vector Mr(kt) which can be estimated during the encoding
process of the reference view. The motion vector Mr(kt) points to a
corresponding point kt − 1 = kt + Mr(kt) in Cr

t − 1. Let MS(kt + dt(kt))
be the motion vector of the projection of point kt onto St where
dt(kt) is the disparity value of the reference view at time t.
MS(kt + dt(kt)) can be computed as follows:

MS(kt + dt(kt)) = [kt − 1 + dt − 1(kt − 1)] − [kt + dt(kt)]
= [kt + Mr(kt) + dt − 1(kt + Mr(kt))] − [kt + dt(kt)]
= Mr(kt) + dt − 1[kt + Mr(kt)] − dt(kt) .

Fig. 1  Proposed view synthesis framework
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(1)

The disparity value can be calculated from the depth image as
follows [19]:

dt(kt) = f × L × Dr
′t(kt)
255 × 1

Zmin
− 1

Zmax
+ 1

Zmax
, (2)

where Dr
′t(kt) denotes a decoded depth value at position kt of

reference view r, f is the focal length, L is the baseline width
(horizontal interval between two view points), and Zmin and Zmax are
the nearest and farthest object distances of the scene, respectively.

The above calculation only regards the projection of the motion
vectors of one reference view to the synthesised view. With
multiple reference views, it is possible to have more than one
motion vector projected from reference views at one position
kt + dt(kt) at the synthesised view. In this case, the projected
motion vector from the closest real view is chosen.

When the MVFs of the synthesised view are calculated, the MC
will be performed to create a motion compensated frame at the
synthesised view denoted as ST′  as seen in Fig. 1. Note that the MC
can only be done in the regions where the motion information is
available.

2.3 Virtual view fusion

This step combines pixel values from SD′  and ST′  to get an improved
synthesised view. For this purpose, we propose in this study a
novel encoder-driven virtual view fusion algorithm which creates
SI at the encoder and embeds this data into the encoded bitstreams
to help better fusing the pixel values from SD′  and ST′  at the decoder.

2.3.1 Encoder side-information generation: Since SD′ , ST′  and SO
are available at the encoder, the synthesis algorithm simply selects
pixel values from either SD′  or ST′  which is closer to the reference
data SO. Let A2D be the 2D distortion analysis map which indicates
the difference between the square errors of the reference data, SO to
the synthesised data SD′  and ST′  as follows:

A2D(k) =

0, S′T(k) = 0,
S′D(k) − SO(k) 2 − S′T(k) − SO(k) 2, otherwise,

(3)

where k = (x, y) is a point that scans every pixel position of the
whole image plane and ST′ (k) = 0 means that the motion vector at
position (x, y) is not available.

Fig. 3 shows an example of the distortion analysis map. As both
intra and inter modes are used in the encoding process, only the
samples in the inter-coded regions that are associated with the
motion vectors can be exploited to create the temporal synthesised
view. In the figure, the pixels associated with the intra-coded
regions are illustrated as the blank cells. 

It can be seen in (3) that the pixel value ST′ (k) is closer to
reference data SO(k) than the pixel value SD′ (k) if A2D(k) > 0. In this
case, the synthesised pixel from the temporal view synthesis will
be considered as reliable and the location k will be compressed and
sent to the decoder. The view synthesis algorithm in the decoder
creates the final synthesised view by selecting the synthesised view
data from ST′ (k); otherwise, SD′ (k) will be selected.

To efficiently compress the reliable location information, we
propose to create a 1D distortion analysis array A1D from the
mentioned 2D distortion analysis map A2D and exploit a dynamic
programming algorithm to locate non-overlapping continuous sub-
arrays. These sub-arrays contain reliable positions in A1D, where a
continuous sub-array of A1D, represented by (h, t) includes all
elements from A1D[h] to A1D[t] of A1D. Specifically, sub-array (h, t)
denotes A1D[h], A1D[h + 1], A1D[h + 2], …, A1D[t − 1], A1D[t] .
Then, a sub-array, ith, can be represented by a pair (ai, bi) where ai
and bi are the first and last positions of the sub-array, respectively.
These pairs (ai, bi) can be entropy coded and signalled to the
decoder to present the MC regions instead of coding individually
reliable positions. For clarification, the algorithm detail is
explained as follows:

• First, the connected components labelling algorithm [20] is
applied to A2D to create a list of connected components whose
corresponding pixel values in ST′ > 0.

• Second, each connected component is scanned with the raster
pattern pixel-by-pixel and the scanned pixel values are appended
consecutively to A1D. As seen in Fig. 3, four connected
components are visible in A2D, and the pixel values of these
components are scanned to construct the 1D array A1D.

• Third, for the detection of reliable positions and the guarantee of
maximal distortion reduction, we propose a dynamic

Fig. 2  Motion warping
 

Fig. 3  Distortion analysis illustration
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programming algorithm that finds N non-overlapping
continuous sub-arrays of A1D, {(ai, bi) |1 ≤ i ≤ N}, such that the
total sum of these sub-arrays, ∑i = 1

N ∑ j = ai
bi A1D( j), is the largest.

We define the optimal-value function f (n, j, p) as the largest
sum obtained by selecting n sub-arrays from the first j elements
of A1D and p = {0, 1}, where p = 1 indicates that the jth element
belongs to nth sub-array and p = 0 otherwise. The recursions
are defined as follows:

f (n, j, 0) = max f (n, j − 1, 1), f (n, j − 1, 0) (4)

and

f (n, j, 1) = max
f (n, j − 1, 1),

f (n − 1, j − 1, 1),
f (n − 1, j − 1, 0)

+ A1D( j), (5)

where

initial case: f (0, j, p) = 0.
constraints: j > n for f (n, j, 0) .

j ≥ n for f (n, j, 1) .
(6)

If the jth element is not included in the nth sub-array, the
maximum sum by selecting n sub-arrays from the first j elements is
equivalent to that of the first j − 1 elements. It yields (4) to update
f (n, j, 0).

If the jth element is included in the nth sub-array, two situations
must be considered. First, if n sub-arrays are selected from the first
j − 1 elements, the ( j − 1)th element must be included in the nth
sub-array to ensure the continuation of the nth sub-array.
Therefore, f (n, j, 1) = f (n, j − 1, 1) + A1D( j). Second, if n − 1 sub-
arrays are selected from the first j − 1 elements, the jth element
must be the first element of the nth sub-array; hence,
f (n, j, 1) = max { f (n − 1, j − 1, 1), f (n − 1, j − 1, 0)} + A1D( j).
The combination of the two situations yields (5).

Fig. 4 shows an example of the sub-array selection and the
operation of the dynamic programming algorithm. The initial case
and the constraints of the algorithm are highlighted.

• Finally, the largest total sum of N sub-arrays is
max f (N, | A1D | , 0), f (N, | A1D | , 1) , where |A1D| is the total
number of elements of A1D.

2.3.2 Rate distortion optimisation for n sub-array: As can be
seen from the algorithm, the larger number of sub-arrays used as
SI, the smaller distortion yielded in the synthesised view. However,
the larger number of sub-arrays used, the larger number of bits
needed to present sub-arrays. To find an optimal number of sub-
arrays, an RDO mechanism can be applied. In this case, the cost
function that balances the rate and distortion based on the
Lagrangian optimisation technique [21] can be defined as follows:

J λ, N = D(N) + λ × R(N), (7)

where λ is the Lagrange multiplier, N is the number of sub-arrays
fed to the proposed dynamic programming algorithm to solve the N
maximal sums problem on array A1D, and R(N) is the number of
bits needed to present N sub-arrays ai, bi | 1 ≤ i ≤ N . The
distortion of the fused synthesis view, D(N), is computed as

D(N) = Dc − DT(N), (8)

where Dc = ∑i = 1
H ∑ j = 1

W [SD′ (i, j) − SO(i, j)]2 is the distortion of the
disparity-based synthesised view against SO and
DT(N) = ∑i = 1

N ∑ j = ai
bi A1D( j) is the distortion reduction when

temporally fusing the synthesised view using n sub-array A1D.

It can be seen that DT(N + 1) − DT(N) ≤ (DT(N)/N) and
(DT(N + 1)/(N + 1)) ≤ (DT(N)/N). Therefore, D(N) decreases
when N increases and has a lower bound. Furthermore, because the
rate R(N) linearly increases when N increases, J(λ, N) is a convex
function. The optimal values of λ and N, denoted by λ̄ and N̄,
respectively, can be found by solving the following:

(λ̄, N̄) = arg min λ, N J(λ, N) . (9)

It can be seen in (7) and (9) that λ is generally considered to have a
great influence on the Lagrange RDO cost function. Thus, in order
to achieve the optimal RD performance, it is important to choose a
reasonable λ̄. Its value is usually determined empirically [21–23] as
follows:

λ̄ = 0.85 × 2(QP − 12)/3, (10)

where (QP) is the quantisation parameter. Therefore, in this work,
we test λ̄ around the value above and it is empirically set as

λ̄ = 1 × 2(QP − 12)/3 . (11)

As J(λ, N) is a convex function, it has only one minimum value.
Therefore, N̄ is initially set to a number that is small enough, and it
is increased by 1 until J(λ̄, N̄) reaches the minimum and starts to
increase. This searching procedure is performed during the
execution of the proposed dynamic programming algorithm.

2.3.3 Fusion of the synthesised view at the decoder: At the
decoder, the N optimised sub-arrays (ai, bi) extracted and decoded
from the bitstreams are used as the fusion decision map for the
reconstruction of the final synthesised view as follows:

SF′(x, y) =
S′T(x, y), (x, y) ∈ ωi,
S′D(x, y), (x, y) ∉ ωi,

(12)

where ωi = {(x, y) | (x, y) is the reverse mapping to the 2D- map at
every position k with k ∈ ∪i = 1

N [ai, bi]}.

3 Results and discussion
To evaluate the effectiveness of the proposed method, we utilise
the test model designed for 3D-high efficiency video coding
(HEVC) [24]. The video test sequences [25] are Balloons, Kendo,
Newspaper and PoznanHall2. Table 1 shows more details on the
setting parameters for these test sequences. We encode the left and
right views as shown in Table 1 of these sequences separately with
QP values of 25, 30, 35, and 40 using HEVC reference software
[26]. The intra period is 24, the length of the GOP is set to 8, and
the GOP structure is IPP..PPP where frames only reference their
previous frame. The traditional view synthesis method based on the
DIBR technique is performed by view synthesis reference software
1D fast (VSRS-1D Fast) rendering used in 3D-HEVC
standardisation [24] which became an anchor to several new
rendering techniques. Furthermore, the original sequences in the

Fig. 4  Example of the proposed dynamic programming algorithm
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intermediate view are used as references for our proposed method
to generate SI in these experiments. 

3.1 Virtual view quality assessment

To evaluate the visual quality of virtual views, the synthesis results
are compared against the original intermediate sequences through
two quality metrics: the peak-signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) [27]. Fig. 5 shows the PSNR
variation of the synthesised view over time with the reference and
the proposed view synthesis methods while Table 2 shows the
PSNR [dB] results for the reference VSRS-1D Fast method, the
PSNR improvements [dB] of the proposed TDVS method and the
simple average-based fusion (ABF) method for each tested
sequence and QP. As shown in Fig. 5, the proposed method
outperforms the reference view synthesis VSRS-1D Fast for all
tested sequences at all frames. Note in the plots that because there
is no motion information in I-Frames at frame numbers: 0, 24, 48
and 72, the PSNR of the proposed method is equal to that of
VSRS-1D Fast at those I-Frames. As shown in the summary in
Table 2, it is incompetent to combine pixel values from disparity
and temporal prediction without SI. The synthesised become worse
when using simple ABF. In contrast, the proposed method
outperforms the reference view synthesis VSRS-1D Fast method
for all tested sequences at all tested QP values with the average
gains of 0.33 dB. As the target of SI is to minimise the signal error
between reference view and synthesis view, we use an additional
quality metric: SSIM which is considered to be correlated with the
quality perception of the human visual system to guarantee that our
proposed synthesised view is also better in human visual
perspective. As shown in the summary in Table 3, the results
present that our method still outperforms the reference method for
the proposed (0.9475) and reference (0.9469) method on average
over the tested sequences for SSIM. 

Table 4 shows the percentage of pixels using values from the
temporal-based prediction in our method for each tested sequence
and QP. It can be seen that the higher percentage of using the
temporal synthesis is obtained for the lower QP scenarios. This
occurs because the quality of the temporal synthesis block is high
when the quality of the left- and right-decoded views is high. 

Fig. 6 shows a rendering example of a frame of sequence
Newspaper at QP 25 with three enlarged image regions for visual
analysis. Note that the quality of the synthesised colour images is
degraded in both the proposed and VSRS-1D Fast methods. The
artefacts are especially noticeable at the object boundaries as
shown in Figs. 6c, d, f, g, i and j. However, the results of the
proposed method in Figs. 6d, g and j have fewer artefacts and
geometry distortions than those of VSRS-1D Fast in Figs. 6c, f and
i, respectively. 

3.2 Rate-distortion (RD) performance evaluation

We evaluate the RD performance of the reference and the proposed
method using Bjontegaard delta-PSNR [28] metric. The PSNR is
evaluated against the original intermediate views. The rate in the
reference method is the sum of the rates needed to code the left and
right views with their associated depth videos. The rate in the
proposed method is the rate for the reference method added to the
rate of the SI. We consider two representation types of SI: fixed
length (FL) and simple Huffman code (HC) for the experiments in
this study. Specifically, for FL representation, 2 × [log2(H × W)] is
the number of bits to present a pair (ai, bi). For HC representation,
the codes are generated over sequences and QPs.

The overheads from the SI for different QPs are shown in
Table 5. The RD curves for the VSRS-1D Fast and the proposed
methods are given in Fig. 7 while Table 6 shows the Δ PSNR
improvement. In Table 6, a positive Δ PSNR value indicates the
coding gain in the intermediary view synthesised by the proposed
method. As is shown, the proposed view synthesis method achieves
a quality improvement of 0.24 dB in the case of FL representation
and 0.28 dB in case of HC representation. 

3.3 SI efficiency evaluation

As discussed in Section 2.3, the SI is a set of sub-arrays. Each sub-
array is represented by a pair of number (ai, bi) where the numbers
between ai and bi present the reliable positions of the temporal-
based prediction that would improve the final virtual view. To
evaluate the efficiency of the SI generation algorithm, we calculate
the average length of sub-arrays by the equation as follows:

1
N ∑

i = 1

N
bi − ai + 1 , (13)

where N is the number of selected sub-arrays.
Table 7 shows the average lengths of sub-arrays for different

QPs. As can be seen in the table, the average lengths are longer for
higher QP values. The reason is that the RDO algorithm only
selects sub-arrays that have sufficient contribution to minimising
errors between the reference view and the synthesised view in
order to ensure the RD performance. In high-QP setting, because of
the low quality of the reference data for the temporal-based
prediction, the error signal decreases very small for each pixel
selected. Thus, the sub-arrays are protracted to deliver adequate
improvement. Consequently, the number of sub-arrays in the high-
QP setting is less than the low-QP setting but it carries more
reliable positions. 

3.4 Additional complexity

Regarding the complexity of the proposed methods, additional
computation is required for encoding, decoding and rendering. For
the decoding process, we need additional complexity for decoding
the SI. In our experiments, we consider two types of representation
for the SI: FL and HC, so the additional complexity is negligible.
For the rendering process, because the MVFs used to generate the
temporal prediction are extracted from conventional encode and
decode processes of reference views, the additional time
complexity is very low for the rendering. Specifically, rendering
includes the conversion of MVFs from the block-based to the
pixel-based, disparity-based motion warping, MC and fusion. The
complexities of these steps are all O(H × W), where H and W are
the height and width of the frame. The additional computations for
the encoding process are approximately equal to the sum of
additional computations for rendering and the generation of the SI
at the encoder. The complexity of the SI generation is O
(N × H × W), where N is determined by the RDO scheme.

4 Conclusion
In this study, we presented a view synthesis method that exploits
not only the inter-view correlation between views but also the
temporal correlation within the view to improve the quality of the
synthesised images. The contributions of this study include a novel
temporal correlation-based virtual view creation method and an
encoder-driven view fusion method. Experimental results showed
that the proposed view synthesis method outperforms the
traditional DIBR-based view synthesis (VSRS-1D Fast) method,
notably in both synthesised view quality improvement and RD
performance. However, the transmitted fusion decision map is
related to only one synthesised view, the bit-rate will increase as
transmission of multiple fusion decision maps, in order to be
applied to synthesise arbitrary views, that the bit-rate will increase
as transmission of multiple fusion decision maps. This is the weak
point of our current work. For future work, the extension approach
we focus on is only analysing decoded information, especially
MVFs of two reference views, to fuse those virtual view frames.
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Table 1 Selected test video sequences
Sequence name Left view Synthesis view Right view Resolution
balloons 1 3 5 1024 × 768
kendo 1 3 5 1024 × 768
newspaper 2 4 6 1024 × 768
poznanhall2 5 6 7 1920 × 1088
 

Fig. 5  PSNR comparison between the traditional and proposed methods at QP 25
 

Table 2 PSNR performance with different QPs
Sequence VSRS-1D fast ABF versus VSRS-1D Fast TDVS versus VSRS-1D Fast
QP 25 30 35 40 25 30 35 40 25 30 35 40
balloons 33.52 33.23 32.60 31.54 −0.63 −0.59 −0.51 −0.35 0.46 0.43 0.28 0.13
kendo 35.90 35.45 34.57 33.22 −1.30 −1.21 −1.03 −0.85 0.41 0.30 0.17 0.11
newspaper 26.10 26.06 25.95 25.69 −0.46 −0.47 −0.46 −0.41 0.20 0.20 0.18 0.11
poznanhall2 35.67 35.34 34.82 34.03 −1.48 −1.24 −1.01 −0.76 0.71 0.69 0.53 0.37
average of seq. 32.80 32.52 31.99 31.12 −0.97 −0.88 −0.75 −0.59 0.44 0.40 0.29 0.18
average of QPs −0.80 0.33
 

Table 3 SSIM performance over QPs
Sequence VSRS-1D Fast TDVS
balloons 0.9478 0.9484
kendo 0.9590 0.9593
newspaper 0.9238 0.9242
poznanhall2 0.9570 0.9582
average 0.9469 0.9475
 

Table 4 Percentage of a pixel using temporal-based prediction in synthesised view for different QPs
QP 25 30 35 40
balloons 8.00 6.77 3.27 3.27
kendo 11.42 10.17 6.84 3.17
newspaper 10.69 10.35 9.63 6.67
poznanhall2 5.93 6.59 4.56 3.98
average 9.01 8.47 6.08 4.27
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Fig. 6  Parts of a frame synthesized with the reference VSRS-1D Fast and the proposed method.
(a)Rendering of a frame of sequence newspaper
(b, e, h) QP25 with enlarged regions in the original colour
(c, f, i) Synthesised images obtained by VSRS-1D Fast
(d, g, j) Synthesised images obtained by the proposed method

 
Table 5 Overhead bits (%) for different QPs
SI rep. FL HC
QP 25 30 35 40 25 30 35 40
balloons 9.41 15.13 8.80 4.09 4.59 7.54 5.03 2.78
kendo 9.81 8.03 4.21 2.33 4.97 4.57 2.87 1.74
newspaper 10.46 20.72 22.94 10.06 5.22 10.40 12.35 6.54
poznanhall2 14.00 31.13 26.96 16.09 8.35 18.61 15.43 10.28
average 10.92 18.75 15.73 8.14 5.78 10.28 8.92 5.33

 

Fig. 7  RD performance
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Table 6 Δ PSNR (dB) improvement of TDVS
SI representation FL HC
balloons 0.25 0.29
kendo 0.17 0.20
newspaper 0.14 0.16
poznanhall2 0.41 0.49
average 0.24 0.28

 

Table 7 Average lengths of sub-arrays for different QPs
QP 25 30 35 40
balloons 132.11 142.14 313.22 905.43
kendo 188.21 407.90 991.66 1479.08
newspaper 175.49 170.02 272.28 784.79
poznanhall2 258.46 299.49 469.97 1225.64
average 188.57 254.89 511.78 1098.74
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