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Abstract—Wyner-Ziv video coding (WZVC) has been gaining
many attentions in recent decades due to its low computational
complexity and error resiliency benefits, notably when compared
to traditional video coding standards such as H.264/AVC or
High Efficiency Video Coding (HEVC) standards. In a Wyner-
Ziv video coding scheme, the compression efficiency can be
controlled by the length of the group of pictures (GOP) which
typically consists of the two key and several WZ frames. However,
the current Wyner-Ziv video coding solutions usually employ a
fixed GOP size or simple adaptive GOP size mechanisms, which
depend on some heuristic features extracted from video content.
To address the limitation of the current GOP size adaptation
solutions, we propose in this paper a novel Artificial Intelligence
based GOP size adaptation mechanism and integrate it into
the most advanced transform domain Wyner-Ziv video coding
(TDWZ) architecture. In the proposed GOP size adaptation
mechanism, the proper GOP size is learnt from the correlation
between video features and the optimal compression perfor-
mance. The power of machine learning techniques is used to
select the most suitable video features and the model of GOP size
and compression performance correlation. Experimental results
shown that, using the obtained GOP size adaptation mechanism,
the TDWZ achieved a compression performance when compared
to relevant benchmarks.

Index Terms—Artificial Intelligence, DVC

I. INTRODUCTION

Nowadays, there are not only traditional applications such
as broadcasting and video-on-demand but also emerging ap-
plications such as wireless video networks, mobile video cam-
eras and multi-camera surveillance systems. These emerging
applications have different requirements than those related to
traditional video delivery systems. However, current popular
video coding solutions such as H/264/AVC, HEVC [1], [2]
rely on the powerful hybrid block-based transform and inter-
frame predictive video paradigm. This architecture makes high
complexity encoders and light decoders. This is well-suited
for traditional applications where video is encoded once and
decoded several times but becomes challenge when applied
for emerging applications because there is a high number of
encoders but only one decoder.

In order to fulfill these new requirements, it is essential to
have a different video coding paradigm with a low-power and
a low complextiy encoder with expense of a high complexity
decoder. The most promising solution for this case is called
Distributed Video Coding (DVC). To decrease the complexity
of encoder, temporal correlations are exploited at the decoder
rather than encoder. Therefore, the encoder complexity is

much lighter than the decoder. Information theory results [3],
[4] show that despite of independent encoding and jointly
decoding, DVC systems can still achieve coding efficiency
similar to current hybrid video coding standards.
In DVC codec, frames are split into keyframe and Wyner-Ziv
(WZ) frame. Key frames are intracoded while WZ frames are
intercoded. WZ frames is usually coded by channel codes
such as turbo code or low density parity check (LDPC) code
[5]. However, in order to decrease the number of transmitted
bits, only the parity bits and intracoded key frames are sent
to the decoder. At the decoder, a prediction of the WZ frame
is created and named the Side Information (SI) [6]. SI is
generated by performing motion estimation and compensation
using decoded key frames. This SI, together with the received
parity bits, will be used to obtain the original WZ frame. For
this reason, the Rate-Distortion (RD) performance of DVC
codec depends on the quality of SI, consequently, depends
on the distance between the key frames or the Group Of
Pictures (GOP). However, a fixed GOP size along the whole
sequence may be inefficient because the temporal correlation
is not fully exploited when the video content changes. For
frame with high motion, the temporal correlation is low and
the small GOP size should be selected. Conversely, for frame
with low or medium motion, the temporal correlation is high
and in this case, the longer GOP size could be used.

In the literature [7]–[10], efforts are made in order to control
the GOP size according to the changes in the motion activity.
The more accurate the motion type of frame is identified, the
better the selection of GOP size and this could significantly
reduce bitrate of the system. In [7], authors used features
related to histogram and block variance to evaluate the activity
along the video sequence. These features can detect changes in
both global and local motion. This improved the performance
up to 0.4 dB for the transform domain when compared to the
fixed GOP size approach. Another idea from [8] used past
system behavior in order to select the GOP size. Initially, a
small set of size N of different GOP sizes is created. The
coding performance of the each GOP size is calculated based
on the ratio of the average estimated PSNR and average coding
rate. The GOP size with the highest ratio will be selected as
future GOP size. Krishna R.V et al. in [9] proposed a simple
GOP size control algorithm in which the blocks in a frame
are classified in to key, skip, and WZ blocks. The current



frame was considered as WZ or key frames depending on the
number of the skip block. Results showed that the proposed
algorithm achieved quite good results with negligible encoder
complexity increase.
These GOP size adaptation algorithms, however, are relatively
and mainly rely in some deterministic assumptions. Conse-
quently, RD performance of DVC codec is insignificantly im-
proved. The objective of this paper is to precisely classify GOP
size based on video content. Therefore, this paper employs a
powerful artificial intelligence algorithm to efficiently select
GOP size for each video segment. Since the content of video
data is typically diverse, several features extracted from every
five frames are adopted for artificial intelligence algorithm.
The results shows that the proposed algorithm brings a major
quality improvement with negligible additional complexity
when compared to relevant previous solutions and can be
easily integrated in the prior DVC architectures.
The rest of the paper is organized as follows. Section 2 briefly
introduces the architecture of transform domain Wyner–Ziv
video codec. Section 3 describes the proposed machine learn-
ing based GOP size adaptation mechanism while experimental
results are discussed in Section 4. Finally, some conclusions
and future works are presented in Section 5.

II. TRANSFORM DOMAIN WYNER-ZIV VIDEO CODEC

The proposed architecture of the transform domain Wyner-
Ziv video codec is illustrated in Fig.1 in which the novelty
GOP adaptation module is highlighted.

A. Encoding process
In the proposed TDWZ encoder, the input video sequence

is split into subsequences of 5 frames in order to process
and GOP size selection is performed for each subsequence.
GOP size is chose depending on the motion content for
each subsequence. If the subsequence has high motion and/or
complex texture, GOP 2 is selected. On the contrary, GOP
4 is considered. After GOP size is selected, each subse-
quence is split into key frames and WZ frames. Key frames,
corresponding to the first frame of each GOP, are conven-
tionally encoded using HEVC intra encoder. WZ frames are
encoded using DVC principle. Firstly, WZ frame is block
based transformed with an integer discrete cosine transform
(DCT). The obtained transformed coefficients are uniform
quantized. These coefficients are organized in bands where
every band contains the coefficients associated to the same
frequency in different blocks. The bit representing these coef-
ficients are split into bitplanes which go through Low-Density-
Parity-Check (LDPC) encoder. The LDPC encoder computes
parity bits corresponding to the encoded bitplane. While the
systematic bit are eliminated, the parity bits are stored in a
buffer and progressively transmitted to the decoder depending
on requests sent from the decoder during the decoding process,
via feedback channel.

B. Decoding process
At the decoder side, encoded key frames are decoded using

HEVC intra decoder. These decoded key frames are fed into

Fig. 1. Architecture of the transform domain WZ video codec

the buffer in order to create the side information, which is
an error version of the original WZ frames. The difference
between the original WZ frame and the corresponding SI can
be considered as correlation noise in a virtual channel. This
correlation noise is modeled by Laplacian distribution. An
integer DCT is carried out over the generated SI in order to
obtain the integer DCT coefficients, a noisy version of the WZ
frame DCT coefficients. Then, the LDPC decoder corrects the
error bits in the transformed SI, using the parity bits of WZ
frames sent from the encoder via the feedback channel, taking
into acount the correlation noise. To decide whether more par-
ity bits are needed for the successful decoding, a convergence
criteria is used. The decoded WZ DCT coefficients are then
reconstructed by doing the inverse of the quantization. Finally,
the inverse integer DCT transform is carried out in order to
obtain entire WZ frame in the pixel domain. The decoded
video sequence is created by multiplexing the decoded key
frames and WZ frames.

III. ARTIFICIAL INTELLIGENCE BASED GOP SIZE
ADAPTATION MECHANISM

This section describes the proposed algorithm. First, fea-
tures describing motion and texture of each subsequence
are presented. Then, J48 decision tree based classification is
detailed.

A. Features definition

As mentioned above, selected features must fully reflect the
nature of video content, so some metrics are related to both
global motion and local motion while others are related to
the texture. The features include Sum of Absolute Difference
(SAD), Difference of Histogram (DoH), Average of Motion
Vectors (AMV), Number of Motion Vectors (NMV ), Average
Subsequence Variance (ASV), Average Subsequence Mean
(ASM), DC value Variance (DCV), DC value Mean (DCM),
AC value Variance (ACV) and AC value Mean (ACM). They
are defined as follows.

SAD =
1

N − 1

N−1∑
k=1

(
H∑

x=1

W∑
y=1

|fk+1(x, y)− fk(x, y)|

)
(1)

where k, N represents the key frame index and number of
key frames in a subsequence. In this paper, subsequence length
equals to 5, thus N = 3. H , W describe the height and width



Fig. 2. SAD and Histogram feature of the first GOP in Suzie sequence

of frames. x,y and f is the coordinate and luminance value of
pixel in the frame.

DoH =
1

N

N−1∑
k=1

(
1

H.W

L∑
i=0

|hk+1(i)− hk(i)|

)
(2)

where h is the histogram operator with L levels.

AMV =
1

N − 1

N−1∑
k=1

MV (k + 1, k) (3)

where MV (k+1, k) is total length of motion vector between
key frames k + 1 and k.

NMV =
1

N − 1

N−1∑
k=1

NMV (k + 1, k) (4)

where NMV (k + 1, k) is number of motion vector between
key frames k + 1 and k.

ASV =
1

N

N∑
k=1

σ2(k) (5)

where σ2(k) is variance of pixel value in the key frame k.

ASM =
1

N

N∑
k=1

(
1

H.W

H∑
x=1

W∑
y=1

fk(x, y)

)
(6)

where fk(x, y) is pixel value of pixel (x, y) in the key frame
k.

DCV = σ2
DC (7)

where σ2
DC is variance of DC coefficient value of key frames

in a subsequence.

DCM =
1

N

N∑
k=1

DC(k) (8)

where DC(k) is DC coefficient value of key frames k in a
subsequence.

ACV =
1

N

N∑
k=1

σ2
AC(k) (9)

where σ2
AC(k) is variance of AC coefficient value in the key

frame k.

ACM =
1

N

N∑
k=1

H.W−1∑
i=1

ACi(k) (10)

where ACi(k) is AC coefficient ith value in the key frame k.

B. Training and classification

Classification is the process of building a model of classes
from a set of records that contain class labels. A decision
tree is a predictive machine-learning model that decides the
target value (dependent variable) of a new sample based on
various attribute values of the available data. The performance
comparison of Decision Tree Algorithms and Artificial Neural
Network, and Nave Bayes Classifier on a set of attributes was
performed. On the basis of results it has been examined that
Decision Tree Algorithms performs better than the Artificial
Neural Network and Nave Bayes Classifier. So, J48 decision
tree method is chosen as the optimal for the problem as it
has shown better results than the algorithms. The J48 decision
tree method is the implementation of algorithm ID3 (Iterative
Dichotomiser 3) developed by the WEKA project team [12].

1) J48 model training: The J48 model must be offline
trained and only once before used for classification stage. First,
features mentioned above are extracted from 352 subsequences
of the five sequences Foreman, Hall Monitor, News, Husky
and Mobile. Together with these features, the class, GOP 2 or
GOP4, created by comparing Bjntegaard-Delta Peak Signal to
Noise Ratio (BD-PSNR) in order to choose the size of GOP,
are used to train J48 model.

2) Testing feature extraction: For each input video se-
quence, every five frames are considered as a subsequence
and the features proposed above are extracted from each
subsequence.

3) J48 classification: The classification is performed for a
set of extracted features with J48 trained model. The output
of the classification is the GOP size for each subsequence
including five frames.

IV. EXPERIMENTAL RESULTS

A. Test conditions

In order to evaluate the proposed algorithm, BD-PSNR
metric is used for comparision. BD-PSNR metric described
in [11] to provide relative gain between two methods, by
measuring average difference between the two RD-curves with
a RD curve is chosen as base curve. If BD-PSNR is positive,
it means that the second curve is better than the base curve.
In this assessment, RD curves of GOP4 and the proposed
method named Adaptive GOP are compared with the base
curve GOP2. In this experiment, four video sequences are
used for assessment including Coastguard, Suzie,Pamphlet and
Harbour with the characteristics summarized in Table 1 while
the first frames of four sequences are shown in Fig.3.



Fig. 3. The first frame of video test sequences

TABLE I
CHARACTERISTICS OF TEST SEQUENCES

Test
sequences

Spatial
resolution

Number of
frames

Quantization
parameters

Coastguard

176x144

300 {26,30,34,38}
Suzie 150 {25,29,34,40}
Pamphlet 150 {25,29,34,40}
Harbour 150 {25,29,34,40}

B. Performance evaluation

RD performance results for four test video sequences are
presented in Table II and III.

As shown in Table II, PSNR values of the proposed method
are better than the values of GOP 4 and approximated to the

TABLE II
RD PERFORMANCE FOR TEST SEQUENCES

Sequence QP GOP2 GOP4 Adaptive GOP
Bitrate PSNR Bitrate PSNR Bitrate PSNR

Coastguard

26 27760 38.18 28242 34.65 27735 38.14
30 17131 34.87 16140 32.48 17058 34.84
34 9838 31.88 8228 30.36 9760 31.85
38 5256 29.14 3781 28.23 5199 29.12

Average 14996.25 33.52 14097.75 31.43 14938 33.49

Suzie

26 18424 41.58 19719 41.26 18565 41.34
30 10869 38.56 11172 38.23 10530 38.26
34 5725 35.41 5588 35.15 5283 35.29
38 2667 32.24 2353 32.04 2270 32.19

Average 9421.25 36.95 9708.00 36.67 9162.00 36.77

Pamphlet

26 23893.93 41.15 23128.28 41.35 22453.65 41.37
30 15669.90 37.42 14900.70 37.51 14504.50 37.56
34 9013.55 33.18 8567.73 33.24 8349.78 33.29
38 3897.73 28.86 3667.88 28.91 3587.02 28.95

Average 13118.78 35.15 12566.15 35.25 12223.74 35.29

Harbour

26 45656.58 38.04 45680.28 37.62 45337.92 37.81
30 29713.93 34.18 28617.86 33.73 28830.11 33.96
34 16805.14 30.36 15471.99 30.03 15889.86 30.23
38 7646.22 26.24 6768.94 26.09 7082.92 26.22

Average 24955.47 32.20 24134.77 31.86 24285.20 32.06

TABLE III
BD-RATE SAVING

Sequences Adaptive GOP
vs. GOP2

Adaptive GOP
vs. GOP4

Coastguard -0.04 -26.24
Suzie -2.28 -7.52
Pamphlet -9.04 -3.26
Harbour -2.12 -1.48
Average -3.37 -9.62

values of GOP2. Bitrate values of the proposed method are
higher than the values of GOP4 and lower than the values of
GOP2. Thus, the selection between GOP2 and GOP4 depends
on the trade-off between PSNR and Bitrate. The results show
that the reduction quality of video (in term of PSNR value) in
the proposed method is negligible while the Bitrate saving is
rather high. Table III shows that the Bitrate saving of proposed
method is 3.37% and 9.62% compared to GOP2 and GOP4,
respectively.

V. CONCLUSION

In this paper, machine learning based GOP size selection
is proposed for DVC codec. J48 decision tree algorithm is
used for training and classification a set of video segments
in order to choose the suitable GOP size for each segment
including five frames. The results show that performance of
the proposed method is better than using fixed GOP sizes or at
least, it could choose the best size between GOP2 and GOP4.
Future works will focus on finding more effective features and
more powerful machine learning algorithm in order to improve
the performance of DVC codec.
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